1
|
Gadgil P, Ballew O, Sullivan TJ, Lacefield S. Aneuploidy of Specific Chromosomes is Beneficial to Cells Lacking Spindle Checkpoint Protein Bub3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610809. [PMID: 39282354 PMCID: PMC11398392 DOI: 10.1101/2024.09.02.610809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Aneuploidy typically poses challenges for cell survival and growth. However, recent studies have identified exceptions where aneuploidy is beneficial for cells with mutations in certain regulatory genes. Our research reveals that cells lacking the spindle checkpoint gene BUB3 exhibit aneuploidy of select chromosomes. While the spindle checkpoint is not essential in budding yeast, the loss of BUB3 and BUB1 increases the probability of chromosome missegregation compared to wildtype cells. Contrary to the prevailing assumption that the aneuploid cells would be outcompeted due to growth defects, our findings demonstrate that bub3 Δ cells consistently maintained aneuploidy of specific chromosomes over many generations. We investigated whether the persistence of these additional chromosomes in bub3 Δ cells resulted from the beneficial elevated expression of certain genes, or mere tolerance. We identified several genes involved in chromosome segregation and cell cycle regulation that confer an advantage to Bub3-depleted cells. Overall, our results suggest that the upregulation of specific genes through aneuploidy may provide a survival and growth advantage to strains with poor chromosome segregation fidelity. AUTHOR SUMMARY Accurate chromosome segregation is crucial for the proper development of all living organisms. Errors in chromosome segregation can lead to aneuploidy, characterized by an abnormal number of chromosomes, which generally impairs cell survival and growth. However, under certain stress conditions, such as in various cancers, cells with specific mutations and extra copies of advantageous chromosomes exhibit improved survival and proliferation. In our study, we discovered that cells lacking the spindle checkpoint protein Bub3 became aneuploid, retaining specific chromosomes. This finding was unexpected because although bub3 Δ cells have a higher rate of chromosome mis-segregation, they were not thought to maintain an aneuploid karyotype. We investigated whether the increased copy number of specific genes on these acquired chromosomes offered a benefit to Bub3-deficient cells. Our results revealed that several genes involved in chromosome segregation and cell cycle regulation prevented the gain of chromosomes upon Bub3-depletion, suggesting that these genes confer a survival advantage. Overall, our study demonstrates that cells lacking Bub3 selectively retain specific chromosomes to increase the copy number of genes that promote proper chromosome segregation.
Collapse
|
2
|
Zhang Y, van der Zee L, Barberis M. Two-way communication between cell cycle and metabolism in budding yeast: what do we know? Front Microbiol 2023; 14:1187304. [PMID: 37396387 PMCID: PMC10309209 DOI: 10.3389/fmicb.2023.1187304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Coordination of cell cycle and metabolism exists in all cells. The building of a new cell is a process that requires metabolic commitment to the provision of both Gibbs energy and building blocks for proteins, nucleic acids, and membranes. On the other hand, the cell cycle machinery will assess and regulate its metabolic environment before it makes decisions on when to enter the next cell cycle phase. Furthermore, more and more evidence demonstrate that the metabolism can be regulated by cell cycle progression, as different biosynthesis pathways are preferentially active in different cell cycle phases. Here, we review the available literature providing a critical overview on how cell cycle and metabolism may be coupled with one other, bidirectionally, in the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yanfei Zhang
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Lucas van der Zee
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Matteo Barberis
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
3
|
Irvali D, Schlottmann FP, Muralidhara P, Nadelson I, Kleemann K, Wood NE, Doncic A, Ewald JC. When yeast cells change their mind: cell cycle "Start" is reversible under starvation. EMBO J 2023; 42:e110321. [PMID: 36420556 PMCID: PMC9841329 DOI: 10.15252/embj.2021110321] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic cells decide in late G1 phase of the cell cycle whether to commit to another round of division. This point of cell cycle commitment is termed "Restriction Point" in mammals and "Start" in the budding yeast Saccharomyces cerevisiae. At Start, yeast cells integrate multiple signals such as pheromones and nutrients, and will not pass Start if nutrients are lacking. However, how cells respond to nutrient depletion after the Start decision remains poorly understood. Here, we analyze how post-Start cells respond to nutrient depletion, by monitoring Whi5, the cell cycle inhibitor whose export from the nucleus determines Start. Surprisingly, we find that cells that have passed Start can re-import Whi5 into the nucleus. In these cells, the positive feedback loop activating G1/S transcription is interrupted, and the Whi5 repressor re-binds DNA. Cells which re-import Whi5 become again sensitive to mating pheromone, like pre-Start cells, and CDK activation can occur a second time upon replenishment of nutrients. These results demonstrate that upon starvation, the commitment decision at Start can be reversed. We therefore propose that cell cycle commitment in yeast is a multi-step process, similar to what has been suggested for mammalian cells.
Collapse
Affiliation(s)
- Deniz Irvali
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Fabian P Schlottmann
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | | | - Iliya Nadelson
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Katja Kleemann
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - N Ezgi Wood
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Doncic
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer C Ewald
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
4
|
Hu Z, Yuan K, Zhou Q, Lu C, Du L, Liu F. Mechanism of antifungal activity of Perilla frutescens essential oil against Aspergillus flavus by transcriptomic analysis. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107703] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Pan C, Li YX, Yang K, Famous E, Ma Y, He X, Geng Q, Liu M, Tian J. The Molecular Mechanism of Perillaldehyde Inducing Cell Death in Aspergillus flavus by Inhibiting Energy Metabolism Revealed by Transcriptome Sequencing. Int J Mol Sci 2020; 21:ijms21041518. [PMID: 32102190 PMCID: PMC7073185 DOI: 10.3390/ijms21041518] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/01/2023] Open
Abstract
Perillaldehyde (PAE), an essential oil in Perilla plants, serves as a safe flavor ingredient in foods, and shows an effectively antifungal activity. Reactive oxygen species (ROS) accumulation in Aspergillus flavus plays a critical role in initiating a metacaspase-dependent apoptosis. However, the reason for ROS accumulation in A. flavus is not yet clear. Using transcriptome sequencing of A. flavus treated with different concentrations of PAE, our data showed that the ROS accumulation might have been as a result of an inhibition of energy metabolism with less production of reducing power. By means of GO and KEGG enrichment analysis, we screened four key pathways, which were divided into two distinct groups: a downregulated group that was made up of the glycolysis and pentose phosphate pathway, and an upregulated group that consisted of MAPK signaling pathway and GSH metabolism pathway. The inhibition of dehydrogenase gene expression in two glycometabolism pathways might play a crucial role in antifungal mechanism of PAE. Also, in our present study, we systematically showed a gene interaction network of how genes of four subsets are effected by PAE stress on glycometabolism, oxidant damage repair, and cell cycle control. This research may contribute to explaining an intrinsic antifungal mechanism of PAE against A. flavus.
Collapse
Affiliation(s)
- Chao Pan
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Yong-Xin Li
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Kunlong Yang
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Erhunmwunsee Famous
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Yan Ma
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Xiaona He
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Qingru Geng
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Man Liu
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
- Correspondence: (M.L.); (J.T.); Tel.: +86-516-83403172 (J.T.)
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing100048, China
- Correspondence: (M.L.); (J.T.); Tel.: +86-516-83403172 (J.T.)
| |
Collapse
|
6
|
Raspelli E, Fraschini R. Spindle pole power in health and disease. Curr Genet 2019; 65:851-855. [DOI: 10.1007/s00294-019-00941-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022]
|
7
|
Fraschini R. Divide Precisely and Proliferate Safely: Lessons From Budding Yeast. Front Genet 2019; 9:738. [PMID: 30687396 PMCID: PMC6335322 DOI: 10.3389/fgene.2018.00738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022] Open
Abstract
A faithful cell division is essential for proper cellular proliferation of all eukaryotic cells; indeed the correct segregation of the genetic material allows daughter cells to proceed into the cell cycle safely. Conversely, errors during chromosome partition generate aneuploid cells that have been associated to several human pathological conditions, including cancer. Given the importance of this issue, all the steps that lead to cell separation are finely regulated. The budding yeast Saccharomyces cerevisiae is a unicellular eukaryotic organism that divides asymmetrically and it is a suitable model system to study the regulation of cell division. Humans and budding yeast are distant 1 billion years of evolution, nonetheless several essential pathways, proteins, and cellular structures are conserved. Among these, the mitotic spindle is a key player in chromosome segregation and its correct morphogenesis and functioning is essential for genomic stability. In this review we will focus on molecular pathways and proteins involved in the control mitotic spindle morphogenesis and function that are conserved from yeast to humans and whose impairment is connected with the development of human diseases.
Collapse
Affiliation(s)
- Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|