1
|
Maatuf YH, Marco M, Unger-Gelman S, Farhat E, Zobrab A, Roy A, Kumar A, Carmon I, Reich E, Dvir-Ginzberg M. Diverse Response to Local Pharmacological Blockade of Sirt1 Cleavage in Age-Induced versus Trauma-Induced Osteoarthritis Female Mice. Biomolecules 2024; 14:81. [PMID: 38254681 PMCID: PMC10813022 DOI: 10.3390/biom14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Objective: Previous studies have shown that the cleavage of Sirt1 contributes to the development of osteoarthritis (OA). In fact, OA was effectively abrogated by the intra-articular (IA) administration of two compounds, one blocking Sirt1 cleavage (CA074me) and the other activating Sirt1 (SRT1720), using a post-traumatically induced model (PTOA) in young female mice. In this study, we attempted to understand if this local treatment is effective in preventing age-associated OA (AOA) progression and symptoms. Design: A group of 17-month-old female C57BL/6J mice were IA administered with CA074me and/or SRT1720 or their combination. Joint histopathological analysis and bone histomorphometry were carried out, with an assessment of knee mechanical hyperalgesia. A serum analysis for NT/CT Sirt1 was carried out along with immunohistochemistry for articular cartilage to detect p16INK4A or γH2A.X. Similarly, meniscal cartilage was monitored for Lef1 and Col1a1 deposition. The data were compared for young female mice subjected to post-traumatic OA (PTOA). Results: Similar to PTOA, combination-treated AOA exhibited improved knee hyperalgesia, yet structural improvements were undetected, corresponding to unchanged NT/CT Sirt1 serum levels. Both AOA and PTOA exhibited unchanged staining for nuclear p16INK4A or γH2A.X and lacked a correlation with OA severity. Contrarily to PTOA, the combination treatment with AOA did not exhibit a local reduction in the Lef1 and Col1 targets. Conclusions: When targeting Sirt1 cleavage, the PTOA and AOA models exhibited a similar pain response to the combination treatment; however, they displayed diverse structural outcomes for joint-related damage, related to Lef1-dependent signaling. Interestingly, nuclear p16INK4A was unaffected in both models, regardless of the treatment's effectiveness. Finally, these findings highlight the variations in the responses between two highly researched OA preclinical models, reflecting OA pathophysiology heterogeneity and variations in gender-related drug-response mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mona Dvir-Ginzberg
- Institute of Biomedical and Oral research, Faculty of Dental Medicine, Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 9112102, Israel; (Y.H.M.); (M.M.); (S.U.-G.); (E.F.); (A.Z.); (A.R.); (A.K.); (I.C.); (E.R.)
| |
Collapse
|
2
|
Smith CA, Humphreys PA, Bates N, Naven MA, Cain SA, Dvir‐Ginzberg M, Kimber SJ. SIRT1 activity orchestrates ECM expression during hESC-chondrogenic differentiation. FASEB J 2022; 36:e22314. [PMID: 35416346 PMCID: PMC9322318 DOI: 10.1096/fj.202200169r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
Epigenetic modification is a key driver of differentiation, and the deacetylase Sirtuin1 (SIRT1) is an established regulator of cell function, ageing, and articular cartilage homeostasis. Here we investigate the role of SIRT1 during development of chondrocytes by using human embryonic stem cells (hESCs). HESC-chondroprogenitors were treated with SIRT1 activator; SRT1720, or inhibitor; EX527, during differentiation. Activation of SIRT1 early in 3D-pellet culture led to significant increases in the expression of ECM genes for type-II collagen (COL2A1) and aggrecan (ACAN), and chondrogenic transcription factors SOX5 and ARID5B, with SOX5 ChIP analysis demonstrating enrichment on the chondrocyte specific -10 (A1) enhancer of ACAN. Unexpectedly, when SIRT1 was activated, while ACAN was enhanced, glycosaminoglycans (GAGs) were reduced, paralleled by down regulation of gene expression for N-acetylgalactosaminyltransferase type 1 (GALNT1) responsible for GAG chain initiation/elongation. A positive correlation between ARID5B and COL2A1 was observed, and co-IP assays indicated association of ARID5B with SIRT1, further suggesting that COL2A1 expression is promoted by an ARID5B-SIRT1 interaction. In conclusion, SIRT1 activation positively impacts on the expression of the main ECM proteins, while altering ECM composition and suppressing GAG content during human cartilage development. These results suggest that SIRT1 activity has a differential effect on GAGs and proteins in developing hESC-chondrocytes and could only be beneficial to cartilage development and matrix protein synthesis if balanced by addition of positive GAG mediators.
Collapse
Affiliation(s)
- Christopher A. Smith
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Paul A. Humphreys
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Mark A. Naven
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Stuart A. Cain
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| | - Mona Dvir‐Ginzberg
- Laboratory of Cartilage BiologyFaculty of Dental MedicineHebrew University of JerusalemJerusalemIsrael
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterManchesterUK
| |
Collapse
|
3
|
Reynolds WJ, Bowman A, Hanson PS, Critchley A, Griffiths B, Chavan B, Birch‐Machin MA. Adaptive responses to air pollution in human dermal fibroblasts and their potential roles in aging. FASEB Bioadv 2021; 3:855-865. [PMID: 34632319 PMCID: PMC8493965 DOI: 10.1096/fba.2021-00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 11/11/2022] Open
Abstract
The damaging effects of air pollution on the skin are becoming increasingly researched and the outcomes of this research are now a major influence in the selection and development of protective ingredients for skincare formulations. However, extensive research has not yet been conducted into the specific cellular defense systems that are being affected after exposure to such pollutants. Research investigating the affected systems is integral to the development of suitable interventions that are capable of augmenting the systems most impacted by air pollutant exposure. The following studies involved exposing primary human dermal fibroblasts to different concentrations of particulate matter and analyzing its effects on mitochondrial complex activity, nuclear factor erythroid 2-related factor 2 localization using immunocytochemistry and protein expression of electron transport chain complex proteins, sirtuin-1 (SIRT1), and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) using western blotting. Particulate matter-induced alterations in both mitochondrial complex protein and activity, indicating oxidative stress, which was also complimented by increased expression of antioxidant proteins GSTP1/2 and SOD2. Particulate matter also seemed to modify expression of the proteins SIRT1 and PGC-1α which are heavily involved in the regulation of mitochondrial biogenesis and energy metabolism. Given the reported results indicating that particulate matter induces damage through oxidative stress and has a profound effect on mitochondrial homeostasis, interventions involving targeted mitochondrial antioxidants may help to minimize the damaging downstream effects of pollutant-induced oxidative stress originating from the mitochondria.
Collapse
Affiliation(s)
- Wil J. Reynolds
- Dermatological Sciences, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Amy Bowman
- Dermatological Sciences, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Peter S. Hanson
- Mental HealthDementia and Neurodegeneration, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | | | | | | | - Mark A. Birch‐Machin
- Dermatological Sciences, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
4
|
Meka SRK, Younis T, Reich E, Elayyan J, Kumar A, Merquiol E, Blum G, Kalmus S, Maatuf YH, Batshon G, Nussbaum G, Houri-Haddad Y, Dvir-Ginzberg M. TNFα expression by Porphyromonas gingivalis-stimulated macrophages relies on Sirt1 cleavage. J Periodontal Res 2021; 56:535-546. [PMID: 33559894 DOI: 10.1111/jre.12853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Periodontitis is one the most common chronic inflammatory conditions, resulting in destruction of tooth-supporting tissues and leading to tooth loss. Porphyromonas gingivalis activates host macrophages to secrete pro-inflammatory cytokines and elicit tissue damage, in part by inducing NF-kappa-B transactivation. Since NFκB transactivation is negatively regulated by the Nicotinamide adenine dinucleotide (NAD)-dependent deacetylase enzyme Sirt1, we sought to assess if RAW264.7 macrophages exposed to P. gingivalis demonstrate impaired Sirt1 activity, to ultimately induce a pro-inflammatory response. METHODS RAW264.7 macrophages were incubated with heat- killed P. gingivalis for 2, 4, 8, and 24 h. Stimulated RAW264.7 were assessed for TNFα expression via PCR, ELISA, and ChIP analysis. Following the activation of RAW264.7 macrophages, immunoblot analysis was executed to detect modifications in Sirt1 and the NFκB subunit RelA that is essential for NFκB transcriptional activity. RESULTS TNFα expression was elevated 4 h after exposure to P. gingivalis. ChIP confirmed that RelA was enriched in the mouse TNFα promoter 4 h following stimulation, which correlated with the increased TNFα mRNA levels. Preceding TNFα expression, we detected Phosphoserine 536 and acetylated lysine 310 of RelA after 2 hours exposure with P. gingivalis. Moreover, reduced Sirt1 activity was associated with its cleavage in RAW264.7 protein extracts, after 2 hours of P. gingivalis exposure. Blocking TLR2/4 signaling prevented Sirt1 cleavage, loss of deacetylase activity, and TNFα secretion, while co-administering CA074Me (a cathepsin B inhibitor) with P. gingivalis reduced RelA promoter enrichment, resulting in impaired TNFα expression. CONCLUSIONS Together, the results suggest that P. gingivalis induces TNFα expression, at least in part, by enhancing cleavage of Sirt1 via a TLR-dependent signaling circuit.
Collapse
Affiliation(s)
- Sai R K Meka
- Faculty of Dental Medicine, Institute of Dental Sciences, Jerusalem, Israel
| | - Tahsin Younis
- Department of Prosthodontics, Faculty of Dental Medicine, Jerusalem, Israel
| | - Eli Reich
- Faculty of Dental Medicine, Institute of Dental Sciences, Jerusalem, Israel
| | - Jinan Elayyan
- Faculty of Dental Medicine, Institute of Dental Sciences, Jerusalem, Israel
| | - Ashok Kumar
- Faculty of Dental Medicine, Institute of Dental Sciences, Jerusalem, Israel
| | - Emmanuelle Merquiol
- School of Pharmacy- Institute for Drug Research, Faculty of Medicine, The Hebrew University- Jerusalem, Jerusalem, Israel
| | - Galia Blum
- School of Pharmacy- Institute for Drug Research, Faculty of Medicine, The Hebrew University- Jerusalem, Jerusalem, Israel
| | - Shira Kalmus
- Faculty of Dental Medicine, Institute of Dental Sciences, Jerusalem, Israel
| | - Yonathan H Maatuf
- Faculty of Dental Medicine, Institute of Dental Sciences, Jerusalem, Israel
| | - George Batshon
- Faculty of Dental Medicine, Institute of Dental Sciences, Jerusalem, Israel
| | - Gabriel Nussbaum
- Faculty of Dental Medicine, Institute of Dental Sciences, Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, Faculty of Dental Medicine, Jerusalem, Israel
| | - Mona Dvir-Ginzberg
- Faculty of Dental Medicine, Institute of Dental Sciences, Jerusalem, Israel
| |
Collapse
|
5
|
Batshon G, Elayyan J, Qiq O, Reich E, Ben-Aderet L, Kandel L, Haze A, Steinmeyer J, Lefebvre V, Zhang H, Elisseeff J, Henrotin Y, Mobasheri A, Dvir-Ginzberg M. Serum NT/CT SIRT1 ratio reflects early osteoarthritis and chondrosenescence. Ann Rheum Dis 2020; 79:1370-1380. [PMID: 32665267 PMCID: PMC7509530 DOI: 10.1136/annrheumdis-2020-217072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/11/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Previous work has established that the deacetylase sirtuin-1 (SIRT1) is cleaved by cathepsin B in chondrocytes subjected to proinflammatory stress, yielding a stable but inactive N-terminal (NT) polypeptide (75SIRT1) and a C-terminal (CT) fragment. The present work examined if chondrocyte-derived NT-SIRT1 is detected in serum and may serve as an investigative and exploratory biomarker of osteoarthritis (OA). METHODS We developed a novel ELISA assay to measure the ratio of NT to CT of SIRT1 in the serum of human individuals and mice subjected to post-traumatic OA (PTOA) or age-dependent OA (ADOA). We additionally monitored NT/CT SIRT1 in mice subject to ADOA/PTOA followed by senolytic clearance. Human chondrosenescent and non-senescent chondrocytes were exposed to cytokines and analysed for apoptosis and NT/CT SIRT1 ratio in conditioned medium. RESULTS Wild-type mice with PTOA or ADOA of moderate severity exhibited increased serum NT/CT SIRT1 ratio. In contrast, this ratio remained low in cartilage-specific Sirt1 knockout mice despite similar or increased PTOA and ADOA severity. Local clearance of senescent chondrocytes from old mice with post-traumatic injury resulted in a lower NT/CT ratio and reduced OA severity. While primary chondrocytes exhibited NT/CT ratio increased in conditioned media after prolonged cytokine stimulation, this increase was not evident in cytokine-stimulated chondrosenescent cells. Finally, serum NT/CT ratio was elevated in humans with early-stage OA. CONCLUSIONS Increased levels of serum NT/CT SIRT1 ratio correlated with moderate OA in both mice and humans, stemming at least in part from non-senescent chondrocyte apoptosis, possibly a result of prolonged inflammatory insult.
Collapse
Affiliation(s)
- George Batshon
- Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jinan Elayyan
- Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Omar Qiq
- Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eli Reich
- Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Louisa Ben-Aderet
- Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Leonid Kandel
- Joint Replacement and Reconstructive Surgery Unit, Orthopaedic Surgery Complex, Hadassah Mount Scopus Hospital, Jerusalem, Israel
| | - Amir Haze
- Joint Replacement and Reconstructive Surgery Unit, Orthopaedic Surgery Complex, Hadassah Mount Scopus Hospital, Jerusalem, Israel
| | - Jürgen Steinmeyer
- Laboratory for Experimental Orthopaedics, Dept. of Orthopaedics, Justus Liebig University Giessen, Gießen, Germany
| | - Veronique Lefebvre
- Developmental Biology Research Affinity Group, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hong Zhang
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropole Liège, Institute of Pathology, University of Liège, Liege, Belgium
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Mona Dvir-Ginzberg
- Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Wang X, Liu M, Zhu MJ, Shi L, Liu L, Zhao YL, Cheng L, Gu YJ, Zhou MY, Chen L, Kumar A, Wang Y. Resveratrol protects the integrity of alveolar epithelial barrier via SIRT1/PTEN/p-Akt pathway in methamphetamine-induced chronic lung injury. Cell Prolif 2020; 53:e12773. [PMID: 32020692 PMCID: PMC7106965 DOI: 10.1111/cpr.12773] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/22/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives SIRT1 is an antioxidative factor, but its mechanism in methamphetamine (MA)‐induced lung injury remains unclear. The purpose of this study is to determine whether MA can disrupt the integrity of alveolar epithelial barrier, whether SIRT1 is involved in MA‐induced chronic lung injury and whether Resveratrol (Res) can protect the integrity of alveolar epithelial cells by regulating ROS to activate SIRT1/PTEN/p‐Akt pathway. Materials and methods The rats were randomly divided into control group and MA group. Extracted lungs were detected by Western blot, HE staining and immunohistochemistry. The alveolar epithelial cells were treated with MA or/and Res, following by Western blot, LDH leakage assay and flow cytometry. MOE is used for bio‐informatics prediction. Results Chronic exposure to MA can cause slower growth ratio of weight, increased RVI and induced lung injury including the reduced number of alveolar sacs and the thickened alveolar walls. MA‐induced apoptosis was associated with SIRT1‐related oxidative stress. Res suppressed ROS levels, activated SIRT1, negatively regulated PTEN, phosphorylated Akt, reduced LDH leakage, increased the expression of ZO‐1 and E‐cadherin and inhibited the apoptosis of alveolar epithelial cells to attenuate MA‐induced higher permeability of alveolar epithelium. Conclusions MA disrupted the integrity of alveolar epithelial barrier. Res inhibited oxidative stress and reversed MA‐induced higher permeability and apoptosis of alveolar epithelium by the activation of SIRT1/PTEN/p‐Akt pathway.
Collapse
Affiliation(s)
- Xin Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ming Liu
- Department of Drug Control, Criminal Investigation Police, University of China, Shenyang, China
| | - Mei-Jia Zhu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Shi
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lian Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan-Ling Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Cheng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ying-Jian Gu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ming-Yuan Zhou
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lei Chen
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ashok Kumar
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Reiter T, Knafl D, Agis H, Mechtler K, Wagner L, Winnicki W. Structural analysis of urinary light chains and proteomic analysis of hyaline tubular casts in light chain associated kidney disorders. PeerJ 2019; 7:e7819. [PMID: 31592189 PMCID: PMC6778432 DOI: 10.7717/peerj.7819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022] Open
Abstract
Background Monoclonal overproduction of kappa and/or lambda light chains might result in renal light chain deposition disease. Light chain associated cast nephropathy and renal AL-amyloidosis represent two further pathologies going along with monoclonal gammopathy of renal significance and multiple myeloma. While cast nephropathy often manifests with acute kidney injury, AL-amyloidosis is rather accompanied with chronic kidney disease. Methods Urine samples were collected from 17 patients with multiple myeloma or monoclonal gammopathy. The urine sediment was stained for cast morphology by H/E and light chain immunofluorescence. Following micro-selection of casts under microscope, proteomic analysis of casts was performed by mass spectrometry. Sucrose gradient sedimentation was employed and light chain architecture examined by immunoblotting. Uromodulin was measured by ELISA in sucrose gradient fractions. Results Urinary casts were observed of about 30 µm in diameter by H/E staining and under immunofluorescence microscopy. Casts with a diameter of 20 µm were observed as a novel variant. Proteome analysis showed that in addition to the expected light chain variants produced by the malignant clone of plasma cells, also histones such as H2B and cathepsin B were contained. Uromodulin was not detectable in urinary casts of all patients. All eleven patients with lambda light chains showed predominant dimerized light chains in the urine immunoblot. Six patients with kappa light chains presented with predominantly monomeric forms of light chains in the immunoblot. The densitometric evaluated ratio of lambda dimers vs. monomers was significantly higher (2.12 ± 0.75) when compared with the ratio of kappa dimers vs. monomers (0.64 ± 0.47), p = 0.00001. Aggregates of light chains separated in part into denser sucrose fractions. Conclusion This work on urinary casts and light chains demonstrates that hyaline tubular casts represent a complex formation of protein-protein aggregates with histones and cathepsin B identified as novel cast components. Apart from the proteomic composition of the casts, also the formation of the light chains and aggregates is of relevance. Dimerized light chains, which are typical for lambda paraproteins, might be less dialyzable than monomeric forms and may therefore identify patients less responsive to high cut-off dialysis.
Collapse
Affiliation(s)
- Thomas Reiter
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Daniela Knafl
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Hermine Agis
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Karl Mechtler
- ProtChem Facility, IMP-IMBA, Research Institute of Molecular Pathology, Vienna, Austria
| | - Ludwig Wagner
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Winnicki
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
First person – Ashok Kumar. J Cell Sci 2018. [DOI: 10.1242/jcs.223727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Ashok Kumar is the first author on ‘A predicted unstructured C-terminal loop domain in SIRT1 is required for cathepsin B cleavage’, published in Journal of Cell Science. Ashok performed the research in this article while working as a postdoctoral research fellow in the lab of Mona Dvir-Ginzberg at the Hebrew University of Jerusalem, Israel. He is now a research associate in Prabodh Kapoor's lab at the University of Texas, USA, investigating how post-translational modifications regulate gene expression and their impact on metabolic disease in the context of ATP-dependent chromatin remodellers such as INO80.
Collapse
|