1
|
Thomas EC, Moore JK. Selective regulation of kinesin-5 function by β-tubulin carboxy-terminal tails. J Cell Biol 2025; 224:e202405115. [PMID: 39688542 DOI: 10.1083/jcb.202405115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/28/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The tubulin code hypothesis predicts that tubulin tails create programs for selective regulation of microtubule-binding proteins, including kinesin motors. However, the molecular mechanisms that determine selective regulation and their relevance in cells are poorly understood. We report selective regulation of budding yeast kinesin-5 motors by the β-tubulin tail. Cin8, but not Kip1, requires the β-tubulin tail for recruitment to the mitotic spindle, creating a balance of both motors in the spindle and efficient mitotic progression. We identify a negatively charged patch in the β-tubulin tail that mediates interaction with Cin8. Using in vitro reconstitution with genetically modified yeast tubulin, we demonstrate that the charged patch of β-tubulin tail increases Cin8 plus-end-directed velocity and processivity. Finally, we determine that the positively charged amino-terminal extension of Cin8 coordinates interactions with the β-tubulin tail. Our work identifies a molecular mechanism underlying selective regulation of closely related kinesin motors by tubulin tails and how this regulation promotes proper function of the mitotic spindle.
Collapse
Affiliation(s)
- Ezekiel C Thomas
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Jijumon AS, Krishnan A, Janke C. A Platform for Medium-Throughput Cell-Free Analyses of Microtubule-Interacting Proteins Using Mammalian Cell Lysates. Curr Protoc 2024; 4:e1070. [PMID: 38865215 DOI: 10.1002/cpz1.1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The microtubule (MT) cytoskeleton performs a variety of functions in cell division, cell architecture, neuronal differentiation, and ciliary beating. These functions are controlled by proteins that directly interact with MTs, commonly referred to as microtubule-associated proteins (MAPs). Out of the many proteins reported interact with MTs, only a some have been biochemically and functionally characterized so far. One of the limitations of classical in vitro assays and single-MT reconstitution approaches is that they are typically performed with purified proteins. As purification of proteins can be difficult and time-consuming, many previous studies have only focused on a few proteins, while systematic analyses of many different proteins by in vitro reconstitution assays were not possible. Here we present a detailed protocol using lysates of mammalian cells instead of purified proteins that overcomes this limitation. Those lysates contain all molecular components required for in vitro MT reconstitution including the endogenous tubulin and the recombinant MAPs, which form MT assemblies upon the injection of the lysates into a microscopy chamber. This allows to directly observe the dynamic behavior of growing MTs, as well as the fluorescently labeled associated proteins by total internal reflection fluorescence (TIRF) microscopy. Strikingly, all proteins tested so far were functional in our approach, thus providing the possibility to test virtually any protein of interest. This also opens the possibility to screen the impact of patient mutations on the MT binding behavior of MAPs in a medium-throughput manner. In addition, the lysate approach can easily be adapted to other applications that have predominantly been performed with purified proteins so far, such as investigating other cytoskeletal systems and cytoskeletal crosstalk, or to study structures of MAPs bound to MTs by cryo-electron microscopy. Our approach is thus a versatile, expandable, and easy-to-use method to characterize the impact of a broad spectrum of proteins on cytoskeletal behavior and function. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of lysates of human cells for TIRF reconstitution assays Basic Protocol 2: Quantification of GFP-tagged MAP concentration in cell lysates Support Protocol 1: Purification of KIF5B(N555/T92A) (dead kinesin) protein for TIRF reconstitution assays Support Protocol 2: Preparation of GMPCPP MT seeds for TIRF reconstitution assays Basic Protocol 3: TIRF-based MT-MAP reconstitution assays using cell lysates.
Collapse
Affiliation(s)
- A S Jijumon
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
- Current affiliation: Stanford University, Stanford, California
| | - Arya Krishnan
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| |
Collapse
|
3
|
Torvi JR, Wong J, Drubin DG, Barnes G. Interdependence of a microtubule polymerase and a motor protein in establishment of kinetochore end-on attachments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544255. [PMID: 37333421 PMCID: PMC10274876 DOI: 10.1101/2023.06.08.544255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Faithful segregation of chromosomes into daughter cells during mitosis requires formation of attachments between kinetochores and mitotic spindle microtubules. Chromosome alignment on the mitotic spindle, also referred to as congression, is facilitated by translocation of side-bound chromosomes along the microtubule surface, which allows the establishment of end-on attachment of kinetochores to microtubule plus ends. Spatial and temporal constraints hinder observation of these events in live cells. Therefore, we used our previously developed reconstitution assay to observe dynamics of kinetochores, the yeast kinesin-8, Kip3, and the microtubule polymerase, Stu2, in lysates prepared from metaphase-arrested budding yeast, Saccharomyces cerevisiae . Using total internal reflection fluorescence (TIRF) microscopy to observe kinetochore translocation on the lateral microtubule surface toward the microtubule plus end, motility was shown to be dependent on both Kip3, as we reported previously, and Stu2. These proteins were shown to have distinct dynamics on the microtubule. Kip3 is highly processive and moves faster than the kinetochore. Stu2 tracks both growing and shrinking microtubule ends but also colocalizes with moving lattice-bound kinetochores. In cells, we observed that both Kip3 and Stu2 are important for establishing chromosome biorientation, Moreover, when both proteins are absent, biorientation is completely defective. All cells lacking both Kip3 and Stu2 had declustered kinetochores and about half also had at least one unattached kinetochore. Our evidence argues that despite differences in their dynamics, Kip3 and Stu2 share roles in chromosome congression to facilitate proper kinetochore-microtubule attachment.
Collapse
|
4
|
Torvi JR, Wong J, Serwas D, Moayed A, Drubin DG, Barnes G. Reconstitution of kinetochore motility and microtubule dynamics reveals a role for a kinesin-8 in establishing end-on attachments. eLife 2022; 11:e78450. [PMID: 35791811 PMCID: PMC9259035 DOI: 10.7554/elife.78450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
During mitosis, individual microtubules make attachments to chromosomes via a specialized protein complex called the kinetochore to faithfully segregate the chromosomes to daughter cells. Translocation of kinetochores on the lateral surface of the microtubule has been proposed to contribute to high fidelity chromosome capture and alignment at the mitotic midzone, but has been difficult to observe in vivo because of spatial and temporal constraints. To overcome these barriers, we used total internal reflection fluorescence (TIRF) microscopy to track the interactions between microtubules, kinetochore proteins, and other microtubule-associated proteins in lysates from metaphase-arrested Saccharomyces cerevisiae. TIRF microscopy and cryo-correlative light microscopy and electron tomography indicated that we successfully reconstituted interactions between intact kinetochores and microtubules. These kinetochores translocate on the lateral microtubule surface toward the microtubule plus end and transition to end-on attachment, whereupon microtubule depolymerization commences. The directional kinetochore movement is dependent on the highly processive kinesin-8, Kip3. We propose that Kip3 facilitates stable kinetochore attachment to microtubule plus ends through its abilities to move the kinetochore laterally on the surface of the microtubule and to regulate microtubule plus end dynamics.
Collapse
Affiliation(s)
- Julia R Torvi
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - Jonathan Wong
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Daniel Serwas
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Amir Moayed
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - Georjana Barnes
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
5
|
Jijumon AS, Bodakuntla S, Genova M, Bangera M, Sackett V, Besse L, Maksut F, Henriot V, Magiera MM, Sirajuddin M, Janke C. Lysate-based pipeline to characterize microtubule-associated proteins uncovers unique microtubule behaviours. Nat Cell Biol 2022; 24:253-267. [PMID: 35102268 DOI: 10.1038/s41556-021-00825-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
The microtubule cytoskeleton forms complex macromolecular assemblies with a range of microtubule-associated proteins (MAPs) that have fundamental roles in cell architecture, division and motility. Determining how an individual MAP modulates microtubule behaviour is an important step in understanding the physiological roles of various microtubule assemblies. To characterize how MAPs control microtubule properties and functions, we developed an approach allowing for medium-throughput analyses of MAPs in cell-free conditions using lysates of mammalian cells. Our pipeline allows for quantitative as well as ultrastructural analyses of microtubule-MAP assemblies. Analysing 45 bona fide and potential mammalian MAPs, we uncovered previously unknown activities that lead to distinct and unique microtubule behaviours such as microtubule coiling or hook formation, or liquid-liquid phase separation along the microtubule lattice that initiates microtubule branching. We have thus established a powerful tool for a thorough characterization of a wide range of MAPs and MAP variants, thus opening avenues for the determination of mechanisms underlying their physiological roles and pathological implications.
Collapse
Affiliation(s)
- A S Jijumon
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Mariya Genova
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Mamata Bangera
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Violet Sackett
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Laetitia Besse
- Institut Curie, Université Paris-Saclay, Centre d'Imagerie Multimodale INSERM US43, CNRS UMS2016, Orsay, France
| | - Fatlinda Maksut
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Veronique Henriot
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Maria M Magiera
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | | | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France.
- Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| |
Collapse
|
6
|
Bashirzadeh Y, Liu AP. Encapsulation of the cytoskeleton: towards mimicking the mechanics of a cell. SOFT MATTER 2019; 15:8425-8436. [PMID: 31621750 DOI: 10.1039/c9sm01669d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The cytoskeleton of a cell controls all the aspects of cell shape changes and motility from its physiological functions for survival to reproduction to death. The structure and dynamics of the cytoskeletal components: actin, microtubules, intermediate filaments, and septins - recently regarded as the fourth member of the cytoskeleton family - are conserved during evolution. Such conserved and effective control over the mechanics of the cell makes the cytoskeletal components great candidates for in vitro reconstitution and bottom-up synthetic biology studies. Here, we review the recent efforts in reconstitution of the cytoskeleton in and on membrane-enclosed biomimetic systems and argue that co-reconstitution and synergistic interplay between cytoskeletal filaments might be indispensable for efficient mechanical functionality of active minimal cells. Further, mechanical equilibrium in adherent eukaryotic cells is achieved by the formation of integrin-based focal contacts with extracellular matrix (ECM) and the transmission of stresses generated by actomyosin contraction to ECM. Therefore, a minimal mimic of such balance of forces and quasi-static kinetics of the cell by bottom-up reconstitution requires a careful construction of contractile machineries and their link with adhesive contacts. In this review, in addition to cytoskeletal crosstalk, we provide a perspective on reconstruction of cell mechanical equilibrium by reconstitution of cortical actomyosin networks in lipid membrane vesicles adhered on compliant substrates and also discuss future perspectives of this active research area.
Collapse
Affiliation(s)
- Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan, USA.
| | | |
Collapse
|