1
|
Gray S, Fort C, Wheeler RJ. Intraflagellar transport speed is sensitive to genetic and mechanical perturbations to flagellar beating. J Cell Biol 2024; 223:e202401154. [PMID: 38829962 PMCID: PMC11148470 DOI: 10.1083/jcb.202401154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
Two sets of motor proteins underpin motile cilia/flagella function. The axoneme-associated inner and outer dynein arms drive sliding of adjacent axoneme microtubule doublets to periodically bend the flagellum for beating, while intraflagellar transport (IFT) kinesins and dyneins carry IFT trains bidirectionally along the axoneme. Despite assembling motile cilia and flagella, IFT train speeds have only previously been quantified in immobilized flagella-mechanical immobilization or genetic paralysis. This has limited investigation of the interaction between IFT and flagellar beating. Here, in uniflagellate Leishmania parasites, we use high-frequency, dual-color fluorescence microscopy to visualize IFT train movement in beating flagella. We discovered that adhesion of flagella to a microscope slide is detrimental, reducing IFT train speed and increasing train stalling. In flagella free to move, IFT train speed is not strongly dependent on flagella beat type; however, permanent disruption of flagella beating by deletion of genes necessary for formation or regulation of beating showed an inverse correlation of beat frequency and IFT train speed.
Collapse
Affiliation(s)
- Sophie Gray
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Cecile Fort
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Richard John Wheeler
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Amin MJ, Zhao T, Yang H, Shaevitz JW. Multicolor multifocal 3D microscopy using in-situ optimization of a spatial light modulator. Sci Rep 2022; 12:16343. [PMID: 36175472 PMCID: PMC9522655 DOI: 10.1038/s41598-022-20664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Multifocal microscopy enables high-speed three-dimensional (3D) volume imaging by using a multifocal grating in the emission path. This grating is typically designed to afford a uniform illumination of multifocal subimages for a single emission wavelength. Using the same grating for multicolor imaging results in non-uniform subimage intensities in emission wavelengths for which the grating is not designed. This has restricted multifocal microscopy applications for samples having multicolored fluorophores. In this paper, we present a multicolor multifocal microscope implementation which uses a Spatial Light Modulator (SLM) as a single multifocal grating to realize near-uniform multifocal subimage intensities across multiple wavelength emission bands. Using real-time control of an in-situ-optimized SLM implemented as a multifocal grating, we demonstrate multicolor multifocal 3D imaging over three emission bands by imaging multicolored particles as well as Escherichia coli (E. coli) interacting with human liver cancer cells, at [Formula: see text] multicolor 3D volumes per second acquisition speed. Our multicolor multifocal method is adaptable across SLM hardware, emission wavelength band locations and number of emission bands, making it particularly suited for researchers investigating fast processes occurring across a volume where multiple species are involved.
Collapse
Affiliation(s)
- M Junaid Amin
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.,Department of Physics, Princeton University, Princeton, NJ, 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Tian Zhao
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Haw Yang
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| | - Joshua W Shaevitz
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA. .,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
3
|
Saenz-Garcia JL, Borges BS, Souza-Melo N, Machado LV, Miranda JS, Pacheco-Lugo LA, Moretti NS, Wheleer R, Soares Medeiros LC, DaRocha WD. Trypanin Disruption Affects the Motility and Infectivity of the Protozoan Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 11:807236. [PMID: 35071054 PMCID: PMC8777028 DOI: 10.3389/fcimb.2021.807236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
The flagellum of Trypanosomatids is an organelle that contributes to multiple functions, including motility, cell division, and host–pathogen interaction. Trypanin was first described in Trypanosoma brucei and is part of the dynein regulatory complex. TbTrypanin knockdown parasites showed motility defects in procyclic forms; however, silencing in bloodstream forms was lethal. Since TbTrypanin mutants show drastic phenotypic changes in mammalian stages, we decided to evaluate if the Trypanosoma cruzi ortholog plays a similar role by using the CRISPR-Cas9 system to generate null mutants. A ribonucleoprotein complex of SaCas9 and sgRNA plus donor oligonucleotide were used to edit both alleles of TcTrypanin without any selectable marker. TcTrypanin −/− epimastigotes showed a lower growth rate, partially detached flagella, normal numbers of nuclei and kinetoplasts, and motility defects such as reduced displacement and speed and increased tumbling propensity. The epimastigote mutant also showed decreased efficiency of in-vitro metacyclogenesis. Mutant parasites were able to complete the entire life cycle in vitro; however, they showed a reduction in their infection capacity compared with WT and addback cultures. Our data show that T. cruzi life cycle stages have differing sensitivities to TcTrypanin deletion. In conclusion, additional work is needed to dissect the motility components of T. cruzi and to identify essential molecules for mammalian stages.
Collapse
Affiliation(s)
- Jose L Saenz-Garcia
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | - Beatriz S Borges
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Normanda Souza-Melo
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Laboratório de Ultraestrutura Hertha Mayer, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luiz V Machado
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | - Juliana S Miranda
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | | | - Nilmar S Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richard Wheleer
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lia C Soares Medeiros
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Wanderson D DaRocha
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| |
Collapse
|
4
|
Muniz RS, Campbell PC, Sladewski TE, Renner LD, de Graffenried CL. Revealing spatio-temporal dynamics with long-term trypanosomatid live-cell imaging. PLoS Pathog 2022; 18:e1010218. [PMID: 35041719 PMCID: PMC8797261 DOI: 10.1371/journal.ppat.1010218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/28/2022] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma brucei, the causative agent of human African trypanosomiasis, is highly motile and must be able to move in all three dimensions for reliable cell division. These characteristics make long-term microscopic imaging of live T. brucei cells challenging, which has limited our understanding of important cellular events. To address this issue, we devised an imaging approach that confines cells in small volumes within cast agarose microwells that can be imaged continuously for up to 24 h. Individual T. brucei cells were imaged through multiple rounds of cell division with high spatial and temporal resolution. We developed a strategy that employs in-well “sentinel” cells to monitor potential imaging toxicity during loss-of-function experiments such as small-molecule inhibition and RNAi. Using our approach, we show that the asymmetric daughter cells produced during T. brucei division subsequently divide at different rates, with the old-flagellum daughter cell dividing first. The flagellar detachment phenotype that appears during inhibition of the Polo-like kinase homolog TbPLK occurs in a stepwise fashion, with the new flagellum initially linked by its tip to the old, attached flagellum. We probe the feasibility of a previously proposed “back-up” cytokinetic mechanism and show that cells that initiate this process do not appear to complete cell division. This live-cell imaging method will provide a novel avenue for studying a wide variety of cellular events in trypanosomatids that have previously been inaccessible.
Collapse
Affiliation(s)
- Richard S. Muniz
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Thomas E. Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Lars D. Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Christopher L. de Graffenried
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
5
|
Hansen JN, Gong A, Wachten D, Pascal R, Turpin A, Jikeli JF, Kaupp UB, Alvarez L. Multifocal imaging for precise, label-free tracking of fast biological processes in 3D. Nat Commun 2021; 12:4574. [PMID: 34321468 PMCID: PMC8319204 DOI: 10.1038/s41467-021-24768-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Many biological processes happen on a nano- to millimeter scale and within milliseconds. Established methods such as confocal microscopy are suitable for precise 3D recordings but lack the temporal or spatial resolution to resolve fast 3D processes and require labeled samples. Multifocal imaging (MFI) allows high-speed 3D imaging but is limited by the compromise between high spatial resolution and large field-of-view (FOV), and the requirement for bright fluorescent labels. Here, we provide an open-source 3D reconstruction algorithm for multi-focal images that allows using MFI for fast, precise, label-free tracking spherical and filamentous structures in a large FOV and across a high depth. We characterize fluid flow and flagellar beating of human and sea urchin sperm with a z-precision of 0.15 µm, in a volume of 240 × 260 × 21 µm, and at high speed (500 Hz). The sampling volume allowed to follow sperm trajectories while simultaneously recording their flagellar beat. Our MFI concept is cost-effective, can be easily implemented, and does not rely on object labeling, which renders it broadly applicable.
Collapse
Affiliation(s)
- Jan N Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany.
| | - An Gong
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - René Pascal
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Bonn, Germany
| | - Alex Turpin
- School of Computing Science, University of Glasgow, Glasgow, UK
| | - Jan F Jikeli
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Bonn, Germany
- Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Luis Alvarez
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Bonn, Germany.
| |
Collapse
|
6
|
Gaffney EA, Ishimoto K, Walker BJ. Modelling Motility: The Mathematics of Spermatozoa. Front Cell Dev Biol 2021; 9:710825. [PMID: 34354994 PMCID: PMC8329702 DOI: 10.3389/fcell.2021.710825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
In one of the first examples of how mechanics can inform axonemal mechanism, Machin's study in the 1950s highlighted that observations of sperm motility cannot be explained by molecular motors in the cell membrane, but would instead require motors distributed along the flagellum. Ever since, mechanics and hydrodynamics have been recognised as important in explaining the dynamics, regulation, and guidance of sperm. More recently, the digitisation of sperm videomicroscopy, coupled with numerous modelling and methodological advances, has been bringing forth a new era of scientific discovery in this field. In this review, we survey these advances before highlighting the opportunities that have been generated for both recent research and the development of further open questions, in terms of the detailed characterisation of the sperm flagellum beat and its mechanics, together with the associated impact on cell behaviour. In particular, diverse examples are explored within this theme, ranging from how collective behaviours emerge from individual cell responses, including how these responses are impacted by the local microenvironment, to the integration of separate advances in the fields of flagellar analysis and flagellar mechanics.
Collapse
Affiliation(s)
- Eamonn A. Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Kenta Ishimoto
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
| | - Benjamin J. Walker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Mojiri S, Isbaner S, Mühle S, Jang H, Bae AJ, Gregor I, Gholami A, Enderlein J. Rapid multi-plane phase-contrast microscopy reveals torsional dynamics in flagellar motion. BIOMEDICAL OPTICS EXPRESS 2021; 12:3169-3180. [PMID: 34221652 PMCID: PMC8221972 DOI: 10.1364/boe.419099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 05/23/2023]
Abstract
High speed volumetric optical microscopy is an important tool for observing rapid processes in living cells or for real-time tracking of sub-cellular components. However, the 3D imaging capability often comes at the price of a high technical complexity of the imaging system and/or the requirement of demanding image analysis. Here, we propose a combination of conventional phase-contrast imaging with a customized multi-plane beam-splitter for enabling simultaneous acquisition of images in eight different focal planes. Our method is technically straightforward and does not require complex post-processing image analysis. We apply our multi-plane phase-contrast microscope to the real-time observation of the fast motion of reactivated Chlamydomonas axonemes with sub-µm spatial and 4 ms temporal resolution. Our system allows us to observe not only bending but also the three-dimensional torsional dynamics of these micro-swimmers.
Collapse
Affiliation(s)
- Soheil Mojiri
- III. Institute of Physics –
Biophysics, Georg-August-University, 37077
Göttingen, Germany
| | - Sebastian Isbaner
- III. Institute of Physics –
Biophysics, Georg-August-University, 37077
Göttingen, Germany
| | - Steffen Mühle
- III. Institute of Physics –
Biophysics, Georg-August-University, 37077
Göttingen, Germany
| | - Hongje Jang
- III. Institute of Physics –
Biophysics, Georg-August-University, 37077
Göttingen, Germany
| | - Albert Johann Bae
- Max-Planck-Institute for
Dynamics and Self-Organization, 37077 Göttingen,
Germany
| | - Ingo Gregor
- III. Institute of Physics –
Biophysics, Georg-August-University, 37077
Göttingen, Germany
| | - Azam Gholami
- Max-Planck-Institute for
Dynamics and Self-Organization, 37077 Göttingen,
Germany
- Cluster of Excellence “Multiscale
Bioimaging: from Molecular Machines to Networks of Excitable
Cells” (MBExC),
Georg-August-University, 37077
Göttingen, Germany
| | - Jörg Enderlein
- III. Institute of Physics –
Biophysics, Georg-August-University, 37077
Göttingen, Germany
| |
Collapse
|
8
|
Wang Z, Beneke T, Gluenz E, Wheeler RJ. The single flagellum of Leishmania has a fixed polarisation of its asymmetric beat. J Cell Sci 2020; 133:133/20/jcs246637. [PMID: 33093230 PMCID: PMC7595685 DOI: 10.1242/jcs.246637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic flagella undertake different beat types as necessary for different functions; for example, the Leishmania parasite flagellum undergoes a symmetric tip-to-base beat for forward swimming and an asymmetric base-to-tip beat to rotate the cell. In multi-ciliated tissues or organisms, the asymmetric beats are coordinated, leading to movement of the cell, organism or surrounding fluid. This coordination involves a polarisation of power stroke direction. Here, we asked whether the asymmetric beat of the single Leishmania flagellum also has a fixed polarisation. We developed high frame rate dual-colour fluorescence microscopy to visualise flagellar-associated structures in live swimming cells. This showed that the asymmetric Leishmania beat is polarised, with power strokes only occurring in one direction relative to the asymmetric flagellar machinery. Polarisation of bending was retained in deletion mutants whose flagella cannot beat but have a static bend. Furthermore, deletion mutants for proteins required for asymmetric extra-axonemal and rootlet-like flagellum-associated structures also retained normal polarisation. Leishmania beat polarisation therefore likely arises from either the nine-fold rotational symmetry of the axoneme structure or is due to differences between the outer doublet decorations. Highlighted Article: By using high speed, high-resolution fluorescence microscopy of swimming Leishmania cells, we showed that the asymmetric flagellar beat always wafts in the same direction and investigate which structures are involved.
Collapse
Affiliation(s)
- Ziyin Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Eva Gluenz
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Richard John Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|