1
|
Fleming TP. Preimplantation trophectoderm: a 'quick-fix' protector for embryo survival? Dev Biol 2024:S0012-1606(24)00249-5. [PMID: 39481626 DOI: 10.1016/j.ydbio.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/23/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
The trophectoderm (TE) epithelium forms the outer layer of the mammalian blastocyst and generates the blastocoel through vectorial transport. Its differentiation during cleavage, studied mainly in mouse, is integrated with blastocyst morphogenesis with key roles for cell polarisation, asymmetric cell divisions, cell signalling, regulatory transcription factors and cellular inheritance. The TE provides a physical and cellular protection to the emerging lineages of the embryo essential for the integrity of blastocyst development. Here, two examples of TE differentiation are considered in some detail where this immediate protective function for embryo survival is assessed: (i) cellular processes from TE at the polar-mural junctional zone in the early blastocyst that later form filopodia traversing the blastocoel, and (ii) the endocytic system which matures and polarises during differentiation. Understanding the broad role for TE in regulating early morphogenesis and environmental protection of the embryo, including these two examples, have clinical as well as biological relevance.
Collapse
Affiliation(s)
- Tom P Fleming
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
2
|
Liu W, Gao T, Li N, Shao S, Liu B. Vesicle fusion and release in neurons under dynamic mechanical equilibrium. iScience 2024; 27:109793. [PMID: 38736547 PMCID: PMC11088343 DOI: 10.1016/j.isci.2024.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Vesicular fusion plays a pivotal role in cellular processes, involving stages like vesicle trafficking, fusion pore formation, content release, and membrane integration or separation. This dynamic process is regulated by a complex interplay of protein assemblies, osmotic forces, and membrane tension, which together maintain a mechanical equilibrium within the cell. Changes in cellular mechanics or external pressures prompt adjustments in this equilibrium, highlighting the system's adaptability. This review delves into the synergy between intracellular proteins, structural components, and external forces in facilitating vesicular fusion and release. It also explores how cells respond to mechanical stress, maintaining equilibrium and offering insights into vesicle fusion mechanisms and the development of neurological disorders.
Collapse
Affiliation(s)
- Wenhao Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Tianyu Gao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Na Li
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Yu Y, Yoshimura SH. Self-assembly of CIP4 drives actin-mediated asymmetric pit-closing in clathrin-mediated endocytosis. Nat Commun 2023; 14:4602. [PMID: 37528083 PMCID: PMC10393992 DOI: 10.1038/s41467-023-40390-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/23/2023] [Indexed: 08/03/2023] Open
Abstract
Clathrin-mediated endocytosis is pivotal to signal transduction pathways between the extracellular environment and the intracellular space. Evidence from live-cell imaging and super-resolution microscopy of mammalian cells suggests an asymmetric distribution of actin fibres near the clathrin-coated pit, which induces asymmetric pit-closing rather than radial constriction. However, detailed molecular mechanisms of this 'asymmetricity' remain elusive. Herein, we used high-speed atomic force microscopy to demonstrate that CIP4, a multi-domain protein with a classic F-BAR domain and intrinsically disordered regions, is necessary for asymmetric pit-closing. Strong self-assembly of CIP4 via intrinsically disordered regions, together with stereospecific interactions with the curved membrane and actin-regulating proteins, generates a small actin-rich environment near the pit, which deforms the membrane and closes the pit. Our results provide mechanistic insights into how disordered and structured domain collaboration promotes spatio-temporal actin polymerisation near the plasma membrane.
Collapse
Affiliation(s)
- Yiming Yu
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Shige H Yoshimura
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
4
|
Serrano-Buitrago S, Muñoz-Úbeda M, Almendro-Vedia VG, Sánchez-Camacho J, Maroto BL, Moreno F, Bañuelos J, García-Moreno I, López-Montero I, de la Moya S. Polar ammoniostyryls easily converting a clickable lipophilic BODIPY in an advanced plasma membrane probe. J Mater Chem B 2023; 11:2108-2114. [PMID: 36808432 DOI: 10.1039/d2tb02516g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A very simple, small and symmetric, but highly bright, photostable and functionalizable molecular probe for plasma membrane (PM) has been developed from an accessible, lipophilic and clickable organic dye based on BODIPY. To this aim, two lateral polar ammoniostyryl groups were easily linked to increase the amphiphilicity of the probe and thus its lipid membrane partitioning. Compared to the BODIPY precursor, the transversal diffusion across lipid bilayers of the ammoniostyryled BODIPY probe was highly reduced, as evidenced by fluorescence confocal microscopy on model membranes built up as giant unilamellar vesicles (GUVs). Moreover, the ammoniostyryl groups endow the new BODIPY probe with the ability to optically work (excitation and emission) in the bioimaging-useful red region, as shown by staining of the plasma membrane of living mouse embryonic fibroblasts (MEFs). Upon incubation, this fluorescent probe rapidly entered the cell through the endosomal pathway. By blocking the endocytic trafficking at 4 °C, the probe was confined within the PM of MEFs. Our experiments show the developed ammoniostyrylated BODIPY as a suitable PM fluorescent probe, and confirm the synthetic approach for advancing PM probes, imaging and science.
Collapse
Affiliation(s)
- Sergio Serrano-Buitrago
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Mónica Muñoz-Úbeda
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain.,Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Víctor G Almendro-Vedia
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain.,Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Juan Sánchez-Camacho
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Beatriz L Maroto
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Florencio Moreno
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Jorge Bañuelos
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV-EHU), Barrio Sarriena s/n, 48080, Bilbao, Spain
| | - Inmaculada García-Moreno
- Departamento de Química-Física de Materiales, Instituto de Química Física Rocasolano, C.S.I.C., 28006, Madrid, Spain
| | - Iván López-Montero
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain.,Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain. .,Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo de Juan XXIII 1, 28040, Madrid, Spain
| | - Santiago de la Moya
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|