1
|
Dong J, Jassim BA, Milholland KL, Qu Z, Bai Y, Miao Y, Miao J, Ma Y, Lin J, Hall MC, Zhang ZY. Development of Novel Phosphonodifluoromethyl-Containing Phosphotyrosine Mimetics and a First-In-Class, Potent, Selective, and Bioavailable Inhibitor of Human CDC14 Phosphatases. J Med Chem 2024; 67:8817-8835. [PMID: 38768084 DOI: 10.1021/acs.jmedchem.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) control protein tyrosine phosphorylation and regulate numerous cellular functions. Dysregulated PTP activity is associated with the onset of multiple human diseases. Nevertheless, understanding of the physiological function and disease biology of most PTPs remains limited, largely due to the lack of PTP-specific chemical probes. In this study, starting from a well-known nonhydrolyzable phosphotyrosine (pTyr) mimetic, phosphonodifluoromethyl phenylalanine (F2Pmp), we synthesized 7 novel phosphonodifluoromethyl-containing bicyclic/tricyclic aryl derivatives with improved cell permeability and potency toward various PTPs. Furthermore, with fragment- and structure-based design strategies, we advanced compound 9 to compound 15, a first-in-class, potent, selective, and bioavailable inhibitor of human CDC14A and B phosphatases. This study demonstrates the applicability of the fragment-based design strategy in creating potent, selective, and bioavailable PTP inhibitors and provides a valuable probe for interrogating the biological roles of hCDC14 phosphatases and assessing their potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brenson A Jassim
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kedric L Milholland
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinmin Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuan Ma
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianping Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Lopez Maury L, Ren L, Hassan S, Bähler J, Gould KL. The Cdc14 phosphatase, Clp1, does not affect genome expression. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001089. [PMID: 38415071 PMCID: PMC10897734 DOI: 10.17912/micropub.biology.001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
Schizosaccharomyces pombe Clp1 is a Cdc14-family phosphatase that reverses mitotic Cdk1 phosphorylation. Despite evolutionary conservation, Clp1 's mammalian orthologs do not share this function. Rather, higher eukaryotic Cdc14 enzymes act in DNA repair, ciliogenesis, and gene regulation. To examine if Clp1 regulates gene expression, we compared the transcriptional profiles of cells lacking Clp1 function to that of wildtype. Because clp1∆ cells are sensitive to the actin depolymerizing drug, LatrunculinA, we also investigated whether a transcriptional response was involved. Our results indicate that Clp1 does not detectably affect gene expression and highlight the organism-specific functions of this conserved phosphatase family.
Collapse
Affiliation(s)
- Luis Lopez Maury
- Department of Genetics, Evolution, and Environment, Institute of Healthy Ageing, University College London, London, UK
- Current: Instituto de Bioquimica Vegetal y Fotosintesis, Universidad de Sevilla, Sevilla, Spain
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shaimaa Hassan
- Department of Genetics, Evolution, and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Jürg Bähler
- Department of Genetics, Evolution, and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
3
|
Partscht P, Schiebel E. The diverging role of CDC14B: from mitotic exit in yeast to cell fate control in humans. EMBO J 2023; 42:e114364. [PMID: 37493185 PMCID: PMC10425841 DOI: 10.15252/embj.2023114364] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
CDC14, originally identified as crucial mediator of mitotic exit in budding yeast, belongs to the family of dual-specificity phosphatases (DUSPs) that are present in most eukaryotes. Contradicting data have sparked a contentious discussion whether a cell cycle role is conserved in the human paralogs CDC14A and CDC14B but possibly masked due to redundancy. Subsequent studies on CDC14A and CDC14B double knockouts in human and mouse demonstrated that CDC14 activity is dispensable for mitotic progression in higher eukaryotes and instead suggested functional specialization. In this review, we provide a comprehensive overview of our current understanding of how faithful cell division is linked to phosphorylation and dephosphorylation and compare functional similarities and divergences between the mitotic phosphatases CDC14, PP2A, and PP1 from yeast and higher eukaryotes. Furthermore, we review the latest discoveries on CDC14B, which identify this nuclear phosphatase as a key regulator of gene expression and reveal its role in neuronal development. Finally, we discuss CDC14B functions in meiosis and possible implications in other developmental processes.
Collapse
Affiliation(s)
- Patrick Partscht
- Zentrum für Molekulare BiologieUniversität Heidelberg, DKFZ‐ZMBH AllianzHeidelbergGermany
| | - Elmar Schiebel
- Zentrum für Molekulare BiologieUniversität Heidelberg, DKFZ‐ZMBH AllianzHeidelbergGermany
| |
Collapse
|
4
|
Connell GJ, Abasiri IM, Chaney EH. A temporal difference in the stabilization of two mRNAs with a 3' iron-responsive element during iron deficiency. RNA (NEW YORK, N.Y.) 2023; 29:1117-1125. [PMID: 37160355 PMCID: PMC10351883 DOI: 10.1261/rna.079665.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
The interactions of iron regulatory proteins (IRPs) with mRNAs containing an iron-responsive element (IRE) maintain cellular iron homeostasis and coordinate it with metabolism and possibly cellular behavior. The mRNA encoding transferrin receptor-1 (TFRC, TfR1), which is a major means of iron importation, has five IREs within its 3' UTR, and IRP interactions help maintain cytosolic iron through the protection of the TfR1 mRNA from degradation. An IRE within the 3' UTR of an mRNA splice variant encoding human cell division cycle 14A (CDC14A) has the potential to coordinate the cellular iron status with cellular behavior through a similar IRP-mediated mechanism. However, the stability of the CDC14A splice variant was reported earlier to be unaffected by the cellular iron status, which suggested that the IRE is not functional. We labeled newly synthesized mRNA in HEK293 cells with 5-ethynyl uridine and found that the stability of the CDC14A variant is responsive to iron deprivation, but there are two major differences from the regulation of TfR1 mRNA stability. First, the decay of the CDC14A mRNA does not utilize the Roquin-mediated reaction that acts on the TfR1 mRNA, indicating that there is flexibility in the degradative machinery antagonized by the IRE-IRP interactions. Second, the stabilization of the CDC14A mRNA is delayed relative to the TfR1 mRNA and does not occur until IRP binding activity has been induced. The result is consistent with a hierarchy of IRP interactions in which the maintenance of cellular iron through the stabilization of the TfR1 mRNA is initially prioritized.
Collapse
Affiliation(s)
- Gregory J Connell
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - Elizabeth H Chaney
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
5
|
Partscht P, Simon A, Chen NP, Erhardt S, Schiebel E. The HIPK2/CDC14B-MeCP2 axis enhances the spindle assembly checkpoint block by promoting cyclin B translation. SCIENCE ADVANCES 2023; 9:eadd6982. [PMID: 36662865 PMCID: PMC9858502 DOI: 10.1126/sciadv.add6982] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/16/2022] [Indexed: 05/12/2023]
Abstract
Mitotic perturbations activate the spindle assembly checkpoint (SAC) that keeps cells in prometaphase with high CDK1 activity. Prolonged mitotic arrest is eventually bypassed by gradual cyclin B decline followed by slippage of cells into G1 without chromosome segregation, a process that promotes cell transformation and drug resistance. Hitherto, the cyclin B1 decay is exclusively defined by mechanisms that involve its proteasomal degradation. Here, we report that hyperphosphorylated HIPK2 kinase accumulates in mitotic cells and phosphorylates the Rett syndrome protein MeCP2 at Ser92, a regulation that is counteracted by CDC14B phosphatase. MeCP2S92 phosphorylation leads to the enhanced translation of cyclin B1, which is important for cells with persistent SAC activation to counteract the proteolytic decline of cyclin B1 and therefore to suspend mitotic slippage. Hence, the HIPK2/CDC14B-MeCP2 axis functions as an enhancer of the SAC-induced mitotic block. Collectively, our study revises the prevailing view of how cells confer a sustainable SAC.
Collapse
Affiliation(s)
- Patrick Partscht
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
- Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Alexander Simon
- Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Nan-Peng Chen
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
| | - Sylvia Erhardt
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
| |
Collapse
|
6
|
Villarroya‐Beltri C, Martins AFB, García A, Giménez D, Zarzuela E, Novo M, del Álamo C, González‐Martínez J, Bonel‐Pérez GC, Díaz I, Guillamot M, Chiesa M, Losada A, Graña‐Castro O, Rovira M, Muñoz J, Salazar‐Roa M, Malumbres M. Mammalian CDC14 phosphatases control exit from stemness in pluripotent cells. EMBO J 2023; 42:e111251. [PMID: 36326833 PMCID: PMC9811616 DOI: 10.15252/embj.2022111251] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Maintenance of stemness is tightly linked to cell cycle regulation through protein phosphorylation by cyclin-dependent kinases (CDKs). However, how this process is reversed during differentiation is unknown. We report here that exit from stemness and differentiation of pluripotent cells along the neural lineage are controlled by CDC14, a CDK-counteracting phosphatase whose function in mammals remains obscure. Lack of the two CDC14 family members, CDC14A and CDC14B, results in deficient development of the neural system in the mouse and impairs neural differentiation from embryonic stem cells (ESCs). Mechanistically, CDC14 directly dephosphorylates specific proline-directed Ser/Thr residues of undifferentiated embryonic transcription Factor 1 (UTF1) during the exit from stemness, triggering its proteasome-dependent degradation. Multiomic single-cell analysis of transcription and chromatin accessibility in differentiating ESCs suggests that increased UTF1 levels in the absence of CDC14 prevent the proper firing of bivalent promoters required for differentiation. CDC14 phosphatases are dispensable for mitotic exit, suggesting that CDC14 phosphatases have evolved to control stemness rather than cell cycle exit and establish the CDK-CDC14 axis as a critical molecular switch for linking cell cycle regulation and self-renewal.
Collapse
Affiliation(s)
| | - Ana Filipa B Martins
- Cell Division and Cancer groupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Alejandro García
- Cell Division and Cancer groupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | | | - Mónica Novo
- Cell Division and Cancer groupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Cristina del Álamo
- Cell Division and Cancer groupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Gloria C Bonel‐Pérez
- Cell Division and Cancer groupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Irene Díaz
- Cell Division and Cancer groupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - María Guillamot
- Cell Division and Cancer groupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Massimo Chiesa
- Cell Division and Cancer groupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Ana Losada
- Chromosome Dynamics groupCNIOMadridSpain
| | - Osvaldo Graña‐Castro
- Bioinformatics UnitCNIOMadridSpain
- Present address:
Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA‐Nemesio Díez), School of MedicineSan Pablo‐CEU University, CEU UniversitiesBoadilla del MonteSpain
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, L'Hospitalet de LlobregatUniversity of Barcelona (UB)BarcelonaSpain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, P‐CMR[C]Institut d'Investigació Biomèdica de Bellvitge—IDIBELL, L'Hospitalet de LlobregatBarcelonaSpain
| | | | - María Salazar‐Roa
- Cell Division and Cancer groupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Present address:
Advanced Therapies and Cancer Group, Faculty of BiologyComplutense UniversityMadridSpain
| | - Marcos Malumbres
- Cell Division and Cancer groupSpanish National Cancer Research Centre (CNIO)MadridSpain
| |
Collapse
|
7
|
Xiao Y, Dong J. The Hippo Signaling Pathway in Cancer: A Cell Cycle Perspective. Cancers (Basel) 2021; 13:cancers13246214. [PMID: 34944834 PMCID: PMC8699626 DOI: 10.3390/cancers13246214] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Cancer is increasingly viewed as a cell cycle disease in that the dysregulation of the cell cycle machinery is a common feature in cancer. The Hippo signaling pathway consists of a core kinase cascade as well as extended regulators, which together control organ size and tissue homeostasis. The aberrant expression of cell cycle regulators and/or Hippo pathway components contributes to cancer development, and for this reason, we specifically focus on delineating the roles of the Hippo pathway in the cell cycle. Improving our understanding of the Hippo pathway from a cell cycle perspective could be used as a powerful weapon in the cancer battlefield. Abstract Cell cycle progression is an elaborate process that requires stringent control for normal cellular function. Defects in cell cycle control, however, contribute to genomic instability and have become a characteristic phenomenon in cancers. Over the years, advancement in the understanding of disrupted cell cycle regulation in tumors has led to the development of powerful anti-cancer drugs. Therefore, an in-depth exploration of cell cycle dysregulation in cancers could provide therapeutic avenues for cancer treatment. The Hippo pathway is an evolutionarily conserved regulator network that controls organ size, and its dysregulation is implicated in various types of cancers. Although the role of the Hippo pathway in oncogenesis has been widely investigated, its role in cell cycle regulation has not been comprehensively scrutinized. Here, we specifically focus on delineating the involvement of the Hippo pathway in cell cycle regulation. To that end, we first compare the structural as well as functional conservation of the core Hippo pathway in yeasts, flies, and mammals. Then, we detail the multi-faceted aspects in which the core components of the mammalian Hippo pathway and their regulators affect the cell cycle, particularly with regard to the regulation of E2F activity, the G1 tetraploidy checkpoint, DNA synthesis, DNA damage checkpoint, centrosome dynamics, and mitosis. Finally, we briefly discuss how a collective understanding of cell cycle regulation and the Hippo pathway could be weaponized in combating cancer.
Collapse
Affiliation(s)
| | - Jixin Dong
- Correspondence: ; Tel.: +402-559-5596; Fax: +402-559-4651
| |
Collapse
|