1
|
Bandyopadhyay S, Adebayo D, Obaseki E, Hariri H. Lysosomal membrane contact sites: Integrative hubs for cellular communication and homeostasis. CURRENT TOPICS IN MEMBRANES 2024; 93:85-116. [PMID: 39181579 DOI: 10.1016/bs.ctm.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Lysosomes are more than just cellular recycling bins; they play a crucial role in regulating key cellular functions. Proper lysosomal function is essential for growth pathway regulation, cell proliferation, and metabolic homeostasis. Impaired lysosomal function is associated with lipid storage disorders and neurodegenerative diseases. Lysosomes form extensive and dynamic close contacts with the membranes of other organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and lipid droplets. These membrane contacts sites (MCSs) are vital for many lysosomal functions. In this chapter, we will explore lysosomal MCSs focusing on the machinery that mediates these contacts, how they are regulated, and their functional implications on physiology and pathology.
Collapse
Affiliation(s)
- Sumit Bandyopadhyay
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Daniel Adebayo
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Eseiwi Obaseki
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Hanaa Hariri
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
2
|
Maruzs T, Feil-Börcsök D, Lakatos E, Juhász G, Blastyák A, Hargitai D, Jean S, Lőrincz P, Juhász G. Interaction of the sorting nexin 25 homologue Snazarus with Rab11 balances endocytic and secretory transport and maintains the ultrafiltration diaphragm in nephrocytes. Mol Biol Cell 2023; 34:ar87. [PMID: 37314856 PMCID: PMC10398886 DOI: 10.1091/mbc.e22-09-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
Proper balance of exocytosis and endocytosis is important for the maintenance of plasma membrane lipid and protein homeostasis. This is especially critical in human podocytes and the podocyte-like Drosophila nephrocytes that both use a delicate diaphragm system with evolutionarily conserved components for ultrafiltration. Here, we show that the sorting nexin 25 homologue Snazarus (Snz) binds to Rab11 and localizes to Rab11-positive recycling endosomes in Drosophila nephrocytes, unlike in fat cells where it is present in plasma membrane/lipid droplet/endoplasmic reticulum contact sites. Loss of Snz leads to redistribution of Rab11 vesicles from the cell periphery and increases endocytic activity in nephrocytes. These changes are accompanied by defects in diaphragm protein distribution that resemble those seen in Rab11 gain-of-function cells. Of note, co-overexpression of Snz rescues diaphragm defects in Rab11 overexpressing cells, whereas snz knockdown in Rab11 overexpressing nephrocytes or simultaneous knockdown of snz and tbc1d8b encoding a Rab11 GTPase-activating protein (GAP) leads to massive expansion of the lacunar system that contains mislocalized diaphragm components: Sns and Pyd/ZO-1. We find that loss of Snz enhances while its overexpression impairs secretion, which, together with genetic epistasis analyses, suggest that Snz counteracts Rab11 to maintain the diaphragm via setting the proper balance of exocytosis and endocytosis.
Collapse
Affiliation(s)
- Tamás Maruzs
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, H-6726 Hungary
| | - Dalma Feil-Börcsök
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, H-6726 Hungary
- Doctoral School of Biology, University of Szeged, Szeged, H-6726 Hungary
| | - Enikő Lakatos
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, H-6726 Hungary
- Doctoral School of Biology, University of Szeged, Szeged, H-6726 Hungary
| | - Gábor Juhász
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, H-6726 Hungary
| | - András Blastyák
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, H-6726 Hungary
| | - Dávid Hargitai
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, H-1117 Hungary
| | - Steve Jean
- Department of Anatomy and Cell Biology, University of Sherbrooke, Sherbrooke, J1E 4K8 Canada
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, H-1117 Hungary
| | - Gábor Juhász
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, H-6726 Hungary
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, H-1117 Hungary
| |
Collapse
|
3
|
Protasova MS, Gusev FE, Andreeva TV, Klyushnikov SA, Illarioshkin SN, Rogaev EI. Novel genes bearing mutations in rare cases of early-onset ataxia with cerebellar hypoplasia. Eur J Hum Genet 2022; 30:703-711. [PMID: 35351988 DOI: 10.1038/s41431-022-01088-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
We propose an approach for the identification of mutant genes for rare diseases in single cases of unknown etiology. All genes with rare biologically significant variants sorted from individual exome data are tested further for profiling of their spatial-temporal and cell/tissue specific expression compared to that of their paralogs. We developed a simple bioinformatics tool ("Essential Paralogue by Expression" (EPbE)) for such analysis. Here, we present rare clinical forms of early ataxia with cerebellar hypoplasia. Using whole-exome sequencing and the EPbE tool, we identified two novel mutant genes previously not associated with congenital human diseases. In Family I, the unique missense mutation (p.Lys258Glu) was found in the LRCH2 gene inherited in an X-linked manner. p.Lys258Glu occurs in the evolutionarily invariant site of the leucine-rich repeat domain of LRCH2. In Family II and Family III, the identical genetic variant was found in the CSMD1 gene inherited as an autosomal-recessive trait. The variant leads to amino acid substitution p.Gly2979Ser in a highly conserved region of the complement-interacting domain of CSMD1. The LRCH2 gene for Family I patients (in which congenital cerebellar hypoplasia was associated with demyelinating polyneuropathy) is expressed in Schwann and precursor Schwann cells and predominantly over its paralogous genes in the developing cerebellar cortex. The CSMD1 gene is predominantly expressed over its paralogous genes in the cerebellum, specifically in the period of late childhood. Thus, the comparative spatial-temporal expression of the selected genes corresponds to the neurological manifestations of the disease.
Collapse
Affiliation(s)
- Maria S Protasova
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, 119333, Moscow, Russia
| | - Fedor E Gusev
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, 119333, Moscow, Russia
| | - Tatiana V Andreeva
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, 119333, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Sergey A Klyushnikov
- Department of Neurogenetics, Research Center of Neurology, 123367, Moscow, Russia
| | | | - Evgeny I Rogaev
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, 119333, Moscow, Russia. .,Center for Genetics and Life Science, Sirius University of Science and Technology, 354340, Sochi, Russia. .,Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA, 01545, USA.
| |
Collapse
|
4
|
Abstract
SNX-RGS proteins are molecular tethers localized to multiple interorganelle contact sites that exhibit roles in cellular metabolism. Here, we highlight recent findings on these proteins and discuss their emerging roles in metabolism, human disease, and lipid trafficking.
Collapse
Affiliation(s)
- Hanaa Hariri
- Department of Biological Sciences, Wayne State University, Detroit, MI
| | - W. Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
5
|
Paul B, Weeratunga S, Tillu VA, Hariri H, Henne WM, Collins BM. Structural Predictions of the SNX-RGS Proteins Suggest They Belong to a New Class of Lipid Transfer Proteins. Front Cell Dev Biol 2022; 10:826688. [PMID: 35223850 PMCID: PMC8864675 DOI: 10.3389/fcell.2022.826688] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Recent advances in protein structure prediction using machine learning such as AlphaFold2 and RosettaFold presage a revolution in structural biology. Genome-wide predictions of protein structures are providing unprecedented insights into their architecture and intradomain interactions, and applications have already progressed towards assessing protein complex formation. Here we present detailed analyses of the sorting nexin proteins that contain regulator of G-protein signalling domains (SNX-RGS proteins), providing a key example of the ability of AlphaFold2 to reveal novel structures with previously unsuspected biological functions. These large proteins are conserved in most eukaryotes and are known to associate with lipid droplets (LDs) and sites of LD-membrane contacts, with key roles in regulating lipid metabolism. They possess five domains, including an N-terminal transmembrane domain that anchors them to the endoplasmic reticulum, an RGS domain, a lipid interacting phox homology (PX) domain and two additional domains named the PXA and PXC domains of unknown structure and function. Here we report the crystal structure of the RGS domain of sorting nexin 25 (SNX25) and show that the AlphaFold2 prediction closely matches the experimental structure. Analysing the full-length SNX-RGS proteins across multiple homologues and species we find that the distant PXA and PXC domains in fact fold into a single unique structure that notably features a large and conserved hydrophobic pocket. The nature of this pocket strongly suggests a role in lipid or fatty acid binding, and we propose that these molecules represent a new class of conserved lipid transfer proteins.
Collapse
Affiliation(s)
- Blessy Paul
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Saroja Weeratunga
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Vikas A. Tillu
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Hanaa Hariri
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - W. Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|