1
|
Hu Y, Deng X, Lv Y, Liu C, Chen J, Song J, Zhang Y. Coxsackievirus-A10 induced RIPK3-driven necroptosis to promote the formation of inflammatory response and enhance virus production via being recognized by TLR3. Mol Immunol 2025; 178:107-116. [PMID: 39889589 DOI: 10.1016/j.molimm.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Neuronal death and neuroinflammation has been considered as the main contributors to the progression and deterioration of HFMD caused by CV-A10. Necroptosis is a lytic and inflammatory form of cell death that plays a crucial role in viral pathogenicity. Herein, our study showed that CV-A10-infected SH-SY5Y cells induced necroptosis via activating RIPK3-depedent pathway, but not requiring RIPK1, and meanwhile triggered the release of inflammatory cytokines. Moreover, RIPK3-mediated necroptosis was also involved in virus production, which did not require RIPK1 either. Finally, it was further verified that TLR3 drove RIPK3-mediated cell death by sensing CV-A10 RNA and activating RIPK3. Collectively, our study demonstrated that initiation of necroptosis in SH-SY5Y cells induced by CV-A10 accelerated the formation of inflammatory response and promoted virus replication through triggering a TLR3-initiated RIPK3-dependent pathway of necroptosis, which advanced the current understanding of necroptosis for the neuropathogenesis of CV-A10 infection.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoli Deng
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yaming Lv
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen Liu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Juan Chen
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- National & Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Wang S, Guo S, Guo J, Du Q, Wu C, Wu Y, Zhang Y. Cell death pathways: molecular mechanisms and therapeutic targets for cancer. MedComm (Beijing) 2024; 5:e693. [PMID: 39239068 PMCID: PMC11374700 DOI: 10.1002/mco2.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/07/2024] Open
Abstract
Cell death regulation is essential for tissue homeostasis and its dysregulation often underlies cancer development. Understanding the different pathways of cell death can provide novel therapeutic strategies for battling cancer. This review explores several key cell death mechanisms of apoptosis, necroptosis, autophagic cell death, ferroptosis, and pyroptosis. The research gap addressed involves a thorough analysis of how these cell death pathways can be precisely targeted for cancer therapy, considering tumor heterogeneity and adaptation. It delves into genetic and epigenetic factors and signaling cascades like the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways, which are critical for the regulation of cell death. Additionally, the interaction of the microenvironment with tumor cells, and particularly the influence of hypoxia, nutrient deprivation, and immune cellular interactions, are explored. Emphasizing therapeutic strategies, this review highlights emerging modulators and inducers such as B cell lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), chloroquine, and innovative approaches to induce ferroptosis and pyroptosis. This review provides insights into cancer therapy's future direction, focusing on multifaceted approaches to influence cell death pathways and circumvent drug resistance. This examination of evolving strategies underlines the considerable clinical potential and the continuous necessity for in-depth exploration within this scientific domain.
Collapse
Affiliation(s)
- Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jing Guo
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cen Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yeke Wu
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
3
|
Abstract
Regulated cell death mediated by dedicated molecular machines, known as programmed cell death, plays important roles in health and disease. Apoptosis, necroptosis and pyroptosis are three such programmed cell death modalities. The caspase family of cysteine proteases serve as key regulators of programmed cell death. During apoptosis, a cascade of caspase activation mediates signal transduction and cellular destruction, whereas pyroptosis occurs when activated caspases cleave gasdermins, which can then form pores in the plasma membrane. Necroptosis, a form of caspase-independent programmed necrosis mediated by RIPK3 and MLKL, is inhibited by caspase-8-mediated cleavage of RIPK1. Disruption of cellular homeostatic mechanisms that are essential for cell survival, such as normal ionic and redox balance and lysosomal flux, can also induce cell death without invoking programmed cell death mechanisms. Excitotoxicity, ferroptosis and lysosomal cell death are examples of such cell death modes. In this Review, we provide an overview of the major cell death mechanisms, highlighting the latest insights into their complex regulation and execution, and their relevance to human diseases.
Collapse
Affiliation(s)
- Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| | - Dimitry Ofengeim
- Sanofi, Rare and Neurological Diseases Research, Cambridge, MA, USA.
| |
Collapse
|
4
|
Zhu J, Li J, Yang K, Chen Y, Wang J, He Y, Shen K, Wang K, Shi T, Chen W. NR4A1 depletion inhibits colorectal cancer progression by promoting necroptosis via the RIG-I-like receptor pathway. Cancer Lett 2024; 585:216693. [PMID: 38301909 DOI: 10.1016/j.canlet.2024.216693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Necroptosis is a regulated necrotic cell death mechanism and plays a crucial role in the progression of cancers. However, the potential role and mechanism of necroptosis in colorectal cancer (CRC) has not been fully elucidated. In this study, we found that nuclear receptor subfamily 4 group A member 1 (NR4A1) was highly expressed in CRC cells treated with TNF-α, Smac mimetic, and z-VAD-FMK (TSZ). The depletion of NR4A1 significantly enhanced the sensitivity of CRC cells to TSZ-induced necroptosis, while NR4A1 overexpression suppressed these effects, as evidenced by the LDH assay, flow cytometry analysis of cell death, PI staining, and expression analysis of necrosome complexes (RIPK1, RIPK3, and MLKL). Moreover, NR4A1 deficiency made HT29 xenograft tumors sensitive to necroptotic cell death in vivo. Mechanistically, NR4A1 depletion promoted necroptosis activation in CRC through the RIG-I-like receptor pathway by interacting with DDX3. Importantly, the RIG-I pathway agonist poly(I:C) or inhibitor cFP abolished the effects of NR4A1 overexpression or suppression on necroptosis in CRC cells. Moreover, we observed that NR4A1 was highly expressed in CRC tissues and was associated with a poor prognosis. In conclusion, our results suggest that NR4A1 plays a critical role in modulating necroptosis in CRC cells and provide a new therapeutic target for CRC.
Collapse
Affiliation(s)
- Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Gastroenterology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin He
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Guan S, Qu X, Wang J, Zhang D, Lu J. 3-Monochloropropane-1,2-diol esters induce HepG2 cells necroptosis via CTSB/TFAM/ROS pathway. Food Chem Toxicol 2024; 186:114525. [PMID: 38408632 DOI: 10.1016/j.fct.2024.114525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
3-monochloropropane-1,2-diol esters (3-MCPDE) are toxic substances that form in food thermal processing and have a diverse range of toxicities. In this study, we found that 3-MCPDE triggered necroptosis by RIPK1/RIPK3/MLKL pathway in HepG2 cells. Previous studies have shown that ROS is an important activator of RIPK1 and RIPK3. The data showed that 3-MCPDE induced excessive ROS production through mitochondrial damage. After treatment with ROS inhibitor N-acetylcysteine (NAC), 3-MCPDE-induced necroptosis was relieved. Further, we explored how 3-MCPDE destroys mitochondria. The data suggested that 3-MCPDE induced mitochondrial dysfunction through the CTSB/TFAM pathway. Overall, the results indicated that 3-MCPDE induced necroptosis through CTSB/TFAM/ROS pathway in HepG2 cells. Our study provided a new mechanism for 3-MCPDE hepatotoxicity.
Collapse
Affiliation(s)
- Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Xiao Qu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
6
|
Leem YH, Kim DY, Park JE, Kim HS. Necrosulfonamide exerts neuroprotective effect by inhibiting necroptosis, neuroinflammation, and α-synuclein oligomerization in a subacute MPTP mouse model of Parkinson's disease. Sci Rep 2023; 13:8783. [PMID: 37258791 DOI: 10.1038/s41598-023-35975-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
Parkinson's disease (PD) is an incurable movement disorder characterized by dopaminergic cell loss, neuroinflammation, and α-synuclein pathology. Herein, we investigated the therapeutic effects of necrosulfonamide (NSA), a specific inhibitor of mixed lineage kinase domain-like protein (MLKL), in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MLKL is an executor of necroptosis, a programmed cell death pathway that causes inflammation. Repeated administration of NSA resulted in the recovery of impaired motor performance and dopaminergic degeneration. Furthermore, NSA inhibited the phosphorylation, ubiquitylation, and oligomerization of MLKL, all of which are associated with MLKL cell death-inducing activity in dopaminergic cells in the substantia nigra (SN). NSA also inhibited microglial activation and reactive astrogliosis as well as the MPTP-induced expression of proinflammatory molecules such as tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and cystatin F. Furthermore, NSA inhibited α-synuclein oligomerization and phosphorylation in the SN of MPTP-treated mice by inhibiting the activity of glycogen synthase kinase 3β and matrix metalloproteinase-3. In conclusion, NSA has anti-necroptotic, anti-inflammatory, and anti-synucleinopathic effects on PD pathology. Therefore, NSA is a potential therapeutic candidate for PD.
Collapse
Affiliation(s)
- Yea-Hyun Leem
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, 808-1 Magok-Dong, Gangseo-gu, Seoul, 07804, South Korea
| | - Do-Yeon Kim
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, 808-1 Magok-Dong, Gangseo-gu, Seoul, 07804, South Korea
| | - Jung-Eun Park
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, 808-1 Magok-Dong, Gangseo-gu, Seoul, 07804, South Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, 808-1 Magok-Dong, Gangseo-gu, Seoul, 07804, South Korea.
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|