1
|
Zohar H, Lindenboim L, Gozlan O, Gundersen GG, Worman HJ, Stein R. Apoptosis-induced translocation of nesprin-2 from the nuclear envelope to mitochondria is associated with mitochondrial dysfunction. Nucleus 2024; 15:2413501. [PMID: 39402980 PMCID: PMC11486236 DOI: 10.1080/19491034.2024.2413501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Accumulating evidence suggests that the nuclear envelope (NE) is not just a target, but also a mediator of apoptosis. We showed recently that the NE protein nesprin-2 has pro-apoptotic activity, which involves its subcellular redistribution and Bcl-2 proteins. Here we further characterize the pro-apoptotic activity of nesprin-2 focusing on its redistribution. We assessed the redistribution kinetics of endogenous nesprin-2 tagged with GFP relative to apoptosis-associated mitochondrial dysfunction. The results show apoptosis-induced GFP-nesprin-2G redistribution occurred by two different modes - complete and partial, both lead to appearance of nesprin-2G near the mitochondria. Moreover, GFP-nesprin-2 redistribution is associated with reduction in mitochondrial membrane potential and mitochondrial outer membrane permeabilization and precedes the appearance of morphological features of apoptosis. Our results show that nesprin-2G redistribution and translocation near mitochondria is an early apoptotic effect associated with mitochondrial dysfunction, which may be responsible for the pro-apoptotic function of nesprin-2.
Collapse
Affiliation(s)
- Hila Zohar
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liora Lindenboim
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oren Gozlan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Howard J Worman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Reuven Stein
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Uren RT, Ritchie ME, Wong AW, Ludeman JP, Uno E, Narayana VK, De Souza DP, Sviridov D, Kluck RM. A lipid signature of BAK-driven apoptotic pore formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618570. [PMID: 39463966 PMCID: PMC11507859 DOI: 10.1101/2024.10.16.618570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Apoptotic cell death is regulated by the BCL-2 protein family, with clusters of BAK or BAX homodimers driving pore formation in the mitochondrial outer membrane via a poorly understood process. There is growing evidence that, in addition to BAK and BAX, lipids play an important role in pore formation. Towards a better understanding of the lipidic drivers of apoptotic pore formation in isolated mitochondria, two complementary approaches were taken. Firstly, the lipids released during BAK-mediated pore formation were measured with targeted lipidomics, revealing enrichment of long chain polyunsaturated lysophospholipids (LPLs) in the released fraction. In contrast, the BAK protein was not released suggesting that BAK and LPLs locate to distinct microdomains. Secondly, added cholesterol not only prevented pore formation but prevented the clustering of BAK homodimers. Our data lead us to a model in which BAK clustering triggers formation of a separate microdomain rich in LPLs that can progress to lipid shedding and the opening of a lipid-lined pore. Pore stabilisation and growth may be due to BAK dimers then moving to the pore edge. Our BAK-lipid microdomain model supports the heterogeneity of BAK assemblies, and the observed lipid-release signature gives new insight into the genesis of the apoptotic pore.
Collapse
|
3
|
Güler A, Yardımcı BK, Özek NŞ. Human anti-apoptotic Bcl-2 and Bcl-xL proteins protect yeast cells from aging induced oxidative stress. Biochimie 2024:S0300-9084(24)00235-9. [PMID: 39413900 DOI: 10.1016/j.biochi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Aging is a degenerative, biological, and time-dependent process that affects all organisms. Yeast aging is a physiological phenomenon characterized by the progressive transformation of yeast cells, resulting in modifications to their viability and vitality. Aging in yeast cells is comparable to that in higher organisms in some respects; however, due to their straightforward and well-characterized genetic makeup, these cells present unique advantages when it comes to researching the aging process. Here, we assessed the impact of human anti-apoptotic Bcl-2 and Bcl-xL proteins on aging using a yeast model. The findings clearly showed that these proteins exhibited remarkable anti-aging properties in yeast cells. Our data indicate that the presence of both proteins enhanced the reproductive survival of aging cells, likely by effecting the components functioning as both pro- and anti-oxidants, depending on the stage of yeast cell lifespan. Both proteins partially protected yeast cells from aging-related morphological deformations and cellular damage during the aging period. In particular, Bcl-xL expressing yeast cells reached the maximum activity levels for almost all of the major antioxidant enzymes and the total antioxidant status on the 8th day of lifespan and could provide effective protection at the latest stage of the investigated aging period. The chemometric data analysis of IR spectra confirmed the findings of the morphological and biochemical analyses. In this regard, specifically, understanding the mechanism of action on the cellular redox state of Bcl-xL in yeast may facilitate comprehension of its indirect antioxidant function in higher eukaryotes.
Collapse
Affiliation(s)
- Ayşenur Güler
- Chemistry Department, Graduate School of Natural and Applied Sciences, Pamukkale University, Denizli, Turkey
| | - Berna Kavakcıoğlu Yardımcı
- Department of Chemistry, Faculty of Science, Pamukkale University, Denizli, Turkey; Advanced Technology Application and Research Center, Pamukkale University, Denizli, Turkey.
| | - Nihal Şimşek Özek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey; East Anatolian High Technology Research and Application Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
4
|
Xiao Y, Hu Z, Liu H, Jiang X, Zhou T, Wang H, Long H, Li M. A review on antitumor effect of pachymic acid. Medicine (Baltimore) 2024; 103:e39752. [PMID: 39312302 PMCID: PMC11419566 DOI: 10.1097/md.0000000000039752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Poria cocos, also known as Jade Ling and Songbai taro, is a dry fungus core for Wolfiporia cocos, which is parasitic on the roots of pine trees. The ancients called it "medicine of four seasons" because of its extensive effect and ability to be combined with many medicines. Pachymic acid (PA) is one of the main biological compounds of Poria cocos. Research has shown that PA has various pharmacological properties, including anti-inflammatory and antioxidant. PA has recently attracted much attention due to its anticancer properties. Researchers have found that PA showed anticancer activity by regulating apoptosis and the cell cycle in vitro and in vivo. Using PA with anticancer drugs, radiotherapy, and biomaterials could also improve the sensitivity of cancer cells and delay the progression of cancer. The purpose of this review was to summarize the anticancer mechanism of PA by referencing the published documents. A review of the collected data indicated that PA had the potential to be developed into an effective anticancer agent.
Collapse
Affiliation(s)
- Yubo Xiao
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Zhaotun Hu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province College of Biological and Food Engineering, Huaihua University, Huaihua, China
| | - Hang Liu
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Xinglin Jiang
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Taimei Zhou
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Haiying Wang
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Heng Long
- Department of Breast and Thyroid Surgery, First People’s Hospital of Huaihua City, Huaihua, China
| | - Ming Li
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
5
|
Song JR, Niu ZP, Yang K, Wang L, Huang YB, Rao Q, Liu HY, Hao XJ, Li YM. A natural acylphloroglucinol exerts anti-erythroleukemia effects via targeting STAT3 and p38-MAPK, and inhibiting PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother 2024; 180:117424. [PMID: 39303451 DOI: 10.1016/j.biopha.2024.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
Erythroleukemia, a subtype of acute myeloid leukemia (AML), is a life-threatening malignancy that affects the blood and bone marrow. Despite the availability of clinical treatments, the complex pathogenesis of the disease and the severe side effects of chemotherapy continue to impede therapeutic progress in leukemia. In this study, we investigated the antitumor activity of L76, an acylphloroglucinol compound derived from Callistemon salignus DC., against erythroleukemia, along with its underlying mechanisms. MTT assays were performed to evaluate the inhibitory effects of L76 on cancer cell viability, while flow cytometry was used to analyze apoptosis and cell cycle arrest in HEL cells. The molecular mechanisms of L76 were further explored using Western blotting, microscopic analysis, and cellular thermal shift assays (CETSA). Our in vitro experiments demonstrated that L76 inhibits proliferation, induces G1/S cell cycle arrest, and promotes apoptosis in human leukemia cells. Mechanistically, L76 exerts its effects by targeting STAT3 and p38-MAPK, and by inhibiting the PI3K/AKT/mTOR signaling pathway. In conclusion, this study highlights the potential of L76 as an anti-erythroleukemia agent, demonstrating its ability to target STAT3 and p38-MAPK, and to inhibit the PI3K/AKT/mTOR signaling pathway. These findings suggest that L76 could be a promising candidate for the treatment of erythroleukemia.
Collapse
Affiliation(s)
- Jing-Rui Song
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, China; School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Zhen-Peng Niu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, China; Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Kun Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Li Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, China
| | - Yu-Bing Huang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, China
| | - Qing Rao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, China
| | - Hai-Yang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Xiao-Jiang Hao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Yan-Mei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, China.
| |
Collapse
|
6
|
Liu C, Zha J, Sun T, Kong L, Zhang X, Wang D, Ni G. Cold atmospheric plasma attenuates skin cancer via ROS induced apoptosis. Mol Biol Rep 2024; 51:518. [PMID: 38622261 DOI: 10.1007/s11033-024-09486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Cold atmospheric plasma (CAP) has been widely used in biomedical research, especially in vitro cancer therapy. Cutaneous squamous cell carcinoma (CSCC) is a malignant tumor originating from epidermal keratinocytes. However, the mechanism of CAP therapy on CSCC remains unclear. METHODS AND RESULTS The animal models of CSCC induced by 7,12-dimethylbenz(a) anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) were constructed. For the CAP treatment group, after each TPA application, CAP was administered for 3 min twice weekly after drying. HE staining were used to detect the pathological status of tumor tissue in each group. The levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 were evaluated by western blot and qPCR. TUNEL staining were used to detect apoptosis in tumor tissues. In vivo, serum samples were used for ELISA of total ROS. MTT assay was used to detect the viability of A431 cells. Western blot and qPCR were used to detect the levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 in A431 cells. A431 cell proliferation was examined by colony formation assay. The proportions of apoptosis of A431 cells were detected by flow cytometry. Transwell assessed the ability of A431 cells migration and proliferation. We found that CAP could induce skin cancer cells apoptosis and inhibit the progress of skin cancer. Through experiments in vitro, reactive oxygen species (ROS) generated by N-acetylcysteine (NAC) and CAP inhibited the proliferation and migration of A431 skin cancer cells while promoting apoptosis. CONCLUSIONS These evidences suggest the protective effect of CAP in CSCC, and CAP has the potential clinical application of CSCC.
Collapse
Affiliation(s)
- Changqing Liu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jingjing Zha
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tao Sun
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ling Kong
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xinru Zhang
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei, 230031, China.
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Guohua Ni
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei, 230031, China.
| |
Collapse
|
7
|
Ge B, Yan K, Sang R, Wang W, Liu X, Yu M, Liu X, Qiu Q, Zhang X. Integrated network toxicology, molecular docking, and in vivo experiments to elucidate molecular mechanism of aflatoxin B1 hepatotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116278. [PMID: 38564860 DOI: 10.1016/j.ecoenv.2024.116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/07/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Due to the rise in temperature and sea level caused by climate change, the detection rate of aflatoxin B1 (AFB1) in food crops has increased dramatically, and the frequency and severity of aflatoxicosis in humans and animals are also increasing. AFB1 has strong hepatotoxicity, causing severe liver damage and even cancer. However, the mechanism of AFB1 hepatotoxicity remains unclear. By integrating network toxicology, molecular docking and in vivo experiments, this research was designed to explore the potential hepatotoxicity mechanisms of AFB1. Thirty-three intersection targets for AFB1-induced liver damage were identified using online databases. PI3K/AKT1, MAPK, FOXO1 signaling pathways, and apoptosis were significantly enriched. In addition, the proteins of ALB, AKT1, PIK3CG, MAPK8, HSP90AA1, PPARA, MAPK1, EGFR, FOXO1, and IGF1 exhibited good affinity with AFB1. In vivo experiments, significant pathological changes occurred in the liver of mice. AFB1 induction increased the expression levels of EGFR, ERK, and FOXO1, and decreased the expression levsls of PI3K and AKT1. Moreover, AFB1 treatment caused an increase in Caspase3 expression, and a decrease in Bcl2/Bax ratio. By combining network toxicology with in vivo experiments, this study confirms for the first time that AFB1 promotes the FOXO1 signaling pathway by inactivating PI3K/AKT1 and activating EGFR/ERK signaling pathways, hence aggravating hepatocyte apoptosis. This research provides new strategies for studying the toxicity of environmental pollutants and new possible targets for the development of hepatoprotective drugs.
Collapse
Affiliation(s)
- Bingjie Ge
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Kexin Yan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Rui Sang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Wei Wang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Xinman Liu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Minghong Yu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Xiaotong Liu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Qian Qiu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Xuemei Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| |
Collapse
|
8
|
Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, Hüttemann M, Song X. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ 2024; 31:387-404. [PMID: 38521844 PMCID: PMC11043370 DOI: 10.1038/s41418-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong J Lee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
9
|
Mergenthaler P, Balami JS, Neuhaus AA, Mottahedin A, Albers GW, Rothwell PM, Saver JL, Young ME, Buchan AM. Stroke in the Time of Circadian Medicine. Circ Res 2024; 134:770-790. [PMID: 38484031 DOI: 10.1161/circresaha.124.323508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Time-of-day significantly influences the severity and incidence of stroke. Evidence has emerged not only for circadian governance over stroke risk factors, but also for important determinants of clinical outcome. In this review, we provide a comprehensive overview of the interplay between chronobiology and cerebrovascular disease. We discuss circadian regulation of pathophysiological mechanisms underlying stroke onset or tolerance as well as in vascular dementia. This includes cell death mechanisms, metabolism, mitochondrial function, and inflammation/immunity. Furthermore, we present clinical evidence supporting the link between disrupted circadian rhythms and increased susceptibility to stroke and dementia. We propose that circadian regulation of biochemical and physiological pathways in the brain increase susceptibility to damage after stroke in sleep and attenuate treatment effectiveness during the active phase. This review underscores the importance of considering circadian biology for understanding the pathology and treatment choice for stroke and vascular dementia and speculates that considering a patient's chronotype may be an important factor in developing precision treatment following stroke.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Department of Neurology with Experimental Neurology (P.M.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Joyce S Balami
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Ain A Neuhaus
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, United Kingdom (A.A.N.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Amin Mottahedin
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Gregory W Albers
- Department of Neurology, Stanford Hospital, Palo Alto, CA (G.W.A.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Peter M Rothwell
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences (P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, Geffen School of Medicine, University of Los Angeles, CA (J.L.S.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham (M.E.Y.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Alastair M Buchan
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| |
Collapse
|
10
|
Xu FF, Xie XF, Hu HY, Tong RS, Peng C. Shenfu injection: a review of pharmacological effects on cardiovascular diseases. Front Pharmacol 2024; 15:1279584. [PMID: 38420190 PMCID: PMC10899515 DOI: 10.3389/fphar.2024.1279584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Shenfu injection (SFI), composed of ginseng and aconite, is a Chinese patent developed from the classic traditional prescription Shenfu Decoction created more than 700 years ago. SFI has been widely used in China for over 30 years for treating cardiovascular diseases. The main components in it include ginsenosides and aconitum alkaloids. In recent years, the role of SFI in the treatment of cardiovascular diseases has attracted much attention. The pharmacological effects and therapeutic applications of SFI in cardiovascular diseases are summarized here, highlighting pharmacological features and potential mechanisms developments, confirming that SFI can play a role in multiple ways and is a promising drug for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Fei-Fei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Fang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Yan Hu
- Sichuan Nursing Vocational College, Chengdu, China
| | - Rong-Sheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|