1
|
Arias Padilla LF, Munera Lopez J, Shibata A, Murray JM, Hu K. The initiation and early development of apical-basal polarity in Toxoplasma gondii. J Cell Sci 2024; 137:jcs263436. [PMID: 39239869 PMCID: PMC11491809 DOI: 10.1242/jcs.263436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
The body plan of the human parasite Toxoplasma gondii has a well-defined polarity. The minus ends of the 22 cortical microtubules are anchored to the apical polar ring, which is a putative microtubule-organizing center. The basal complex caps and constricts the parasite posterior end and is crucial for cytokinesis. How this apical-basal polarity is initiated is unknown. Here, we have examined the development of the apical polar ring and the basal complex using expansion microscopy. We found that substructures in the apical polar ring have different sensitivities to perturbations. In addition, apical-basal differentiation is already established upon nucleation of the cortical microtubule array: arc forms of the apical polar ring and basal complex associate with opposite ends of the microtubules. As the nascent daughter framework grows towards the centrioles, the apical and basal arcs co-develop ahead of the microtubule array. Finally, two apical polar ring components, APR2 and KinesinA, act synergistically. The removal of individual proteins has a modest impact on the lytic cycle. However, the loss of both proteins results in abnormalities in the microtubule array and in highly reduced plaquing and invasion efficiency.
Collapse
Affiliation(s)
- Luisa F. Arias Padilla
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jonathan Munera Lopez
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Aika Shibata
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - John M. Murray
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Ke Hu
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
2
|
Arias Padilla LF, Lopez JM, Shibata A, Murray JM, Hu K. The initiation and early development of apical-basal polarity in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.14.603470. [PMID: 39071409 PMCID: PMC11275826 DOI: 10.1101/2024.07.14.603470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The human parasite Toxoplasma gondii has a distinctive body plan with a well-defined polarity. In the apical complex, the minus ends of the 22 cortical microtubules are anchored to the apical polar ring, a putative microtubule-organizing center. The basal complex caps and constricts the parasite posterior end, and is critical for cytokinesis. How this apical-basal polarity axis is initiated was unknown. Here we examined the development of the apical polar ring and the basal complex in nascent daughters using expansion microscopy. We found that different substructures in the apical polar ring have different sensitivity to stress. In addition, apical-basal differentiation is already established upon nucleation of the cortical microtubule array: arc forms of the apical polar ring and basal complex associate with opposite ends of the microtubules. As the construction of the daughter framework progresses towards the centrioles, the apical and the basal arcs co-develop in striking synchrony ahead of the microtubule array, and close into a ring-form before all the microtubules are nucleated. We also found that two apical polar ring components, APR2 and KinesinA, act synergistically. The removal of each protein individually has modest to no impact on the lytic cycle. However, the loss of both results in abnormalities in the microtubule array and highly reduced plaquing and invasion efficiency.
Collapse
|
3
|
Engelberg K, Bauwens C, Ferguson DJP, Gubbels MJ. Co-dependent formation of the Toxoplasma gondii sub-pellicular microtubules and inner membrane skeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595886. [PMID: 38826480 PMCID: PMC11142238 DOI: 10.1101/2024.05.25.595886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
One of the defining features of apicomplexan parasites is their cytoskeleton composed of alveolar vesicles, known as the inner membrane complex (IMC) undergirded by intermediate-like filament network and an array of subpellicular microtubules (SPMTs). In Toxoplasma gondii, this specialized cytoskeleton is involved in all aspects of the disease-causing lytic cycle, and notably acting as a scaffold for parasite offspring in the internal budding process. Despite advances in our understanding of the architecture and molecular composition, insights pertaining to the coordinated assembly of the scaffold are still largely elusive. Here, T. gondii tachyzoites were dissected by advanced, iterative expansion microscopy (pan-ExM) revealing new insights into the very early sequential formation steps of the tubulin scaffold. A comparative study of the related parasite Sarcocystis neurona revealed that different MT bundling organizations of the nascent SPMTs correlate with the number of central and basal alveolar vesicles. In absence of a so far identified MT nucleation mechanism, we genetically dissected T. gondii γ-tubulin and γ-tubulin complex protein 4 (GCP4). While γ-tubulin depletion abolished the formation of the tubulin scaffold, a set of MTs still formed that suggests SPMTs are nucleated at the outer core of the centrosome. Depletion of GCP4 interfered with the correct assembly of SPMTs into the forming daughter buds, further indicating that the parasite utilizes the γ-tubulin complex in tubulin scaffold formation .
Collapse
Affiliation(s)
- Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Ciara Bauwens
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - David J. P. Ferguson
- Department of Biological and Medical Sciences, Oxford Brookes University, and NDCLS, Oxford University, Oxford, United Kingdom
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| |
Collapse
|
4
|
Tell I Puig A, Soldati-Favre D. Roles of the tubulin-based cytoskeleton in the Toxoplasma gondii apical complex. Trends Parasitol 2024; 40:401-415. [PMID: 38531711 DOI: 10.1016/j.pt.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Microtubules (MTs) play a vital role as key components of the eukaryotic cytoskeleton. The phylum Apicomplexa comprises eukaryotic unicellular parasitic organisms defined by the presence of an apical complex which consists of specialized secretory organelles and tubulin-based cytoskeletal elements. One apicomplexan parasite, Toxoplasma gondii, is an omnipresent opportunistic pathogen with significant medical and veterinary implications. To ensure successful infection and widespread dissemination, T. gondii heavily relies on the tubulin structures present in the apical complex. Recent advances in high-resolution imaging, coupled with reverse genetics, have offered deeper insights into the composition, functionality, and dynamics of these tubulin-based structures. The apicomplexan tubulins differ from those of their mammalian hosts, endowing them with unique attributes and susceptibility to specific classes of inhibitory compounds.
Collapse
Affiliation(s)
- Albert Tell I Puig
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Padilla LFA, Murray JM, Hu K. The initiation and early development of the tubulin-containing cytoskeleton in the human parasite Toxoplasma gondii. Mol Biol Cell 2024; 35:ar37. [PMID: 38170577 PMCID: PMC10916856 DOI: 10.1091/mbc.e23-11-0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The tubulin-containing cytoskeleton of the human parasite Toxoplasma gondii includes several distinct structures: the conoid, formed of 14 ribbon-like tubulin polymers, and the array of 22 cortical microtubules (MTs) rooted in the apical polar ring. Here we analyze the structure of developing daughter parasites using both 3D-SIM and expansion microscopy. Cortical MTs and the conoid start to develop almost simultaneously, but from distinct precursors near the centrioles. Cortical MTs are initiated in a fixed sequence, starting around the periphery of a short arc that extends to become a complete circle. The conoid also develops from an open arc into a full circle, with a fixed spatial relationship to the centrioles. The patterning of the MT array starts from a "blueprint" with ∼five-fold symmetry, switching to 22-fold rotational symmetry in the final product, revealing a major structural rearrangement during daughter growth. The number of MT is essentially invariant in the wild-type array, but is perturbed by the loss of some structural components of the apical polar ring. This study provides insights into the development of tubulin-containing structures that diverge from conventional models, insights that are critical for understanding the evolutionary paths leading to construction and divergence of cytoskeletal frameworks.
Collapse
Affiliation(s)
- Luisa F. Arias Padilla
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University
| | - John M. Murray
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University
| | - Ke Hu
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University
| |
Collapse
|
6
|
Reber S, Singer M, Frischknecht F. Cytoskeletal dynamics in parasites. Curr Opin Cell Biol 2024; 86:102277. [PMID: 38048658 DOI: 10.1016/j.ceb.2023.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Cytoskeletal dynamics are essential for cellular homeostasis and development for both metazoans and protozoans. The function of cytoskeletal elements in protozoans can diverge from that of metazoan cells, with microtubules being more stable and actin filaments being more dynamic. This is particularly striking in protozoan parasites that evolved to enter metazoan cells. Here, we review recent progress towards understanding cytoskeletal dynamics in protozoan parasites, with a focus on divergent properties compared to classic model organisms.
Collapse
Affiliation(s)
- Simone Reber
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany; University of Applied Sciences Berlin, 13353 Berlin, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Arias Padilla LF, Murray JM, Hu K. The initiation and early development of the tubulin-containing cytoskeleton in the human parasite Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565597. [PMID: 38106158 PMCID: PMC10723254 DOI: 10.1101/2023.11.03.565597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The tubulin-containing cytoskeleton of the human parasite Toxoplasma gondii includes several distinct structures: the conoid, formed of 14 ribbon-like tubulin polymers, and the array of 22 cortical microtubules (MTs) rooted in the apical polar ring. Here we analyze the structure of developing daughter parasites using both 3D-SIM and expansion microscopy. Cortical MTs and the conoid start to develop almost simultaneously, but from distinct precursors near the centrioles. Cortical MTs are initiated in a fixed sequence, starting around the periphery of a short arc that extends to become a complete circle. The conoid also develops from an open arc into a full circle, with a fixed spatial relationship to the centrioles. The patterning of the MT array starts from a "blueprint" with ∼ 5-fold symmetry, switching to 22-fold rotational symmetry in the final product, revealing a major structural rearrangement during daughter growth. The number of MT is essentially invariant in the wild-type array, but is perturbed by the loss of some structural components of the apical polar ring. This study provides insights into the development of tubulin-containing structures that diverge from conventional models, insights that are critical for understanding the evolutionary paths leading to construction and divergence of cytoskeletal frameworks.
Collapse
|