1
|
Moore CL, Taylor EM, Ball KK, Bernock LJ, Griffin RJ, Jung S, Shoeib A, Borrelli MJ. Quantitative microinjection using fluorescence calibration of streaming microdroplets on a superhydrophobic surface. Exp Cell Res 2018; 370:426-433. [PMID: 29981341 DOI: 10.1016/j.yexcr.2018.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
A simple and reproducible procedure was developed to measure the volume of liquid microinjected into cells. A calibration curve of droplet fluorescence intensity versus volume was constructed by injecting a fluorescent dextran solution through a 125-150 µm diameter micropipette into an oil-filled culture dish to create a spray of varied-sized droplets. The droplets retained a spherical shape because they were in an oil medium and they settled onto a glass surface coated with a superhydrophobic surface. Fluorescent micrographs of the droplets were obtained and analyzed with Image-J software to quantify the fluorescence intensity and radius of each spherical droplet to produce the calibration curve. Subsequently, Dut-145 human prostate carcinoma cells were microinjected with the same fluorescent dextran solution and fluorescent micrographs of the cells were obtained using the identical exposure conditions used to photograph the droplets. The measured fluorescence intensity of the microinjected cells was entered into the formula for the regression line that was fit to the calibration curve allowing determination of the volume of solution injected into each cell. Thus, a mixture consisting of known concentrations of a test material of test material (macromolecules, drugs, etc.) and a fluorescent dextran, volumetric, tracer can be used to quantify the relationship between the amount of a microinjected material and subsequent effects on cells.
Collapse
Affiliation(s)
- Christopher L Moore
- Departments of Radiology, Center for Advanced Surface Engineering, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Erin M Taylor
- Departments of Radiology, Center for Advanced Surface Engineering, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Kelly K Ball
- Departments of Radiology, Center for Advanced Surface Engineering, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Laura J Bernock
- Departments of Radiology, Center for Advanced Surface Engineering, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Robert J Griffin
- Departments of Radiation Oncology, Center for Advanced Surface Engineering, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Seunghyun Jung
- Departments of Radiology, Center for Advanced Surface Engineering, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Amal Shoeib
- Departments of Radiology, Center for Advanced Surface Engineering, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Michael J Borrelli
- Departments of Radiology, Center for Advanced Surface Engineering, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| |
Collapse
|
2
|
Abstract
The final stage of cell division (mitosis), involves the compaction of the duplicated genome into chromatid pairs. Each pair is captured by microtubules emanating from opposite spindle poles, aligned at the metaphase plate, and then faithfully segregated to form two identical daughter cells. Chromatids that are not correctly attached to the spindle are detected by the constitutively active spindle assembly checkpoint (SAC). Any stress that prevents correct bipolar spindle attachment, blocks the satisfaction of the SAC, and induces a prolonged mitotic arrest, providing the cell time to obtain attachment and complete segregation correctly. Unfortunately, during mitosis repairing damage is not generally possible due to the compaction of DNA into chromosomes, and subsequent suppression of gene transcription and translation. Therefore, in the presence of significant damage cell death is instigated to ensure that genomic stability is maintained. While most stresses lead to an arrest in mitosis, some promote premature mitotic exit, allowing cells to bypass mitotic cell death. This mini-review will focus on the effects and outcomes that common stresses have on mitosis, and how this impacts on the efficacy of mitotic chemotherapies.
Collapse
Affiliation(s)
- Andrew Burgess
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia ; St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia , Sydney, NSW , Australia
| | - Mina Rasouli
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia
| | - Samuel Rogers
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia
| |
Collapse
|
3
|
Pivoting of microtubules around the spindle pole accelerates kinetochore capture. Nat Cell Biol 2012; 15:82-7. [PMID: 23222841 DOI: 10.1038/ncb2640] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 11/05/2012] [Indexed: 12/17/2022]
Abstract
During cell division, spindle microtubules attach to chromosomes through kinetochores, protein complexes on the chromosome. The central question is how microtubules find kinetochores. According to the pioneering idea termed search-and-capture, numerous microtubules grow from a centrosome in all directions and by chance capture kinetochores. The efficiency of search-and-capture can be improved by a bias in microtubule growth towards the kinetochores, by nucleation of microtubules at the kinetochores and at spindle microtubules, by kinetochore movement, or by a combination of these processes. Here we show in fission yeast that kinetochores are captured by microtubules pivoting around the spindle pole, instead of growing towards the kinetochores. This pivoting motion of microtubules is random and independent of ATP-driven motor activity. By introducing a theoretical model, we show that the measured random movement of microtubules and kinetochores is sufficient to explain the process of kinetochore capture. Our theory predicts that the speed of capture depends mainly on how fast microtubules pivot, which was confirmed experimentally by speeding up and slowing down microtubule pivoting. Thus, pivoting motion allows microtubules to explore space laterally, as they search for targets such as kinetochores.
Collapse
|
4
|
Abstract
The movements of eukaryotic cell division depend upon the conversion of chemical energy into mechanical work, which in turn involves the actions of motor proteins, molecular transducers that generate force and motion relative cytoskeletal elements. In animal cells, microtubule-based motor proteins of the mitotic apparatus are involved in segregating chromosomes and perhaps in organizing the mitotic apparatus itself, while microfilament-based motors in the contractile ring generate the forces that separate daughter cells during cytokinesis. This review outlines recent advances in our understanding of the roles of molecular motors in mitosis and cytokinesis.
Collapse
Affiliation(s)
- K E Sawin
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
5
|
Abstract
Members of the kinesin superfamily are force-generating ATPases that drive movement and influence cytoskeleton organization in cells. Often, more than one kinesin is implicated in a cellular process, and many kinesins are proposed to have overlapping functions. By using conventional kinesin as a model system, we have developed an approach to activate or inhibit a specific kinesin allele in the presence of other similar motor proteins. Modified ATP analogs are described that do not activate either conventional kinesin or another superfamily member, Eg5. However, a kinesin allele with Arg-14 in its nucleotide binding pocket mutated to alanine can use a subset of these nucleotide analogs to drive microtubule gliding. Cyclopentyl-ATP is one such analog. Cyclopentyl-adenylylimidodiphosphate, a nonhydrolyzable form of this analog, inhibits the mutant allele in microtubule-gliding assays, but not wild-type kinesin or Eg5. We anticipate that the incorporation of kinesin mutants and allele-specific activators and inhibitors in in vitro assays should clarify the role of individual motor proteins in complex cellular processes.
Collapse
Affiliation(s)
- T M Kapoor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
6
|
Affiliation(s)
- P Wadsworth
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst 01003, USA
| |
Collapse
|
7
|
Desai A, Maddox PS, Mitchison TJ, Salmon ED. Anaphase A chromosome movement and poleward spindle microtubule flux occur At similar rates in Xenopus extract spindles. J Cell Biol 1998; 141:703-13. [PMID: 9566970 PMCID: PMC2132746 DOI: 10.1083/jcb.141.3.703] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/1997] [Revised: 03/10/1998] [Indexed: 02/07/2023] Open
Abstract
We have used local fluorescence photoactivation to mark the lattice of spindle microtubules during anaphase A in Xenopus extract spindles. We find that both poleward spindle microtubule flux and anaphase A chromosome movement occur at similar rates ( approximately 2 microm/min). This result suggests that poleward microtubule flux, coupled to microtubule depolymerization near the spindle poles, is the predominant mechanism for anaphase A in Xenopus egg extracts. In contrast, in vertebrate somatic cells a "Pacman" kinetochore mechanism, coupled to microtubule depolymerization near the kinetochore, predominates during anaphase A. Consistent with the conclusion from fluorescence photoactivation analysis, both anaphase A chromosome movement and poleward spindle microtubule flux respond similarly to pharmacological perturbations in Xenopus extracts. Furthermore, the pharmacological profile of anaphase A in Xenopus extracts differs from the previously established profile for anaphase A in vertebrate somatic cells. The difference between these profiles is consistent with poleward microtubule flux playing the predominant role in anaphase chromosome movement in Xenopus extracts, but not in vertebrate somatic cells. We discuss the possible biological implications of the existence of two distinct anaphase A mechanisms and their differential contributions to poleward chromosome movement in different cell types.
Collapse
Affiliation(s)
- A Desai
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA.
| | | | | | | |
Collapse
|
8
|
Nicklas RB, Krawitz LE, Ward SC. Odd chromosome movement and inaccurate chromosome distribution in mitosis and meiosis after treatment with protein kinase inhibitors. J Cell Sci 1993; 104 ( Pt 4):961-73. [PMID: 8314908 DOI: 10.1242/jcs.104.4.961] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Errors in chromosome orientation in mitosis and meiosis are inevitable, but normally they are quickly corrected. We find that such errors usually are not corrected in cells treated with protein kinase inhibitors. Highly inaccurate chromosome distribution is the result. When grasshopper spermatocytes were treated with the kinase inhibitor 6-dimethylaminopurine (DMAP), 84% of maloriented chromosomes failed to reorient; in anaphase, both partner chromosomes were distributed to the same daughter cell. These chromosomes were observed for a total of over 60 h, and not a single reorientation was seen. In contrast, in untreated cells, maloriented chromosomes invariably reoriented, and quickly: in 10 min, on average. A second protein kinase inhibitor, genistein, had exactly the same effect as DMAP. DMAP affected PtK1 cells in mitosis as it did spermatocytes in meiosis: improper chromosome orientations persisted, leading to frequent errors in distribution. We micromanipulated chromosomes in spermatocytes treated with DMAP to learn why maloriented chromosomes often fail to reorient. Reorientation requires the loss of improper microtubule attachments and the acquisition of new, properly directed kinetochore microtubules. Micromanipulation experiments disclose that neither the loss of old nor the acquisition of new microtubules is sufficiently affected by DMAP to account for the indefinite persistence of malorientations. Drug treatment causes a novel form of chromosome movement in which one kinetochore moves toward another kinetochore. Two kinetochores in the same chromosome or in different chromosomes can participate, producing varied, dance-like movements executed by one or two chromosomes. These kinetochore-kinetochore interactions evidently are at the expense of kinetochore-spindle interactions. We propose that malorientations persist in treated cells because the kinetochores have numerous, short microtubules with a free end that can be captured by a second kinetochore. Kinetochores capture each other's kinetochore microtubules, leaving too few sites available for the efficient capture of spindle microtubules. Since the efficient capture of spindle microtubules is essential for the correction of errors, failure of capture allows malorientations to persist. Whether the effects of DMAP actually are due to protein kinase inhibition remains to be seen. In any case, DMAP reveals interactions of one kinetochore with another, which, though ordinarily suppressed, have implications for normal mitosis.
Collapse
Affiliation(s)
- R B Nicklas
- Department of Zoology, Duke University, Durham, NC 27706
| | | | | |
Collapse
|
9
|
Abstract
The nature of the forces that move chromosomes in mitosis is beginning to be revealed. The kinetochore, a specialized structure situated at the primary constriction of the chromosome, appears to translocate in both directions along the microtubules of the mitotic spindle. One or more members of the newly described families of microtubule motor molecules may power these movements. Microtubules of the mitotic spindle undergo rapid cycles of assembly and disassembly. These microtubule dynamics may contribute toward generating force and regulating direction in chromosome movement.
Collapse
Affiliation(s)
- G J Gorbsky
- Department of Anatomy and Cell Biology, University of Virginia, Charlottesville 22908
| |
Collapse
|
10
|
Wise DA, Bhattacharjee L. Antikinetochore antibodies interfere with prometaphase but not anaphase chromosome movement in living PtK2 cells. CELL MOTILITY AND THE CYTOSKELETON 1992; 23:157-67. [PMID: 1451187 DOI: 10.1002/cm.970230208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Injection of CREST antikinetochore antiserum (AKA) containing antibodies to the kinetochore into living prometaphase PtK2 cells decreased chromosome velocity to near zero. Injection of either phosphate-buffered saline or CREST antiserum without antikinetochore antibodies (antikinetochore negative: AKN) had no effect on prometaphase oscillations. AKA antiserum injected into anaphase cells at the beginning of chromatid separation had no effect on anaphase chromosome velocity, spindle elongation, or cytokinesis. Visible binding of antikinetochore antibodies in prometaphase cells at room temperature occurred between 5 and 15 minutes after injection. Anaphase cells injected at the beginning of chromatid separation had bound antibody at the end of anaphase. AKA antiserum recognizes in Western blots proteins associated with the primary constriction: CENP-B, -C, and -D, as reported by other workers. The control antiserum, AKN, does not recognize these proteins. These results imply that the antigens recognized by CREST antibodies are important for chromosome movement. Whether or not these antigens are themselves motor molecules cannot be addressed by the present data. In addition, the results suggest that these antigens are not involved in an important way in anaphase movement.
Collapse
Affiliation(s)
- D A Wise
- Department of Biological Sciences, Mississippi State University, Mississippi State 39762
| | | |
Collapse
|
11
|
Wiche G, Oberkanins C, Himmler A. Molecular structure and function of microtubule-associated proteins. INTERNATIONAL REVIEW OF CYTOLOGY 1991; 124:217-73. [PMID: 2001917 DOI: 10.1016/s0074-7696(08)61528-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- G Wiche
- Institut für Biochemie, Universität Wien, Vienna, Austria
| | | | | |
Collapse
|