1
|
Durant M, Mucelli X, Huang LS. Meiotic Cytokinesis in Saccharomyces cerevisiae: Spores That Just Need Closure. J Fungi (Basel) 2024; 10:132. [PMID: 38392804 PMCID: PMC10890087 DOI: 10.3390/jof10020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, sporulation occurs during starvation of a diploid cell and results in the formation of four haploid spores forming within the mother cell ascus. Meiosis divides the genetic material that is encapsulated by the prospore membrane that grows to surround the haploid nuclei; this membrane will eventually become the plasma membrane of the haploid spore. Cellularization of the spores occurs when the prospore membrane closes to capture the haploid nucleus along with some cytoplasmic material from the mother cell, and thus, closure of the prospore membrane is the meiotic cytokinetic event. This cytokinetic event involves the removal of the leading-edge protein complex, a complex of proteins that localizes to the leading edge of the growing prospore membrane. The development and closure of the prospore membrane must be coordinated with other meiotic exit events such as spindle disassembly. Timing of the closure of the prospore membrane depends on the meiotic exit pathway, which utilizes Cdc15, a Hippo-like kinase, and Sps1, an STE20 family GCKIII kinase, acting in parallel to the E3 ligase Ama1-APC/C. This review describes the sporulation process and focuses on the development of the prospore membrane and the regulation of prospore membrane closure.
Collapse
Affiliation(s)
| | | | - Linda S. Huang
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA; (M.D.); (X.M.)
| |
Collapse
|
2
|
Hatano T, Lim TC, Billault-Chaumartin I, Dhar A, Gu Y, Massam-Wu T, Scott W, Adishesha S, Chapa-y-Lazo B, Springall L, Sivashanmugam L, Mishima M, Martin SG, Oliferenko S, Palani S, Balasubramanian MK. mNG-tagged fusion proteins and nanobodies to visualize tropomyosins in yeast and mammalian cells. J Cell Sci 2022; 135:jcs260288. [PMID: 36148799 PMCID: PMC9592052 DOI: 10.1242/jcs.260288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Tropomyosins are structurally conserved α-helical coiled-coil proteins that bind along the length of filamentous actin (F-actin) in fungi and animals. Tropomyosins play essential roles in the stability of actin filaments and in regulating myosin II contractility. Despite the crucial role of tropomyosin in actin cytoskeletal regulation, in vivo investigations of tropomyosin are limited, mainly due to the suboptimal live-cell imaging tools currently available. Here, we report on an mNeonGreen (mNG)-tagged tropomyosin, with native promoter and linker length configuration, that clearly reports tropomyosin dynamics in Schizosaccharomyces pombe (Cdc8), Schizosaccharomyces japonicus (Cdc8) and Saccharomyces cerevisiae (Tpm1 and Tpm2). We also describe a fluorescent probe to visualize mammalian tropomyosin (TPM2 isoform). Finally, we generated a camelid nanobody against S. pombe Cdc8, which mimics the localization of mNG-Cdc8 in vivo. Using these tools, we report the presence of tropomyosin in previously unappreciated patch-like structures in fission and budding yeasts, show flow of tropomyosin (F-actin) cables to the cytokinetic actomyosin ring and identify rearrangements of the actin cytoskeleton during mating. These powerful tools and strategies will aid better analyses of tropomyosin and F-actin cables in vivo.
Collapse
Affiliation(s)
- Tomoyuki Hatano
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Tzer Chyn Lim
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Anubhav Dhar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ying Gu
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK
| | - Teresa Massam-Wu
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - William Scott
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Sushmitha Adishesha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bernardo Chapa-y-Lazo
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Luke Springall
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Lavanya Sivashanmugam
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK
| | - Saravanan Palani
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mohan K. Balasubramanian
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| |
Collapse
|
3
|
Ohtsuka H, Imada K, Shimasaki T, Aiba H. Sporulation: A response to starvation in the fission yeast Schizosaccharomyces pombe. Microbiologyopen 2022; 11:e1303. [PMID: 35765188 PMCID: PMC9214231 DOI: 10.1002/mbo3.1303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe employs two main strategies to adapt to the environment and survive when starved for nutrients. The strategies employ sporulation via sexual differentiation and extension of the chronological lifespan. When a cell is exposed to nutrient starvation in the presence of a cell of the opposite sex, the cells undergo fusion through conjugation and sporulation through meiosis. S. pombe spores are highly resistant to diverse stresses and may survive for a very long time. In this minireview, among the various sexual differentiation processes induced by starvation, we focused on and summarized the findings of the molecular mechanisms of spore formation in fission yeast. Furthermore, comparative measurements of the chronological lifespan of stationary phase cells and G0 cells and the survival period of spore cells revealed that the spore cells survived for a long period, indicating the presence of an effective mechanism for survival. Currently, many molecules involved in sporulation and their functions are being discovered; however, our understanding of these is not complete. Further understanding of spores may not only deepen our comprehension of sexual differentiation but may also provide hints for sustaining life.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistryNational Institute of Technology (KOSEN), Suzuka CollegeSuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversitySumiyoshi‐kuOsakaJapan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| |
Collapse
|
4
|
Pineda-Santaella A, Fernández-Castillo N, Jiménez-Martín A, Macías-Cabeza MDC, Sánchez-Gómez Á, Fernández-Álvarez A. Loss of kinesin-8 improves the robustness of the self-assembled spindle in Schizosaccharomyces pombe. J Cell Sci 2021; 134:271184. [PMID: 34346498 PMCID: PMC8435293 DOI: 10.1242/jcs.253799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 07/19/2021] [Indexed: 11/30/2022] Open
Abstract
Chromosome segregation in female meiosis in many metazoans is mediated by acentrosomal spindles, the existence of which implies that microtubule spindles self-assemble without the participation of the centrosomes. Although it is thought that acentrosomal meiosis is not conserved in fungi, we recently reported the formation of self-assembled microtubule arrays, which were able to segregate chromosomes, in fission yeast mutants, in which the contribution of the spindle pole body (SPB; the centrosome equivalent in yeast) was specifically blocked during meiosis. Here, we demonstrate that this unexpected microtubule formation represents a bona fide type of acentrosomal spindle. Moreover, a comparative analysis of these self-assembled spindles and the canonical SPB-dependent spindle reveals similarities and differences; for example, both spindles have a similar polarity, but the location of the γ-tubulin complex differs. We also show that the robustness of self-assembled spindles can be reinforced by eliminating kinesin-8 family members, whereas kinesin-8 mutants have an adverse impact on SPB-dependent spindles. Hence, we consider that reinforced self-assembled spindles in yeast will help to clarify the molecular mechanisms behind acentrosomal meiosis, a crucial step towards better understanding gametogenesis. Summary: We report a comparative analysis of self-assembled spindles and canonical centrosomal spindles in fission yeast, which could clarify the mechanisms underlying acentrosomal meiosis.
Collapse
Affiliation(s)
- Alberto Pineda-Santaella
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - Nazaret Fernández-Castillo
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - Alberto Jiménez-Martín
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - María Del Carmen Macías-Cabeza
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - Ángela Sánchez-Gómez
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - Alfonso Fernández-Álvarez
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| |
Collapse
|
5
|
Yang HJ, Asakawa H, Ohtsuki C, Haraguchi T, Hiraoka Y. Transient Breakage of the Nucleocytoplasmic Barrier Controls Spore Maturation via Mobilizing the Proteasome Subunit Rpn11 in the Fission Yeast Schizosaccharomyces pombe. J Fungi (Basel) 2020; 6:jof6040242. [PMID: 33113963 PMCID: PMC7712896 DOI: 10.3390/jof6040242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
Forespore membrane (FSM) closure is a process of specialized cytokinesis in yeast meiosis. FSM closure begins with the contraction of the FSM opening and finishes with the disassembly of the leading-edge proteins (LEPs) from the FSM opening. Here, we show that the FSM opening starts to contract when the event of virtual nuclear envelope breakdown (vNEBD) occurs in anaphase II of the fission yeast Schizosaccharomyces pombe. The occurrence of vNEBD controls the redistribution of the proteasomal subunit Rpn11 from the nucleus to the cytosol. To investigate the importance of Rpn11 re-localization during vNEBD, Rpn11 was sequestered at the inner nuclear membrane by fusion with the transmembrane region of Bqt4 (Rpn11-GFP-INM). Remarkably, in the absence of endogenous rpn11+, the cells carrying Rpn11-GFP-INM had abnormal or no spore formation. Live-cell imaging analysis further reveals that the FSM opening failed to contract when vNEBD occurred, and the LEP Meu14 was persistently present at the FSM in the rpn11-gfp-INM cells. The results suggest that the dynamic localization of Rpn11 during vNEBD is essential for spore development.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence:
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| | - Chizuru Ohtsuki
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| |
Collapse
|
6
|
Krapp A, Hamelin R, Armand F, Chiappe D, Krapp L, Cano E, Moniatte M, Simanis V. Analysis of the S. pombe Meiotic Proteome Reveals a Switch from Anabolic to Catabolic Processes and Extensive Post-transcriptional Regulation. Cell Rep 2020; 26:1044-1058.e5. [PMID: 30673600 DOI: 10.1016/j.celrep.2018.12.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/09/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022] Open
Abstract
Meiotic progression in S. pombe is regulated by stage-specific gene expression and translation, changes in RNA stability, expression of anti-sense transcripts, and targeted proteolysis of regulatory proteins. We have used SILAC labeling to examine the relative levels of proteins in diploid S. pombe cells during meiosis. Among the 3,268 proteins quantified at all time points, the levels of 880 proteins changed at least 2-fold; the majority of proteins showed stepwise increases or decreases during the meiotic divisions, while some changed transiently. Overall, we observed reductions in proteins involved in anabolism and increases in proteins involved in catabolism. We also observed increases in the levels of proteins of the ESCRT-III complex and revealed a role for ESCRT-III components in chromosome segregation and spore formation. Correlation with studies of meiotic gene expression and ribosome occupancy reveals that many of the changes in steady-state protein levels are post-transcriptional.
Collapse
Affiliation(s)
- Andrea Krapp
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, 1015 Lausanne, Switzerland
| | - Romain Hamelin
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Florence Armand
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Diego Chiappe
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Lucien Krapp
- EPFL SV IBI-SV UPDALPE, AAB 1 17, Station 19, 1015 Lausanne, Switzerland
| | - Elena Cano
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, 1015 Lausanne, Switzerland
| | - Marc Moniatte
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Viesturs Simanis
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Wabner D, Overhageböck T, Nordmann D, Kronenberg J, Kramer F, Schmitz HP. Analysis of the protein composition of the spindle pole body during sporulation in Ashbya gossypii. PLoS One 2019; 14:e0223374. [PMID: 31581259 PMCID: PMC6776394 DOI: 10.1371/journal.pone.0223374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/19/2019] [Indexed: 11/28/2022] Open
Abstract
The spores of fungi come in a wide variety of forms and sizes, highly adapted to the route of dispersal and to survival under specific environmental conditions. The ascomycete Ashbya gossypii produces needle shaped spores with a length of 30 μm and a diameter of 1 μm. Formation of these spores relies on actin and actin regulatory proteins and is, therefore, distinct from the minor role that actin plays for spore formation in Saccharomyces cerevisiae. Using in vivo FRET-measurements of proteins labeled with fluorescent proteins, we investigate how the formin AgBnr2, a protein that promotes actin polymerization, integrates into the structure of the spindle pole body during sporulation. We also investigate the role of the A. gossypii homologs to the S. cerevisiae meiotic outer plaque proteins Spo74, Mpc54 and Ady4 for sporulation in A. gossypii. We found highest FRET of AgBnr2 with AgSpo74. Further experiments indicated that AgSpo74 is a main factor for targeting AgBnr2 to the spindle pole body. In agreement with these results, the Agspo74 deletion mutant produces no detectable spores, whereas deletion of Agmpc54 only has an effect on spore length and deletion of Agady4 has no detectable sporulation phenotype. Based on this study and in relation to previous results we suggest a model where AgBnr2 resides within an analogous structure to the meiotic outer plaque of S. cerevisiae. There it promotes formation of actin cables important for shaping the needle shaped spore structure.
Collapse
Affiliation(s)
- Dario Wabner
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Tom Overhageböck
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Doris Nordmann
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Julia Kronenberg
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Florian Kramer
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Hans-Peter Schmitz
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
- * E-mail:
| |
Collapse
|
8
|
Yamashita A, Sakuno T, Watanabe Y, Yamamoto M. Analysis of Schizosaccharomyces pombe Meiosis. Cold Spring Harb Protoc 2017; 2017:pdb.top079855. [PMID: 28733417 DOI: 10.1101/pdb.top079855] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Meiosis is a specialized cell cycle that generates haploid gametes from diploid cells. The fission yeast Schizosaccharomyces pombe is one of the best model organisms for studying the regulatory mechanisms of meiosis. S. pombe cells, which normally grow in the haploid state, diploidize by conjugation and initiate meiosis when starved for nutrients, especially nitrogen. Following two rounds of chromosome segregation, spore formation takes place. The switch from mitosis to meiosis is controlled by a kinase, Pat1, and an RNA-binding protein, Mei2. Mei2 is also a key factor for meiosis-specific gene expression. Studies on S. pombe have offered insights into cell cycle regulation and chromosome segregation during meiosis. Here we outline the current understanding of the molecular mechanisms regulating the initiation and progression of meiosis, and introduce methods for the study of meiosis in fission yeast.
Collapse
Affiliation(s)
- Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Sakuno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Masayuki Yamamoto
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
9
|
Yang HJ, Osakada H, Kojidani T, Haraguchi T, Hiraoka Y. Lipid droplet dynamics during Schizosaccharomyces pombe sporulation and their role in spore survival. Biol Open 2017; 6:217-222. [PMID: 28011631 PMCID: PMC5312105 DOI: 10.1242/bio.022384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Upon nitrogen starvation, the fission yeast Schizosaccharomyces pombe forms dormant spores; however, the mechanisms by which a spore sustains life without access to exogenous nutrients remain unclear. Lipid droplets are reservoirs of neutral lipids that act as important cellular energy resources. Using live-cell imaging analysis, we found that the lipid droplets of mother cells redistribute to their nascent spores. Notably, this process was actin polymerization-dependent and facilitated by the leading edge proteins of the forespore membrane. Spores lacking triacylglycerol synthesis, which is essential for lipid droplet formation, failed to germinate. Our results suggest that the lipid droplets are important for the sustenance of life in spores. Summary: Lipid droplets of yeast mother cells are shown to redistribute to their nascent spores by live-cell imaging analysis, suggesting that the lipid droplets are important for yeast spore survival.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hiroko Osakada
- Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tomoko Kojidani
- Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan.,Japan Women's University, Tokyo, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan .,Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
10
|
Takaine M, Imada K, Numata O, Nakamura T, Nakano K. The meiosis-specific nuclear passenger protein is required for proper assembly of forespore membrane in fission yeast. J Cell Sci 2014; 127:4429-42. [PMID: 25146394 DOI: 10.1242/jcs.151738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sporulation, gametogenesis in yeast, consists of meiotic nuclear division and spore morphogenesis. In the fission yeast Schizosaccharomyces pombe, the four haploid nuclei produced after meiosis II are encapsulated by the forespore membrane (FSM), which is newly synthesized from spindle pole bodies (SPBs) in the cytoplasm of the mother cell as spore precursors. Although the coordination between meiosis and FSM assembly is vital for proper sporulation, the underlying mechanism remains unclear. In the present study, we identified a new meiosis-specific protein Npg1, and found that it was involved in the efficient formation of spores and spore viability. The accumulation and organization of the FSM was compromised in npg1-null cells, leading to the error-prone envelopment of nuclei. Npg1 was first seen as internuclear dots and translocated to the SPBs before the FSM assembled. Genetic analysis revealed that Npg1 worked in conjunction with the FSM proteins Spo3 and Meu14. These results suggest a possible signaling link from the nucleus to the meiotic SPBs in order to associate the onset of FSM assembly with meiosis II, which ensures the successful partitioning of gametic nuclei.
Collapse
Affiliation(s)
- Masak Takaine
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuki Imada
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Osamu Numata
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kentaro Nakano
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
11
|
Krapp A, Simanis V. Dma1-dependent degradation of Septation Initiation Network proteins during meiosis in Schizosaccharomyces pombe. J Cell Sci 2014; 127:3149-61. [DOI: 10.1242/jcs.148585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Schizosaccharomyces pombe septation initiation network (SIN) is required for cytokinesis during vegetative growth and spore formation during meiosis. Regulation of the SIN during mitosis has been studied extensively, but less is known about its meiotic regulation. Here, we show that several aspects of the SIN regulation differ between mitosis and meiosis. First, the presence of GTP-bound spg1p is not the main determinant of the timing of cdc7p and sid1p association with the SPB during meiosis. Second, the localisation dependencies of SIN proteins differ from those in mitotic cells, suggesting a modified functional organisation of the SIN during meiosis. Third, there is stage-specific degradation of SIN components in meiosis; byr4p is degraded after meiosis I, while the degradation of cdc7p, cdc11p and sid4p occurs after the second meiotic division and depends upon the ubiquitin ligase dma1p. Finally, dma1p-dependent degradation is not restricted to the SIN, for we show that dma1p is needed for the degradation of mcp6p/hrs1p in meiosis I. Together, these data suggest that stage-specific targetted proteolysis will play an important role in regulating meiotic progression.
Collapse
|