1
|
Eigen L, Baum D, Dean MN, Werner D, Wölfer J, Nyakatura JA. Ontogeny of a tessellated surface: Carapace growth of the longhorn cowfish Lactoria cornuta. J Anat 2022; 241:565-580. [PMID: 35638264 PMCID: PMC9358767 DOI: 10.1111/joa.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Biological armors derive their mechanical integrity in part from their geometric architectures, often involving tessellations: individual structural elements tiled together to form surface shells. The carapace of boxfish, for example, is composed of mineralized polygonal plates, called scutes, arranged in a complex geometric pattern and nearly completely encasing the body. In contrast to artificial armors, the boxfish exoskeleton grows with the fish; the relationship between the tessellation and the gross structure of the armor is therefore critical to sustained protection throughout growth. To clarify whether or how the boxfish tessellation is maintained or altered with age, we quantify architectural aspects of the tessellated carapace of the longhorn cowfish Lactoria cornuta through ontogeny (across nearly an order of magnitude in standard length) and in a high‐throughput fashion, using high‐resolution microCT data and segmentation algorithms to characterize the hundreds of scutes that cover each individual. We show that carapace growth is canalized with little variability across individuals: rather than continually adding scutes to enlarge the carapace surface, the number of scutes is surprisingly constant, with scutes increasing in volume, thickness, and especially width with age. As cowfish and their scutes grow, scutes become comparatively thinner, with the scutes at the edges (weak points in a boxy architecture) being some of the thickest and most reinforced in younger animals and thinning most slowly across ontogeny. In contrast, smaller scutes with more variable curvature were found in the limited areas of more complex topology (e.g., around fin insertions, mouth, and anus). Measurements of Gaussian and mean curvature illustrate that cowfish are essentially tessellated boxes throughout life: predominantly zero curvature surfaces comprised of mostly flat scutes, and with scutes with sharp bends used sparingly to form box edges. Since growth of a curved, tiled surface with a fixed number of tiles would require tile restructuring to accommodate the surface's changing radius of curvature, our results therefore illustrate a previously unappreciated advantage of the odd boxfish morphology: by having predominantly flat surfaces, it is the box‐like body form that in fact permits a relatively straightforward growth system of this tessellated architecture (i.e., where material is added to scute edges). Our characterization of the ontogeny and maintenance of the carapace tessellation provides insights into the potentially conflicting mechanical, geometric, and developmental constraints of this species but also perspectives into natural strategies for constructing mutable tiled architectures. The carapace of boxfish is composed of mineralized polygonal plates, called scutes, arranged in a complex geometric pattern and nearly completely encasing the body. To clarify whether or how this armor is maintained or altered with age, we quantify architectural aspects of the carapace of the longhorn cowfish Lactoria cornuta through ontogeny, using high‐resolution microCT data and segmentation algorithms to characterize the hundreds of scutes that cover each individual.![]()
Collapse
Affiliation(s)
- Lennart Eigen
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Humboldt University of Berlin, Berlin, Germany
| | - Daniel Baum
- Visual and Data-Centric Computing Department, Zuse Institute Berlin, Berlin, Germany
| | - Mason N Dean
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.,Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Daniel Werner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jan Wölfer
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - John A Nyakatura
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
2
|
Van Gorp MJW, Goyens J, Alfaro ME, Van Wassenbergh S. Keels of boxfish carapaces strongly improve stabilization against roll. J R Soc Interface 2022; 19:20210942. [PMID: 35472270 PMCID: PMC9042571 DOI: 10.1098/rsif.2021.0942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Boxfish (Ostraciidae) have peculiar body shapes, with conspicuous keels formed by their bony carapaces. Previous studies have proposed various hydrodynamic roles for these keels, including reducing drag during swimming, contributing to passive stabilization of the swimming course, or providing resistance against roll rotations. Here, we tested these hypotheses using computational fluid dynamics simulations of five species of Ostraciidae with a range of carapace shapes. The hydrodynamic performance of the original carapace surface models, obtained from laser scanning of museum specimens, was compared with models where the keels had been digitally reduced. The original carapaces showed no reduced drag or increased passive stability against pitch and yaw compared to the reduced-keel carapaces. However, consistently for all studied species, a strong increase in roll drag and roll-added mass was observed for the original carapaces compared to the reduced-keel carapaces, despite the relatively small differences in keel height. In particular, the damping of roll movement by resistive drag torques increased considerably by the presence of keels. Our results suggest that the shape of the boxfish carapace is important in enabling the observed roll-free forward swimming of boxfish and may facilitate the control of manoeuvres.
Collapse
Affiliation(s)
- Merel J W Van Gorp
- Department of Biology, Universiteit Antwerpen, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Jana Goyens
- Department of Biology, Universiteit Antwerpen, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, 2154 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Sam Van Wassenbergh
- Department of Biology, Universiteit Antwerpen, Universiteitsplein 1, 2610 Antwerpen, Belgium
| |
Collapse
|
3
|
Changes in rays' swimming stability due to the phase difference between left and right pectoral fin movements. Sci Rep 2022; 12:2362. [PMID: 35149702 PMCID: PMC8837794 DOI: 10.1038/s41598-022-05317-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Swimming motions of rays that swim using undulation locomotion are not always symmetrical; there may be a phase difference between the left and right pectoral fins. However, few studies on the swimming of rays have mentioned left and right pectoral fin movements. Moreover, the effects of movements of the left and right pectoral fins on swimming have not been clarified. This paper describes a computational study of phase differences of pectoral fin movements in the swimming of rays with the validity of fluid analysis methods. The movement and shape of the ray were made based on previous biological research and pictures. An overset grid was used to reproduce the ray’s complex motions. The analysis was performed under four phase difference conditions: 0 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T$$\end{document}T (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T$$\end{document}T is the period), 0.25 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T$$\end{document}T, 0.5 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T$$\end{document}T, and 0.75 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T$$\end{document}T. The results show that a phase difference between the left and right pectoral fin movements affects swimming stability and maneuverability but not propulsive efficiency. We suggest that the phase difference in pectoral fin movements is essential for the swimming of rays, and rays adjust the phase difference between the movement of the left and right pectoral fins to suit their purpose.
Collapse
|
4
|
Roche DG. Effects of wave-driven water flow on the fast-start escape response of juvenile coral reef damselfishes. J Exp Biol 2021; 224:jeb.234351. [PMID: 33602678 DOI: 10.1242/jeb.234351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/08/2021] [Indexed: 01/22/2023]
Abstract
Fish often evade predators with a fast-start escape response. Studies typically examine this behaviour in still water despite water motion being an inherent feature of aquatic ecosystems. In shallow habitats, waves create complex flows that likely influence escape performance, particularly in small fishes with low absolute swimming speeds relative to environmental flows. I examined how wave-driven water flow affects the behaviour and kinematics of escape responses in juveniles of three coral reef damselfishes (Pomacentridae) with different body morphologies. Tropical damselfishes have similar fin and body shapes during early development, with the exception of body depth, a trait deemed important for postural control and stability. Wave-driven flow increased response latency in two of the three species tested: fish with a fusiform body responded 2.9 times slower in wave-driven flow than in still water, whereas this difference was less pronounced in fish with an intermediate body depth (1.9 times slower response) and absent in fish with a laterally compressed body. The effect of wave-driven flow on swimming performance (cumulative escape distance and turning rate) was variable and depended on the timing and trajectory of escape responses in relation to the wave phase. Given intense predation pressure on juvenile coral reef fishes during settlement, interspecific differences in how wave-driven flow affects their ability to escape predators could influence the distribution and abundance of species across spatial and temporal scales.
Collapse
Affiliation(s)
- Dominique G Roche
- Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
5
|
Cawley JJ, Marramà G, Carnevale G, Villafaña JA, López-Romero FA, Kriwet J. Rise and fall of †Pycnodontiformes: Diversity, competition and extinction of a successful fish clade. Ecol Evol 2021; 11:1769-1796. [PMID: 33614003 PMCID: PMC7882952 DOI: 10.1002/ece3.7168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022] Open
Abstract
†Pycnodontiformes was a successful lineage of primarily marine fishes that broadly diversified during the Mesozoic. They possessed a wide variety of body shapes and were adapted to a broad range of food sources. Two other neopterygian clades possessing similar ecological adaptations in both body morphology (†Dapediiformes) and dentition (Ginglymodi) also occurred in Mesozoic seas. Although these groups occupied the same marine ecosystems, the role that competitive exclusion and niche partitioning played in their ability to survive alongside each other remains unknown. Using geometric morphometrics on both the lower jaw (as constraint for feeding adaptation) and body shape (as constraint for habitat adaptation), we show that while dapediiforms and ginglymodians occupy similar lower jaw morphospace, pycnodontiforms are completely separate. Separation also occurs between the clades in body shape so that competition reduction between pycnodontiforms and the other two clades would have resulted in niche partitioning. Competition within pycnodontiforms seemingly was reduced further by evolving different feeding strategies as shown by disparate jaw shapes that also indicate high levels of plasticity. Acanthomorpha was a teleostean clade that evolved later in the Mesozoic and which has been regarded as implicated in driving the pycnodontiforms to extinction. Although they share similar body shapes, no coeval acanthomorphs had similar jaw shapes or dentitions for dealing with hard prey like pycnodontiforms do and so their success being a factor in pycnodontiform extinction is unlikely. Sea surface temperature and eustatic variations also had no impact on pycnodontiform diversity patterns according to our results. Conversely, the occurrence and number of available reefs and hardgrounds as habitats through time seems to be the main factor in pycnodontiform success. Decline in such habitats during the Late Cretaceous and Palaeogene might have had deleterious consequences for pycnodontiform diversity. Acanthomorphs occupied the niches of pycnodontiforms during the terminal phase of their existence.
Collapse
Affiliation(s)
- John J Cawley
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria
| | - Giuseppe Marramà
- Dipartimento di Scienze della Terra Università degli Studi di Torino Torino Italy
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra Università degli Studi di Torino Torino Italy
| | - Jaime A Villafaña
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria.,Centro de Investigación en Recursos Naturales y Sustentabilidad Universidad Bernardo O'Higgins Santiago Chile.,Paleontological Institute and Museum University of Zurich Zurich Switzerland
| | - Faviel A López-Romero
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria
| | - Jürgen Kriwet
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria
| |
Collapse
|
6
|
Gordon MS, Lauritzen DV, Wiktorowicz-Conroy AM, Rutledge KM. Aracaniform Swimming: A Proposed New Category of Swimming Mode in Bony Fishes (Teleostei: Tetraodontiformes: Aracanidae). Physiol Biochem Zool 2020; 93:235-242. [PMID: 32255729 DOI: 10.1086/708163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The deepwater boxfishes of the family Aracanidae are the phylogenetic sister group of the shallow-water, generally more tropical boxfishes of the family Ostraciidae. Both families are among the most derived groups of teleosts. All members of both families have armored bodies, the forward 70% of which are enclosed in rigid bony boxes (carapaces). There is substantial intragroup variation in both groups in body shapes, sizes, and ornamentation of the carapaces. Swimming-related morphology, swimming mode, biomechanics, kinematics, and hydrodynamics have been studied in detail in multiple species of the ostraciids. Ostraciids are all relatively high-performance median and paired fin swimmers. They are highly maneuverable. They swim rectilinearly with substantial dynamic stability and efficiency. Aracanids have not been previously studied in these respects. This article describes swimming-related aspects of morphology, swimming modes, biomechanics, and kinematics in two south Australian species (striped cowfish and ornate cowfish) that are possibly representative of the entire group. These species differ morphologically in many respects, both from each other and from ostraciids. There are differences in numbers, sizes, and placements of keels on carapaces. The most important differences from ostraciids are openings in the posterior edges of the carapaces behind the dorsal and anal fins. The bases of those fins in ostraciids are enclosed in bone. The openings in aracanids free the fins and tail to move. As a result, aracanids are body and caudal fin swimmers. Their overall swimming performances are less stable, efficient, and effective. We propose establishing a new category of swimming mode for bony fishes called "aracaniform swimming."
Collapse
|
7
|
Boute PG, Van Wassenbergh S, Stamhuis EJ. Modulating yaw with an unstable rigid body and a course-stabilizing or steering caudal fin in the yellow boxfish ( Ostracion cubicus). ROYAL SOCIETY OPEN SCIENCE 2020; 7:200129. [PMID: 32431903 PMCID: PMC7211845 DOI: 10.1098/rsos.200129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Despite that boxfishes have a rigid carapace that restricts body undulation, they are highly manoeuvrable and manage to swim with remarkably dynamic stability. Recent research has indicated that the rigid body shape of boxfishes shows an inherently unstable response in its rotations caused by course-disturbing flows. Hence, any net stabilizing effect should come from the fishes' fins. The aim of the current study was to determine the effect of the surface area and orientation of the caudal fin on the yaw torque exerted on the yellow boxfish, Ostracion cubicus, a square cross-sectional shaped species of boxfish. Yaw torques quantified in a flow tank using a physical model with an attachable closed or open caudal fin at different body and tail angles and at different water flow speeds showed that the caudal fin is crucial for controlling yaw. These flow tank results were confirmed by computational fluid dynamics simulations. The caudal fin acts as both a course-stabilizer and rudder for the naturally unstable rigid body with regard to yaw. Boxfishes seem to use the interaction of the unstable body and active changes in the shape and orientation of the caudal fin to modulate manoeuvrability and stability.
Collapse
Affiliation(s)
- Pim G. Boute
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Sam Van Wassenbergh
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Eize J. Stamhuis
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
8
|
Mayerl CJ, Hicks KE, Blob RW. Differences in kinematic plasticity between freshwater turtle species underlie differences in swimming performance in response to varying flow conditions. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The distribution and performance of aquatic vertebrates can be linked strongly to their ability to perform in variable conditions of flowing water. Performance in these variable conditions can be affected by both morphology and behaviour, and animals that experience more variable environments often show greater behavioural plasticity that improves performance in those environments. One common metric of performance is swimming stability, which can constitute a majority of the daily energy budget of swimming animals. We compared the body oscillations arising from recoil forces of the limbs of two species of freshwater turtles as they swam in different flow conditions: the lentic specialist Emydura subglobosa and the habitat generalist Chrysemys picta. We found that E. subglobosa experienced more limited oscillations in still water than C. picta, but that C. picta had a greater kinematic response to increased flow speed that might contribute to their improved performance in flowing water. These results provide insight into how secondarily aquatic tetrapods respond to the functional demands of variation in flow, helping to build understanding of the relationship between energetics, kinematics and performance of such lineages in different environments.
Collapse
Affiliation(s)
- Christopher J Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Kirsten E Hicks
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
9
|
Mayerl CJ, Youngblood JP, Rivera G, Vance JT, Blob RW. Variation in Morphology and Kinematics Underlies Variation in Swimming Stability and Turning Performance in Freshwater Turtles. Integr Org Biol 2018. [DOI: 10.1093/iob/oby001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Among swimming animals, stable body designs often sacrifice performance in turning, and high turning performance may entail costs in stability. However, some rigid-bodied animals appear capable of both high stability and turning performance during swimming by propelling themselves with independently controlled structures that generate mutually opposing forces. Because such species have traditionally been studied in isolation, little is known about how variation within rigid-bodied designs might influence swimming performance. Turtles are a lineage of rigid-bodied animals, in which most species use contralateral limbs and mutually opposing forces to swim. We tested the stability and turning performance of two species of turtles, the pleurodire Emydura subglobosa and the cryptodire Chrysemys picta. Emydura subglobosa exhibited both greater stability and turning performance than C. picta, potentially through the use of subequally-sized (and larger) propulsive structures, faster limb movements, and decreased limb excursions. These data show how, within a given body design, combinations of different traits can serve as mechanisms to improve aspects of performance with competing functional demands.
Collapse
Affiliation(s)
- C J Mayerl
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - J P Youngblood
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - G Rivera
- Department of Biology, Creighton University, Omaha, NE 68178, USA
| | - J T Vance
- Department of Biology, College of Charleston, Charleston, SC 29424, USA
| | - R W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
10
|
Mayerl CJ, Sansone AM, Stevens LM, Hall GJ, Porter MM, Rivera G, Blob RW. The impact of keels and tails on turtle swimming performance and their potential as models for biomimetic design. BIOINSPIRATION & BIOMIMETICS 2018; 14:016002. [PMID: 30403189 DOI: 10.1088/1748-3190/aae906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stability and turning performance are two key metrics of locomotor performance in animals, and performance in both of these metrics can be improved through a variety of morphological structures. Aquatic vehicles are often designed with keels and rudders to improve their stability and turning performance, but how keels and rudders function in rigid-bodied animals is less understood. Aquatic turtles are a lineage of rigid-bodied animals that have the potential to function similarly to engineered vehicles, and also might make use of keels and rudders to improve their stability and turning performance. To test these possibilities, we trained turtles to follow a mechanically controlled prey stimulus under three sets of conditions: with no structural modifications, with different sized and shaped keels, and with restricted tail use. We predicted that keels in turtles would function similarly to those in aquatic vehicles to reduce oscillations, and that turtles would use the tail like a rudder to reduce oscillations and improve turning performance. We found that the keel designs we tested did not reduce oscillations in turtles, but that the tail was used similarly to a rudder, with benefits to both the magnitude of oscillations they experienced and turning performance. These data show how variation in the accessory structures of rigid-bodied animals can impact swimming performance, and suggest that such variation among turtles could serve as a biomimetic model in designing aquatic vehicles that are stable as well as maneuverable and agile.
Collapse
Affiliation(s)
- Christopher J Mayerl
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
11
|
Kim H, Kim J, Choi H. Flow structure modifications by leading-edge tubercles on a 3D wing. BIOINSPIRATION & BIOMIMETICS 2018; 13:066011. [PMID: 30362460 DOI: 10.1088/1748-3190/aae6fc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Leading-edge tubercles on a humpback whale flipper are known to enhance its hydrodynamic performance at post-stall angles of attack (Miklosovic et al 2004 Phys. Fluids 16 39-42). We investigate vortical structures above a three-dimensional wing with tubercles using surface-oil-flow visualization and particle image velocimetry measurement. Two wing models with and without tubercles, previously studied by Miklosovic et al (2004 Phys. Fluids 16 39-42), are considered at the Reynolds number of 180 000 based on the free-stream velocity and mean chord length. At this Reynolds number, tubercles delay the stall angle by 7° and increase the maximum lift coefficient by about 22%. At a low angle of attack, flow separation first occurs near the tip region for both wing models. While flow separation rapidly progresses inboard (toward the wing root) for the model without tubercles with increasing angle of attack, tubercles produce two types of vortical motions and block the inboard progression of flow separation, resulting in delayed stall from α = 8° to 15°. One of these two vortical structures is pairs of counter-rotating streamwise vortices evolving from hemi-spherical separation bubbles near the leading-edge troughs at pre-, near-, and post-stall angles of attack, and the other is asymmetric pairs of streamwise vortices evolving from separated flow regions after the mid-chord region at near-stall angle of attack. At a post-stall angle of attack (α = 16°), strong clockwise and counter-clockwise streamwise vortices are generated from foci at the root and tip near the trailing edge, respectively, and delay flow separation in the mid-span, resulting in a higher lift coefficient than that without tubercles.
Collapse
Affiliation(s)
- Heesu Kim
- Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | | | | |
Collapse
|
12
|
Fish FE, Lauder GV. Control surfaces of aquatic vertebrates: active and passive design and function. ACTA ACUST UNITED AC 2018; 220:4351-4363. [PMID: 29187618 DOI: 10.1242/jeb.149617] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aquatic vertebrates display a variety of control surfaces that are used for propulsion, stabilization, trim and maneuvering. Control surfaces include paired and median fins in fishes, and flippers and flukes in secondarily aquatic tetrapods. These structures initially evolved from embryonic fin folds in fishes and have been modified into complex control surfaces in derived aquatic tetrapods. Control surfaces function both actively and passively to produce torque about the center of mass by the generation of either lift or drag, or both, and thus produce vector forces to effect rectilinear locomotion, trim control and maneuvers. In addition to fins and flippers, there are other structures that act as control surfaces and enhance functionality. The entire body can act as a control surface and generate lift for stability in destabilizing flow regimes. Furthermore, control surfaces can undergo active shape change to enhance their performance, and a number of features act as secondary control structures: leading edge tubercles, wing-like canards, multiple fins in series, finlets, keels and trailing edge structures. These modifications to control surface design can alter flow to increase lift, reduce drag and enhance thrust in the case of propulsive fin-based systems in fishes and marine mammals, and are particularly interesting subjects for future research and application to engineered systems. Here, we review how modifications to control surfaces can alter flow and increase hydrodynamic performance.
Collapse
Affiliation(s)
- Frank E Fish
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - George V Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Porter MM, Ravikumar N, Barthelat F, Martini R. 3D-printing and mechanics of bio-inspired articulated and multi-material structures. J Mech Behav Biomed Mater 2017; 73:114-126. [DOI: 10.1016/j.jmbbm.2016.12.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 01/13/2023]
|
14
|
|
15
|
Blob RW, Mayerl CJ, Rivera ARV, Rivera G, Young VKH. "On the Fence" versus "All in": Insights from Turtles for the Evolution of Aquatic Locomotor Specializations and Habitat Transitions in Tetrapod Vertebrates. Integr Comp Biol 2016; 56:1310-1322. [PMID: 27940619 DOI: 10.1093/icb/icw121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Though ultimately descended from terrestrial amniotes, turtles have deep roots as an aquatic lineage and are quite diverse in the extent of their aquatic specializations. Many taxa can be viewed as "on the fence" between aquatic and terrestrial realms, whereas others have independently hyperspecialized and moved "all in" to aquatic habitats. Such differences in specialization are reflected strongly in the locomotor system. We have conducted several studies to evaluate the performance consequences of such variation in design, as well as the mechanisms through which specialization for aquatic locomotion is facilitated in turtles. One path to aquatic hyperspecialization has involved the evolutionary transformation of the forelimbs from rowing, tubular limbs with distal paddles into flapping, flattened flippers, as in sea turtles. Prior to the advent of any hydrodynamic advantages, the evolution of such flippers may have been enabled by a reduction in twisting loads on proximal limb bones that accompanied swimming in rowing ancestors, facilitating a shift from tubular to flattened limbs. Moreover, the control of flapping movements appears related primarily to shifts in the activity of a single forelimb muscle, the deltoid. Despite some performance advantages, flapping may entail a locomotor cost in terms of decreased locomotor stability. However, other morphological specializations among rowing species may enhance swimming stability. For example, among highly aquatic pleurodiran turtles, fusion of the pelvis to the shell appears to dramatically reduce motions of the pelvis compared to freshwater cryptodiran species. This could contribute to advantageous increases in aquatic stability among predominantly aquatic pleurodires. Thus, even within the potential constraints of a body plan in which the body is encased by a shell, turtles exhibit diverse locomotor capacities that have enabled diversification into a wide range of aquatic habitats.
Collapse
Affiliation(s)
- Richard W Blob
- *Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | | | | | - Gabriel Rivera
- Department of Biology, Creighton University, Omaha, NE, 68178, USA
| | - Vanessa K H Young
- *Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
16
|
Bang K, Kim J, Lee SI, Choi H. Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming. Sci Rep 2016; 6:34283. [PMID: 27694826 PMCID: PMC5046118 DOI: 10.1038/srep34283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/09/2016] [Indexed: 11/15/2022] Open
Abstract
Leatherback sea turtles (Dermochelys coriacea) are known to have a superior diving ability and be highly adapted to pelagic swimming. They have five longitudinal ridges on their carapace. Although it was conjectured that these ridges might be an adaptation for flow control, no rigorous study has been performed to understand their hydrodynamic roles. Here we show that these ridges are slightly misaligned to the streamlines around the body to generate streamwise vortices, and suppress or delay flow separation on the carapace, resulting in enhanced hydrodynamic performances during different modes of swimming. Our results suggest that shapes of some morphological features of living creatures, like the longitudinal ridges of the leatherback turtles, need not be streamlined for excellent hydro- or aerodynamic performances, contrary to our common physical intuition.
Collapse
Affiliation(s)
- Kyeongtae Bang
- Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Jooha Kim
- School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Sang-Im Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul, Korea
- Laboratory of Behavioral Ecology and Evolution, School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Haecheon Choi
- Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul, Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul, Korea
| |
Collapse
|
17
|
Fagundes KRC, Rotundo MM, Mari RB. Morphological and histochemical characterization of the digestive tract of the puffer fish Sphoeroides testudineus (Linnaeus 1758) (Tetraodontiformes: Tetraodontidae). AN ACAD BRAS CIENC 2016; 88:1615-1624. [PMID: 27556328 DOI: 10.1590/0001-3765201620150167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/24/2015] [Indexed: 11/21/2022] Open
Abstract
Morphological analysis of the digestive tract of Sphoeroides testudineus showed an esophagus with an anterior and a posterior portion, the abdominal pouch. No stomach was observed between the abdominal pouch and the intestine. The intestine was arranged in three segments and two loops, and the distal portion had the rectum opening into the anus. Histochemical analyses showed that the esophagus secreted acid mucosecretions, and that there was a qualitative increase in goblet cells from the proximal to distal area of the intestine. The rectum showed cells secreting acid and neutral mucus. Given these features, this species presents a morphology which creates a link between its ecology and behavior.
Collapse
Affiliation(s)
- Kainã R C Fagundes
- Laboratório de Morfologia de Animais Marinhos, Instituto de Biociências, Universidade Estadual Paulista, Campus do Litoral Paulista, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brasil
| | - Matheus M Rotundo
- Acervo de Zoológico, Universidade Santa Cecília, Rua Oswaldo Cruz, 277, 11045-907 Santos, SP, Brasil
| | - Renata B Mari
- Laboratório de Morfologia de Animais Marinhos, Instituto de Biociências, Universidade Estadual Paulista, Campus do Litoral Paulista, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brasil
| |
Collapse
|
18
|
Mitchell SM, Muehlbauer LK, Freedberg S. Nuclear introgression without mitochondrial introgression in two turtle species exhibiting sex-specific trophic differentiation. Ecol Evol 2016; 6:3280-8. [PMID: 27252833 PMCID: PMC4870212 DOI: 10.1002/ece3.2087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 12/24/2022] Open
Abstract
Despite the presence of reproductive barriers between species, interspecific gene introgression has been documented in a range of natural systems. Comparing patterns of genetic introgression in biparental versus matrilineal markers can potentially reveal sex-specific barriers to interspecific gene flow. Hybridization has been documented in the freshwater turtles Graptemys geographica and G. pseudogeographica, whose ranges are largely sympatric. Morphological differentiation between the species is restricted to females, with female G. geographica possessing large heads and jaws compared to the narrow heads of G. pseudogeographica females. If hybrid females are morphologically intermediate, they may be less successful at exploiting parental feeding niches, thereby limiting the introgression of maternally inherited, but not biparental, molecular markers. We paired sequence data with stable isotope analysis and examined sex-specific genetic introgression and trophic differentiation in sympatric populations of G. geographica and G. pseudogeographica. We observed introgression from G. pseudogeographica into G. geographica at three nuclear loci, but not at the mitochondrial locus. Analysis of ∂(15)N and ∂(13)C was consistent with species differences in trophic positioning in females, but not males. These results suggest that ecological divergence in females may reduce the opportunity for gene flow in this system.
Collapse
Affiliation(s)
- Sarah M Mitchell
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames Iowa 50011-1020
| | - Laura K Muehlbauer
- Department of Biology St. Olaf College 1520 St. Olaf Avenue Northfield Minnesota 55057
| | - Steven Freedberg
- Department of Biology St. Olaf College 1520 St. Olaf Avenue Northfield Minnesota 55057
| |
Collapse
|
19
|
Aguilar-Medrano R, Barber PH. Ecomorphological diversification in reef fish of the genus Abudefduf (Percifomes, Pomacentridae). ZOOMORPHOLOGY 2015. [DOI: 10.1007/s00435-015-0291-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
The armored carapace of the boxfish. Acta Biomater 2015; 23:1-10. [PMID: 26026303 DOI: 10.1016/j.actbio.2015.05.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/24/2015] [Accepted: 05/21/2015] [Indexed: 11/23/2022]
Abstract
The boxfish (Lactoria cornuta) has a carapace consisting of dermal scutes with a highly mineralized surface plate and a compliant collagen base. This carapace must provide effective protection against predators as it comes at the high cost of reduced mobility and speed. The mineralized hydroxyapatite plates, predominantly hexagonal in shape, are reinforced with raised struts that extend from the center toward the edges of each scute. Below the mineralized plates are non-mineralized collagen fibers arranged in through-the-thickness layers of ladder-like formations. At the interfaces between scutes, the mineralized plates form suture-like teeth structures below which the collagen fibers bridge the gap between neighboring scutes. These sutures are unlike most others as they have no bridging Sharpey's fibers and appear to add little mechanical strength to the overall carapace. It is proposed that the sutured interface either allows for accommodation of the changing pressures of the boxfish's ocean habitat or growth, which occurs without molting or shedding. In both tension and punch testing the mineralized sutures remain relatively intact while most failures occur within the collagen fibers, allowing for the individual scutes to maintain their integrity. This complex structure allows for elevated strength of the carapace through an increase in the stressed area when attacked by predators in both penetrating and crushing modes.
Collapse
|
21
|
Van Wassenbergh S, van Manen K, Marcroft TA, Alfaro ME, Stamhuis EJ. Boxfish swimming paradox resolved: forces by the flow of water around the body promote manoeuvrability. J R Soc Interface 2015; 12:rsif.2014.1146. [PMID: 25505133 DOI: 10.1098/rsif.2014.1146] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The shape of the carapace protecting the body of boxfishes has been attributed an important hydrodynamic role in drag reduction and in providing automatic, flow-direction realignment and is therefore used in bioinspired design of cars. However, tight swimming-course stabilization is paradoxical given the frequent, high-performance manoeuvring that boxfishes display in their spatially complex, coral reef territories. Here, by performing flow-tank measurements of hydrodynamic drag and yaw moments together with computational fluid dynamics simulations, we reverse several assumptions about the hydrodynamic role of the boxfish carapace. Firstly, despite serving as a model system in aerodynamic design, drag-reduction performance was relatively low compared with more generalized fish morphologies. Secondly, the current theory of course stabilization owing to flow over the boxfish carapace was rejected, as destabilizing moments were found consistently. This solves the boxfish swimming paradox: destabilizing moments enhance manoeuvrability, which is in accordance with the ecological demands for efficient turning and tilting.
Collapse
Affiliation(s)
- S Van Wassenbergh
- Department of Biology, Universiteit Antwerpen, Universiteitsplein 1, 2610 Antwerpen, Belgium Evolutionar Morphology of Vertebrates, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - K van Manen
- Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 7, AG Groningen 9747, The Netherlands
| | - T A Marcroft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 2154 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - M E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 2154 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - E J Stamhuis
- Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 7, AG Groningen 9747, The Netherlands Bionik Innovations Centrum, Hochschule Bremen, Neustadtswall 30, 28199 Bremen, Germany
| |
Collapse
|
22
|
Webb PW, Weihs D. Stability versus Maneuvering: Challenges for Stability during Swimming by Fishes. Integr Comp Biol 2015; 55:753-64. [PMID: 26002562 DOI: 10.1093/icb/icv053] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fishes are well known for their remarkable maneuverability and agility. Less visible is the continuous control of stability essential for the exploitation of the full range of aquatic resources. Perturbations to posture and trajectory arise from hydrostatic and hydrodynamic forces centered in a fish (intrinsic) and from the environment (extrinsic). Hydrostatic instabilities arise from vertical and horizontal separation of the centers of mass (CM) and of buoyancy, thereby creating perturbations in roll, yaw, and pitch, with largely neglected implications for behavioral ecology. Among various forms of hydrodynamic stability, the need for stability in the face of recoil forces from propulsors is close to universal. Destabilizing torques in body-caudal fin swimming is created by inertial and viscous forces through a propulsor beat. The recoil component is reduced, damped, and corrected in various ways, including kinematics, shape of the body and fins, and deployment of the fins. We postulate that control of the angle of orientation, θ, of the trailing edge is especially important in the evolution and lifestyles of fishes, but studies are few. Control of stability and maneuvering are reflected in accelerations around the CM. Accelerations for such motions may give insight into time-behavior patterns in the wild but cannot be used to determine the expenditure of energy by free-swimming fishes.
Collapse
Affiliation(s)
- Paul W Webb
- *School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA; Department of Aerospace Engineering and Autonomous Systems Program, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Daniel Weihs
- *School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA; Department of Aerospace Engineering and Autonomous Systems Program, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
23
|
Fish FE, Domenici P. Introduction to the Symposium-Unsteady Aquatic Locomotion with Respect to Eco-Design and Mechanics. Integr Comp Biol 2015; 55:642-7. [PMID: 25972568 DOI: 10.1093/icb/icv039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The importance of unsteadiness in the aquatic environment has come to the forefront in understanding locomotor mechanics in nature. The impact of unsteadiness, starting with control of posture and trajectories during aquatic locomotion, is ultimately expressed in energy costs, morphology, and fitness. Unsteadiness from both internal and external perturbations for aquatic animals is important at scales ranging from micro to macro to global.
Collapse
Affiliation(s)
- Frank E Fish
- *Department of Biology, West Chester University, West Chester, PA 19383, USA; CNR-IAMC, Istituto per l'Ambiente Marino Costiero, Località Sa Mardini, Torregrande, Oristano 09170, Italy
| | - Paolo Domenici
- *Department of Biology, West Chester University, West Chester, PA 19383, USA; CNR-IAMC, Istituto per l'Ambiente Marino Costiero, Località Sa Mardini, Torregrande, Oristano 09170, Italy
| |
Collapse
|
24
|
Maia A, Sheltzer AP, Tytell ED. Streamwise vortices destabilize swimming bluegill sunfish (Lepomis macrochirus). J Exp Biol 2015; 218:786-92. [DOI: 10.1242/jeb.114363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In their natural environment, fish must swim stably through unsteady flows and vortices, including vertical vortices, typically shed by posts in a flow, horizontal cross-flow vortices, often produced by a step or a waterfall in a stream, and streamwise vortices, where the axis of rotation is aligned with the direction of the flow. Streamwise vortices are commonly shed by bluff bodies in streams and by ships' propellers and axial turbines, but we know little about their effects on fish. Here, we describe how bluegill sunfish use more energy and are destabilized more often in flow with strong streamwise vorticity. The vortices were created inside a sealed flow tank by an array of four turbines with similar diameter to the experimental fish. We measured oxygen consumption for seven sunfish swimming at 1.5 body lengths (BL) s−1 with the turbines rotating at 2 Hz and with the turbines off (control). Simultaneously, we filmed the fish ventrally and recorded the fraction of time spent maneuvering side-to-side and accelerating forward. Separately, we also recorded lateral and ventral video for a combination of swimming speeds (0.5, 1.5 and 2.5 BL s−1) and turbine speeds (0, 1, 2 and 3 Hz), immediately after turning the turbines on and 10 min later to test for accommodation. Bluegill sunfish are negatively affected by streamwise vorticity. Spills (loss of heading), maneuvers and accelerations were more frequent when the turbines were on than in the control treatment. These unsteady behaviors, particularly acceleration, correlated with an increase in oxygen consumption in the vortex flow. Bluegill sunfish are generally fast to recover from roll perturbations and do so by moving their pectoral fins. The frequency of spills decreased after the turbines had run for 10 min, but was still markedly higher than in the control, showing that fish partially adapt to streamwise vorticity, but not completely. Coping with streamwise vorticity may be an important energetic cost for stream fishes or migratory fishes.
Collapse
Affiliation(s)
- Anabela Maia
- Eastern Illinois University, Department of Biological Sciences, 600 Lincoln Avenue, Charleston, IL 61920, USA
| | - Alex P. Sheltzer
- Tufts University, Biology Department, 200 Boston Avenue, Medford, MA 02155, USA
| | - Eric D. Tytell
- Tufts University, Biology Department, 200 Boston Avenue, Medford, MA 02155, USA
| |
Collapse
|
25
|
Abstract
From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms.
Collapse
Affiliation(s)
- Thomas Fletcher
- School of Earth and Environment, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - John Altringham
- School of Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Jeffrey Peakall
- School of Earth and Environment, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Paul Wignall
- School of Earth and Environment, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Robert Dorrell
- School of Earth and Environment, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| |
Collapse
|
26
|
|
27
|
Yanase K, Herbert NA, Montgomery JC. Unilateral ablation of trunk superficial neuromasts increases directional instability during steady swimming in the yellowtail kingfish Seriola lalandi. JOURNAL OF FISH BIOLOGY 2014; 85:838-856. [PMID: 25082013 DOI: 10.1111/jfb.12476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Detailed swimming kinematics of the yellowtail kingfish Seriola lalandi were investigated after unilateral ablation of superficial neuromasts (SNs). Most kinematic variables, such as tail-beat frequency, stride length, caudal fin-beat amplitude and propulsive wavelength, were unaffected but lateral amplitude at the tip of the snout (A0 ) was significantly increased in SN-disrupted fish compared with sham-operated controls. In addition, the orientation of caudal fin-tip relative to the overall swimming direction of SN-disrupted fish was significantly deflected (two-fold) in comparison with sham-operated control fish. In some fish, SN disruption also led to a phase distortion of the propulsive body-wave. These changes would be expected to increase both hydrodynamic drag and thrust production which is consistent with the finding that SN-disrupted fish had to generate significantly greater thrust power when swimming at ≥1·3 fork lengths (LF ) s(-1) . In particular, hydrodynamic drag would increase as a result of any increase in rotational (yaw) perturbation and sideways slip resulting from the sensory disturbance. In conclusion, unilateral SN ablation produced directional instability of steady swimming and altered propulsive movements, suggesting a role for sensory feedback in correcting yaw and slip disturbances to maintain efficient locomotion.
Collapse
Affiliation(s)
- K Yanase
- Institute for Marine Science, University of Auckland, 160 Goat Island Rd, Leigh 0985, New Zealand
| | | | | |
Collapse
|
28
|
Sagong W, Jeon WP, Choi H. Hydrodynamic characteristics of the sailfish (Istiophorus platypterus) and swordfish (Xiphias gladius) in gliding postures at their cruise speeds. PLoS One 2013; 8:e81323. [PMID: 24312547 PMCID: PMC3846759 DOI: 10.1371/journal.pone.0081323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
The sailfish and swordfish are known as the fastest sea animals, reaching their maximum speeds of around 100 km/h. In the present study, we investigate the hydrodynamic characteristics of these fishes in their cruise speeds of about 1 body length per second. We install a taxidermy specimen of each fish in a wind tunnel, and measure the drag on its body and boundary-layer velocity above its body surface at the Reynolds number corresponding to its cruising condition. The drag coefficients of the sailfish and swordfish based on the free-stream velocity and their wetted areas are measured to be 0.0075 and 0.0091, respectively, at their cruising conditions. These drag coefficients are very low and comparable to those of tuna and pike and smaller than those of dogfish and small-size trout. On the other hand, the long bill is one of the most distinguished features of these fishes from other fishes, and we study its role on the ability of drag modification. The drag on the fish without the bill or with an artificially-made shorter one is slightly smaller than that with the original bill, indicating that the bill itself does not contribute to any drag reduction at its cruise speed. From the velocity measurement near the body surface, we find that at the cruise speed flow separation does not occur over the whole body even without the bill, and the boundary layer flow is affected only at the anterior part of the body by the bill.
Collapse
Affiliation(s)
- Woong Sagong
- Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Woo-Pyung Jeon
- Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Haecheon Choi
- Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
29
|
Blake RW, Chan KHS. Biomechanics of swimming in the pufferfish Diodon holocanthus: propulsive momentum enhancement is an adaptation for thrust production in an undulatory median and paired-fin swimmer. JOURNAL OF FISH BIOLOGY 2011; 79:1774-1794. [PMID: 22141887 DOI: 10.1111/j.1095-8649.2011.03115.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A form of large-amplitude elongated-body theory appropriate for the analysis of undulatory fins attached to a rigid body of elliptical section suggests a benefit due to momentum enhancement relative to the fins on their own. This theoretical prediction is experimentally confirmed for the first time. Theoretical momentum enhancement factors for Diodon holocanthus (2.2 and 2.7 for the median and pectoral fins, respectively) compared well to inferred thrust values determined from particle-image velocimetry (PIV) wake measurements (2.2-2.4 and 2.7-2.9). Caudal fin mean theoretical thrust was not significantly different from measured (PIV) values (n = 24, P > 0.05), implying no momentum enhancement. Pectoral-fin thrust was half that of the median and caudal fins due to high fin-jet angles, low circulation and momentum. Average total fin thrust and fish drag were not significantly different (n = 24, P > 0.05). Vortex rings generated by the fins were elliptical, with size dependent on fin chord and stroke amplitude. Hydrodynamic advantages (thrust enhancement at no cost to hydrodynamic efficiency, reduction of side forces minimizing energy wasting yawing motions and body drag) are probably common among rigid-bodied organisms propelled by undulatory fins. A trade-off between momentum enhancement and the rate of momentum generation (thrust force) sets a practical limit to the former. For small fins whilst momentum enhancement is high, absolute thrust is low. In addition, previously suggested limitations on thrust enhancement set by reductions in propulsive force associated with progressive reductions in fin wavelength are found to be biologically unrealistic.
Collapse
Affiliation(s)
- R W Blake
- Department of Zoology, University of British Columbia, British Columbia, V6T 1Z4 Canada.
| | | |
Collapse
|
30
|
Rivera G, Rivera ARV, Blob RW. Hydrodynamic stability of the painted turtle (Chrysemys picta): effects of four-limbed rowing versus forelimb flapping in rigid-bodied tetrapods. ACTA ACUST UNITED AC 2011; 214:1153-62. [PMID: 21389201 DOI: 10.1242/jeb.046045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hydrodynamic stability is the ability to resist recoil motions of the body produced by destabilizing forces. Previous studies have suggested that recoil motions can decrease locomotor performance, efficiency and sensory perception and that swimming animals might utilize kinematic strategies or possess morphological adaptations that reduce recoil motions and produce more stable trajectories. We used high-speed video to assess hydrodynamic stability during rectilinear swimming in the freshwater painted turtle (Chrysemys picta). Parameters of vertical stability (heave and pitch) were non-cyclic and variable, whereas measures of lateral stability (sideslip and yaw) showed repeatable cyclic patterns. In addition, because freshwater and marine turtles use different swimming styles, we tested the effects of propulsive mode on hydrodynamic stability during rectilinear swimming, by comparing our data from painted turtles with previously collected data from two species of marine turtle (Caretta caretta and Chelonia mydas). Painted turtles had higher levels of stability than both species of marine turtle for six of the eight parameters tested, highlighting potential disadvantages associated with 'aquatic flight'. Finally, available data on hydrodynamic stability of other rigid-bodied vertebrates indicate that turtles are less stable than boxfish and pufferfish.
Collapse
Affiliation(s)
- Gabriel Rivera
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA.
| | | | | |
Collapse
|
31
|
Konstantinidis P, Johnson GD. Ontogeny of the jaw apparatus and suspensorium of the Tetraodontiformes. ACTA ZOOL-STOCKHOLM 2011. [DOI: 10.1111/j.1463-6395.2011.00509.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Dougherty E, Rivera G, Blob R, Wyneken J. Hydrodynamic stability in posthatchling loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtles. ZOOLOGY 2010; 113:158-67. [DOI: 10.1016/j.zool.2009.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 09/01/2009] [Accepted: 10/05/2009] [Indexed: 10/19/2022]
|
33
|
Liao JC. A review of fish swimming mechanics and behaviour in altered flows. Philos Trans R Soc Lond B Biol Sci 2008; 362:1973-93. [PMID: 17472925 PMCID: PMC2442850 DOI: 10.1098/rstb.2007.2082] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fishes suspended in water are subject to the complex nature of three-dimensional flows. Often, these flows are the result of abiotic and biotic sources that alter otherwise uniform flows, which then have the potential to perturb the swimming motions of fishes. The goal of this review is to highlight key studies that have contributed to a mechanistic and behavioural understanding of how perturbing flows affect fish. Most of our understanding of fish behaviour in turbulence comes from observations of natural conditions in the field and laboratory studies employing controlled perturbations, such as vortices generated in the wake behind simple geometric objects. Laboratory studies have employed motion analysis, flow visualization, electromyography, respirometry and sensory deprecation techniques to evaluate the mechanisms and physiological costs of swimming in altered flows. Studies show that flows which display chaotic and wide fluctuations in velocity can repel fishes, while flows that have a component of predictability can attract fishes. The ability to maintain stability in three-dimensional flows, either actively with powered movements or passively using the posture and intrinsic compliance of the body and fins, plays a large role in whether fish seek out or avoid turbulence. Fish in schools or current-swept habitats can benefit from altered flows using two distinct though not mutually exclusive mechanisms: flow refuging (exploiting regions of reduced flow relative to the earth frame of reference) and vortex capture (harnessing the energy of environmental vortices). Integrating how the physical environment affects organismal biomechanics with the more complex issue of behavioural choice requires consideration beyond simple body motions or metabolic costs. A fundamental link between these two ways of thinking about animal behaviour is how organisms sense and process information from the environment, which determines when locomotor behaviour is initiated and modulated. New data are presented here which show that behaviour changes in altered flows when either the lateral line or vision is blocked, showing that fish rely on multi-modal sensory inputs to negotiate complex flow environments. Integrating biomechanics and sensory biology to understand how fish swim in turbulent flow at the organismal level is necessary to better address population-level questions in the fields of fisheries management and ecology.
Collapse
Affiliation(s)
- James C Liao
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 1480, USA.
| |
Collapse
|
34
|
Blake RW, Ng H, Chan KHS, Li J. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles. BIOINSPIRATION & BIOMIMETICS 2008; 3:034002. [PMID: 18626130 DOI: 10.1088/1748-3182/3/3/034002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312-7). Whilst such vehicles have many potential advantages in operating in complex environments (e.g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximately 0.9) at low forward speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, 'plate-like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximately 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/or provide more power to other functions (e.g. communications).
Collapse
Affiliation(s)
- R W Blake
- Department of Zoology, University of British Columbia, British Columbia, V6T 1Z4, Canada.
| | | | | | | |
Collapse
|
35
|
Rivera G. Ecomorphological variation in shell shape of the freshwater turtle Pseudemys concinna inhabiting different aquatic flow regimes. Integr Comp Biol 2008; 48:769-87. [DOI: 10.1093/icb/icn088] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
36
|
Bartol IK, Gordon MS, Webb P, Weihs D, Gharib M. Evidence of self-correcting spiral flows in swimming boxfishes. BIOINSPIRATION & BIOMIMETICS 2008; 3:014001. [PMID: 18364559 DOI: 10.1088/1748-3182/3/1/014001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The marine boxfishes have rigid keeled exteriors (carapaces) unlike most fishes, yet exhibit high stability, high maneuverability and relatively low drag given their large cross-sectional area. These characteristics lend themselves well to bioinspired design. Based on previous stereolithographic boxfish model experiments, it was determined that vortical flows develop around the carapace keels, producing self-correcting forces that facilitate swimming in smooth trajectories. To determine if similar self-correcting flows occur in live, actively swimming boxfishes, two species of boxfishes (Ostracion meleagris and Lactophrys triqueter) were induced to swim against currents in a water tunnel, while flows around the fishes were quantified using digital particle image velocimetry. Significant pitch events were rare and short lived in the fishes examined. When these events were observed, spiral flows around the keels qualitatively similar to those observed around models were always present, with greater vortex circulation occurring as pitch angles deviated from 0 degrees . Vortex circulation was higher in live fishes than models presumably because of pectoral fin interaction with the keel-induced flows. The ability of boxfishes to modify their underlying self-correcting system with powered fin control is important for achieving high levels of both stability and maneuverability. Although the challenges of performing stability and maneuverability research on fishes are significant, the results of this study together with future studies employing innovative new approaches promise to provide valuable inspiration for the designers of bioinspired aquatic vehicles.
Collapse
Affiliation(s)
- I K Bartol
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529-0266, USA.
| | | | | | | | | |
Collapse
|
37
|
Kodati P, Hinkle J, Winn A, Deng X. Microautonomous Robotic Ostraciiform (MARCO): Hydrodynamics, Design, and Fabrication. IEEE T ROBOT 2008. [DOI: 10.1109/tro.2008.915446] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Kodati P, Hinkle J, Deng X. Micro Autonomous Robotic Ostraciiform (MARCO): Design and Fabrication. ACTA ACUST UNITED AC 2007. [DOI: 10.1109/robot.2007.363109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
|
40
|
Rivera G, Rivera ARV, Dougherty EE, Blob RW. Aquatic turning performance of painted turtles (Chrysemys picta)and functional consequences of a rigid body design. J Exp Biol 2006; 209:4203-13. [PMID: 17050835 DOI: 10.1242/jeb.02488] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe ability to capture prey and avoid predation in aquatic habitats depends strongly on the ability to perform unsteady maneuvers (e.g. turns), which itself depends strongly on body flexibility. Two previous studies of turning performance in rigid-bodied taxa have found either high maneuverability or high agility, but not both. However, examinations of aquatic turning performance in rigid-bodied animals have had limited taxonomic scope and, as such, the effects of many body shapes and designs on aquatic maneuverability and agility have yet to be examined. Turtles represent the oldest extant lineage of rigid-bodied vertebrates and the only aquatic rigid-bodied tetrapods. We evaluated the aquatic turning performance of painted turtles, Chrysemys picta (Schneider, 1783) using the minimum length-specific radius of the turning path (R/L) and the average turning rate(ωavg) as measures of maneuverability and agility,respectively. We filmed turtles conducting forward and backward turns in an aquatic arena. Each type of turn was executed using a different pattern of limb movements. During forward turns, turtles consistently protracted the inboard forelimb and held it stationary into the flow, while continuing to move the outboard forelimb and both hindlimbs as in rectilinear swimming. The limb movements of backward turns were more complex than those of forward turns, but involved near simultaneous retraction and protraction of contralateral fore- and hindlimbs, respectively. Forward turns had a minimum R/L of 0.0018 (the second single lowest value reported from any animal) and a maximum ωavg of 247.1°. Values of R/L for backward turns (0.0091-0.0950 L) were much less variable than that of forward turns (0.0018-1.0442 L). The maneuverability of turtles is similar to that recorded previously for rigidbodied boxfish. However, several morphological features of turtles (e.g. shell morphology and limb position) appear to increase agility relative to the body design of boxfish.
Collapse
Affiliation(s)
- Gabriel Rivera
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA.
| | | | | | | |
Collapse
|
41
|
Bartol IK, Gharib M, Webb PW, Weihs D, Gordon MS. Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes. ACTA ACUST UNITED AC 2005; 208:327-44. [PMID: 15634852 DOI: 10.1242/jeb.01356] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Boxfishes (Teleostei: Ostraciidae) are marine fishes having rigid carapaces that vary significantly among taxa in their shapes and structural ornamentation. We showed previously that the keels of the carapace of one species of tropical boxfish, the smooth trunkfish, produce leading edge vortices (LEVs) capable of generating self-correcting trimming forces during swimming. In this paper we show that other tropical boxfishes with different carapace shapes have similar capabilities. We conducted a quantitative study of flows around the carapaces of three morphologically distinct boxfishes (spotted boxfish, scrawled cowfish and buffalo trunkfish) using stereolithographic models and three separate but interrelated analytical approaches: digital particle image velocimetry (DPIV), pressure distribution measurements, and force balance measurements. The ventral keels of all three forms produced LEVs that grew in circulation along the bodies, resembling the LEVs produced around delta-winged aircraft. These spiral vortices formed above the keels and increased in circulation as pitch angle became more positive, and formed below the keels and increased in circulation as pitch angle became more negative. Vortices also formed along the eye ridges of all boxfishes. In the spotted boxfish, which is largely trapezoidal in cross section, consistent dorsal vortex growth posterior to the eye ridge was also present. When all three boxfishes were positioned at various yaw angles, regions of strongest concentrated vorticity formed in far-field locations of the carapace compared with near-field areas, and vortex circulation was greatest posterior to the center of mass. In general, regions of localized low pressure correlated well with regions of attached, concentrated vorticity, especially around the ventral keels. Although other features of the carapace also affect flow patterns and pressure distributions in different ways, the integrated effects of the flows were consistent for all forms: they produce trimming self-correcting forces, which we measured directly using the force balance. These data together with previous work on smooth trunkfish indicate that body-induced vortical flows are a common mechanism that is probably significant for trim control in all species of tropical boxfishes.
Collapse
Affiliation(s)
- Ian K Bartol
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529-0266, USA.
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Webb PW. Response latencies to postural disturbances in three species of teleostean fishes. J Exp Biol 2004; 207:955-61. [PMID: 14766954 DOI: 10.1242/jeb.00854] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYFlow in aquatic systems is characterized by unsteadiness that creates destabilizing perturbations. Appropriate correction responses depend on response latency. The time between a disturbance induced by either removal of a flow refuge or striking various parts of the body with a narrow water jet was measured for three species, chosen as examples of modes in teleostean body/fin organization that are expected to affect stability. Creek chub Semotilus atromaculatus is representative of fusiform-bodied soft-rayed teleosts, smallmouth bass Micropterus dolomieu of fusiform-bodied spiny-rayed forms and bluegill Lepomis macrochirus of deep-bodied spiny-rayed forms. Observations were made at 23°C. Loss of refuge resulted in a surge that fish corrected by starting to swim within 129±29 ms (mean ± 2 s.e.m.) for chub, which was significantly shorter than minimal times of approximately 200 ms for bluegill and bass. Slips and heaves induced by water jets initially resulted in extension of the median and paired fins that would damp growth of the disturbance, but otherwise these disturbances were ignored. Yaws and pitches were more likely to cause fish to swim away from the stimulus, making corrections as they did so. There were no differences in latencies for slip,heave, yaw and pitch disturbances within each species, but latencies varied among species. For these disturbances, responses averaged 123±19 ms for chub, again significantly smaller than those of 201±24 ms for bass and 208±52 ms for bluegill. Values for the two centrarchids were not significantly different (P>0.08). The response latency for rolling disturbances did not differ among species but was significantly smaller than that for other disturbances, with an overall latency of 70±15 ms. The greater responsiveness to hydrostatic rolling instability is attributed to functions requiring an upright posture and differences among species in habitat preferences.
Collapse
Affiliation(s)
- Paul W Webb
- School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109-1115, USA.
| |
Collapse
|
44
|
Malkiel E, Sheng J, Katz J, Strickler JR. The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography. J Exp Biol 2003; 206:3657-66. [PMID: 12966057 DOI: 10.1242/jeb.00586] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Digital in-line holography is used for measuring the three-dimensional (3-D) trajectory of a free-swimming freshwater copepod Diaptomus minutus, and simultaneously the instantaneous 3-D velocity field around this copepod. The optical setup consists of a collimated He-Ne laser illuminating a sample volume seeded with particles and containing several feeding copepods. A time series of holograms is recorded at 15 Hz using a lensless 2Kx2K digital camera. Inclined mirrors on the walls of the sample volume enable simultaneous recording of two perpendicular views on the same frame. Numerical reconstruction and matching of views determine the 3-D trajectories of a copepod and the tracer particles to within pixel accuracy (7.4 microm). The velocity field and trajectories of particles entrained by the copepod have a recirculating pattern in the copepod's frame of reference. This pattern is caused by the copepod sinking at a rate that is lower than its terminal sinking speed, due to the propulsive force generated by its feeding current. Consequently, the copepod sees the same fluid, requiring it to hop periodically to scan different fluid for food. Using Stokeslets to model the velocity field induced by a point force, the measured velocity distributions enable us to estimate the excess weight of the copepod (7.2x10(-9) N), its excess density (6.7 kg m(-3)) and the propulsive force generated by its feeding appendages (1.8x10(-8) N).
Collapse
Affiliation(s)
- Edwin Malkiel
- Johns Hopkins University, Department of Mechanical Engineering, N Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
45
|
Tilley S. SMOOTHLY DOES IT. J Exp Biol 2003. [DOI: 10.1242/jeb.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|