1
|
Sánchez-Blanco A, Rodríguez-Matellán A, González-Paramás A, González-Manzano S, Kim SK, Mollinedo F. Dietary and microbiome factors determine longevity in Caenorhabditis elegans. Aging (Albany NY) 2016; 8:1513-39. [PMID: 27510225 PMCID: PMC4993345 DOI: 10.18632/aging.101008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/31/2016] [Indexed: 12/20/2022]
Abstract
Diet composition affects organismal health. Nutrient uptake depends on the microbiome. Caenorhabditis elegans fed a Bacillus subtilis diet live longer than those fed the standard Escherichia coli diet. Here we report that this longevity difference is primarily caused by dietary coQ, an antioxidant synthesized by E. coli but not by B. subtilis. CoQ-supplemented E. coli fed worms have a lower oxidation state yet live shorter than coQ-less B. subtilis fed worms. We showed that mutations affecting longevity for E. coli fed worms do not always lead to similar effects when worms are fed B. subtilis. We propose that coQ supplementation by the E. coli diet alters the worm cellular REDOX homeostasis, thus decreasing longevity. Our results highlight the importance of microbiome factors in longevity, argue that antioxidant supplementation can be detrimental, and suggest that the C. elegans standard E. coli diet can alter the effect of signaling pathways on longevity.
Collapse
Affiliation(s)
- Adolfo Sánchez-Blanco
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
- Current address: Department of Biology, University of Hartford, West Hartford, CT 06117, USA
| | - Alberto Rodríguez-Matellán
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
- Current address: Centro de Biología Molecular Severo Ochoa (CSIC-UAM), E‐28049 Madrid, Spain
| | - Ana González-Paramás
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Unidad de Nutrición y Bromatología, Universidad de Salamanca, E-37007 Salamanca, Spain
| | - Susana González-Manzano
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Unidad de Nutrición y Bromatología, Universidad de Salamanca, E-37007 Salamanca, Spain
| | - Stuart K. Kim
- Departments of Developmental Biology and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
- Current address: Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), E-28040 Madrid, Spain
| |
Collapse
|
2
|
Meissner B, Warner A, Wong K, Dube N, Lorch A, McKay SJ, Khattra J, Rogalski T, Somasiri A, Chaudhry I, Fox RM, Miller DM, Baillie DL, Holt RA, Jones SJM, Marra MA, Moerman DG. An integrated strategy to study muscle development and myofilament structure in Caenorhabditis elegans. PLoS Genet 2009; 5:e1000537. [PMID: 19557190 PMCID: PMC2694363 DOI: 10.1371/journal.pgen.1000537] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 05/26/2009] [Indexed: 01/15/2023] Open
Abstract
A crucial step in the development of muscle cells in all metazoan animals is the assembly and anchorage of the sarcomere, the essential repeat unit responsible for muscle contraction. In Caenorhabditis elegans, many of the critical proteins involved in this process have been uncovered through mutational screens focusing on uncoordinated movement and embryonic arrest phenotypes. We propose that additional sarcomeric proteins exist for which there is a less severe, or entirely different, mutant phenotype produced in their absence. We have used Serial Analysis of Gene Expression (SAGE) to generate a comprehensive profile of late embryonic muscle gene expression. We generated two replicate long SAGE libraries for sorted embryonic muscle cells, identifying 7,974 protein-coding genes. A refined list of 3,577 genes expressed in muscle cells was compiled from the overlap between our SAGE data and available microarray data. Using the genes in our refined list, we have performed two separate RNA interference (RNAi) screens to identify novel genes that play a role in sarcomere assembly and/or maintenance in either embryonic or adult muscle. To identify muscle defects in embryos, we screened specifically for the Pat embryonic arrest phenotype. To visualize muscle defects in adult animals, we fed dsRNA to worms producing a GFP-tagged myosin protein, thus allowing us to analyze their myofilament organization under gene knockdown conditions using fluorescence microscopy. By eliminating or severely reducing the expression of 3,300 genes using RNAi, we identified 122 genes necessary for proper myofilament organization, 108 of which are genes without a previously characterized role in muscle. Many of the genes affecting sarcomere integrity have human homologs for which little or nothing is known. Muscular diseases affect many people worldwide. While we have learned much about the sarcomere, the basic building block of muscle cells, there are still numerous questions that remain to be answered. We must learn more about proteins expressed in muscle and how they interact so that better treatments for myopathies can be developed. The nematode Caenorhabditis elegans is a valuable model organism for the study of muscle due to similarities between worm body wall muscle and vertebrate muscle, along with its semi-transparent cuticle that allows for visualization of muscle structures in live animals. We have used transcriptional profiling methods to identify the majority of genes that are expressed in the embryonic body wall muscle cells of C. elegans. To gain insight into possible functions performed by these genes and their corresponding proteins, we examined animals and muscle cells for abnormalities after the targeted inactivation of about 3,300 genes. We identified 122 genes necessary for proper myofilament organization, 108 of which had no previously characterized role in muscle. This approach proved to be a rapid and sensitive means to identify genes that affect muscle differentiation and sarcomere assembly.
Collapse
Affiliation(s)
- Barbara Meissner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam Warner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kim Wong
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Nicholas Dube
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam Lorch
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sheldon J. McKay
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Jaswinder Khattra
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Teresa Rogalski
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aruna Somasiri
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Iasha Chaudhry
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rebecca M. Fox
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - David M. Miller
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - David L. Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Robert A. Holt
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Steven J. M. Jones
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Marco A. Marra
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
3
|
A decline in transcript abundance for Heterodera glycines homologs of Caenorhabditis elegans uncoordinated genes accompanies its sedentary parasitic phase. BMC DEVELOPMENTAL BIOLOGY 2007; 7:35. [PMID: 17445261 PMCID: PMC1867819 DOI: 10.1186/1471-213x-7-35] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 04/19/2007] [Indexed: 12/13/2022]
Abstract
Background Heterodera glycines (soybean cyst nematode [SCN]), the major pathogen of Glycine max (soybean), undergoes muscle degradation (sarcopenia) as it becomes sedentary inside the root. Many genes encoding muscular and neuromuscular components belong to the uncoordinated (unc) family of genes originally identified in Caenorhabditis elegans. Previously, we reported a substantial decrease in transcript abundance for Hg-unc-87, the H. glycines homolog of unc-87 (calponin) during the adult sedentary phase of SCN. These observations implied that changes in the expression of specific muscle genes occurred during sarcopenia. Results We developed a bioinformatics database that compares expressed sequence tag (est) and genomic data of C. elegans and H. glycines (CeHg database). We identify H. glycines homologs of C. elegans unc genes whose protein products are involved in muscle composition and regulation. RT-PCR reveals the transcript abundance of H. glycines unc homologs at mobile and sedentary stages of its lifecycle. A prominent reduction in transcript abundance occurs in samples from sedentary nematodes for homologs of actin, unc-60B (cofilin), unc-89, unc-15 (paromyosin), unc-27 (troponin I), unc-54 (myosin), and the potassium channel unc-110 (twk-18). Less reduction is observed for the focal adhesion complex gene Hg-unc-97. Conclusion The CeHg bioinformatics database is shown to be useful in identifying homologs of genes whose protein products perform roles in specific aspects of H. glycines muscle biology. Our bioinformatics comparison of C. elegans and H. glycines genomic data and our Hg-unc-87 expression experiments demonstrate that the transcript abundance of specific H. glycines homologs of muscle gene decreases as the nematode becomes sedentary inside the root during its parasitic feeding stages.
Collapse
|
4
|
Odintsova N, Dyachuk V, Kiselev K, Shelud'ko N. Expression of thick filament proteins during ontogenesis of the mussel Mytilus trossulus (Mollusca: Bivalvia). Comp Biochem Physiol B Biochem Mol Biol 2006; 144:238-44. [PMID: 16626989 DOI: 10.1016/j.cbpb.2006.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Revised: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 11/19/2022]
Abstract
The appearance of thick filament proteins organized into supramolecular complexes was studied by SDS-PAGE and Western-blot analysis at different developmental stages of the mussel Mytilus trossulus. Paramyosin appeared at the egg stage, while twitchin and myorod appeared at the blastula stage (12 h after fertilization). In addition, RT-PCR analysis showed that the twitchin genes were expressed starting from the blastula stage. Thus, the proteins forming thick filaments of the contractile apparatus of mussel muscles are expressed long before the formation of the first well-organized muscle system of the veliger larvae (55 h). Further, the ratios actin/myosin heavy chain (MHC) and paramyosin/MHC at the veliger stage (96 h) distinctly differed from those in the adult mussel.
Collapse
Affiliation(s)
- N Odintsova
- Department of Cell Biophysics, Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| | | | | | | |
Collapse
|
5
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|