1
|
Baloch KA, Patil U, Pudtikajorn K, Khojah E, Fikry M, Benjakul S. Lipase-Catalyzed Synthesis of Structured Fatty Acids Enriched with Medium and Long-Chain n-3 Fatty Acids via Solvent-Free Transesterification of Skipjack Tuna Eyeball Oil and Commercial Butterfat. Foods 2024; 13:347. [PMID: 38275715 PMCID: PMC10815637 DOI: 10.3390/foods13020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Human milk lipids generally have the maximum long-chain fatty acids at the sn-2 position of the glycerol backbone. This positioning makes them more digestible than long-chain fatty acids located at the sn-1, 3 positions. These unique fatty acid distributions are not found elsewhere in nature. When lactation is insufficient, infant formula milk has been used as a substitute. However, the distribution of most fatty acids ininfant formula milk is still different from human milk. Therefore, structured lipids were produced by the redistribution of medium-chain fatty acids from commercial butterfat (CBF) and n-3 and n-6 long-chain fatty acids from skipjack tuna eyeball oil (STEO). Redistribution was carried out via transesterification facilitated by Asian seabass liver lipase (ASL-L). Under the optimum conditions including a CBF/STEO ratio (3:1), transesterification time (60 h), and ASL-L unit (250 U), the newly formed modified-STEO (M-STEO) contained 93.56% triacylglycerol (TAG), 0.31% diacylglycerol (DAG), and 0.02% monoacylglycerol (MAG). The incorporated medium-chain fatty acids accounted for 18.2% of M-STEO, whereas ASL-L could incorporate 40% of n-3 fatty acids and 25-30% palmitic acid in M-STEO. The 1H NMRA and 13CNMR results revealed that the major saturated fatty acid (palmitic acid) and unsaturated fatty acids (DHA and EPA) were distributed at the sn-2 position of the TAGs in M-STEO. Thus, M-STEO enriched with medium-chain fatty acids and n-3 fatty acids positioned at the sn-2 position of TAGs can be a potential substitute for human milk fatty acids in infant formula milk (IFM).
Collapse
Affiliation(s)
- Khurshid Ahmed Baloch
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
| | - Umesh Patil
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
| | - Khamtorn Pudtikajorn
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif 21944, Saudi Arabia
| | - Mohammad Fikry
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Yang Q, Reid K, Zhu G. Biological-physical processes regulate autumn prey availability of spiny icefish Chaenodraco wilsoni in the Bransfield Strait, Antarctic. JOURNAL OF FISH BIOLOGY 2022; 101:289-301. [PMID: 35633144 DOI: 10.1111/jfb.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
This study examines the adaptability of a Southern Ocean predator, which is dependent on Antarctic krill (Euphausia superba), to potential changes in food availability. Muscle fatty acids (FAs) of the spiny icefish Chaenodraco wilsoni collected from three areas in the Bransfield Strait (BS), northern Antarctic Peninsula during February-April 2016 give a good representation of their feeding variability. The compositions of 22:6n3 (DHA) and 20:5n3 (EPA) were both higher in the Transitional Zonal Water with Bellingshausen influence (TBW)-controlled C. wilsoni than in the Transitional Zonal Water with Weddell Sea influence (TWW)-controlled fish. This was positively correlated with photoadaptation and carbon sequestration in TBW-controlled phytoplankton. Results for the FAs 16:1n7, 16:0, DHA and EPA indicate the presence of dinoflagellates in all three areas, suggesting that during late summer and early fall, there is a seasonal phytoplankton succession, where small phytoplankton become dominant, in the BS. In addition, the compositions of some long-chain FAs (>20, such as 20:0, 20:1, 22:0 and 22:1n9) and ∑18 indicated that the food chain based on flagellates and copepods was more apparent in TWW-controlled C. wilsoni, especially the effect of El Niño-Southern Oscillation (ENSO) on the variation of prey communities in TWW-controlled areas. FA markers such as SFA/(PUFA+MUFA), ∑15 + ∑17 and ARA were more pronounced in TWW-controlled C. wilsoni, indicating a more strongly carnivorous and benthic food source. In the TBW-TWW confluence, the complex hydrological structure, including the presence of a large number of mesoscale eddies, allows rich nutrients and krill larvae to remain in it, providing a rich food source for the C. wilsoni. Overall, the FA data of this study show that the diet of C. wilsoni varies in different marine environments, aiding their survivability at the face of climate change.
Collapse
Affiliation(s)
- Qingyuan Yang
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Center for Polar Research, Shanghai Ocean University, Shanghai, China
| | - Keith Reid
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Ross Analytics, Hobart, Tasmania, Australia
| | - Guoping Zhu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Center for Polar Research, Shanghai Ocean University, Shanghai, China
- National Engineering Research Center for Oceanic Fisheries, Shanghai, China
- Polar Marine Ecosystem Group, The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| |
Collapse
|
3
|
New insights into the autecology of the two sympatric fish species Notothenia coriiceps and N. rossii from western Antarctic Peninsula: A trophic biomarkers approach. Polar Biol 2021. [DOI: 10.1007/s00300-021-02903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Fukumura K, Konuma T, Tsukamoto Y, Nagata S. Adipokinetic hormone signaling determines dietary fatty acid preference through maintenance of hemolymph fatty acid composition in the cricket Gryllus bimaculatus. Sci Rep 2018; 8:4737. [PMID: 29549314 PMCID: PMC5856772 DOI: 10.1038/s41598-018-22987-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/26/2018] [Indexed: 12/18/2022] Open
Abstract
Adipokinetic hormone (AKH), an analog of mammalian glucagon, functions in supplying the required energy by releasing lipids and carbohydrates from the fat body into the hemolymph. Our previous study showed that AKH receptor (AKHR) knockdown in the two-spotted cricket Gryllus bimaculatus decreased hemolymph lipid levels and increased its feeding frequency. To reveal underlying mechanisms by which AKH signaling modulates lipid homeostasis, we analyzed the fatty acid composition as the lipid structure in the crickets. AKH administration significantly increased the proportion of unsaturated fatty acids (USFAs) to total fatty acids with decrease of the saturated fatty acids (SFAs) in hemolymph, while these proportions were inversely changed in RNA interference-mediated AKHR-knockdowned (AKHRRNAi) crickets. Interestingly, knockdown of hormone-sensitive lipase (Hsl) by RNAi (HslRNAi) affected the proportion of USFAs and SFAs in a similar manner to that observed in AKHRRNAi crickets. AKH administration in HslRNAi crickets did not change hemolymph fatty acid composition, indicating that AKH signaling critically altered fatty acid composition in the hemolymph through Hsl. In addition, a choice assay revealed that AKHRRNAi significantly increases the preference of USFAs. These data indicate that hemolymph lipid level and composition were modulated by AKH signaling with a complementary feeding behavior toward USFAs.
Collapse
Affiliation(s)
- Keisuke Fukumura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Takahiro Konuma
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Yusuke Tsukamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan.
| |
Collapse
|
5
|
Hui T, Zhang Y, Jamali MA, Peng Z. Incorporation of pig back fat in restructured dry cured ham to facilitate the release of unsaturated fatty acids and generation of volatile compounds. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Teng Hui
- National Center of Meat Quality and Safety Control; College of Food Science and Technology; Nanjing Agriculture University; Nanjing P. R. China
| | - Yawei Zhang
- National Center of Meat Quality and Safety Control; College of Food Science and Technology; Nanjing Agriculture University; Nanjing P. R. China
| | - Muneer Ahmed Jamali
- National Center of Meat Quality and Safety Control; College of Food Science and Technology; Nanjing Agriculture University; Nanjing P. R. China
| | - Zengqi Peng
- National Center of Meat Quality and Safety Control; College of Food Science and Technology; Nanjing Agriculture University; Nanjing P. R. China
| |
Collapse
|
6
|
Price ER, Armstrong C, Guglielmo CG, Staples JF. Selective mobilization of saturated fatty acids in isolated adipocytes of hibernating 13-lined ground squirrels Ictidomys tridecemlineatus. Physiol Biochem Zool 2013; 86:205-12. [PMID: 23434780 DOI: 10.1086/668892] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fatty acids are not mobilized from adipocyte triacylglycerols uniformly but rather some are preferentially mobilized while others are preferentially retained. In many vertebrate species, the pattern of differential mobilization is determined by the physical and chemical properties of each fatty acid. Fatty acids with shorter chains and more double bonds tend to be more readily mobilized than others, a pattern observed both in whole-animal studies and in isolated adipocytes. Several hibernating species seem to break this pattern, however, and retain 18:2ω6 (linoleic acid) while mobilizing saturated fatty acids such as 18:0. We sought to confirm this pattern in adipocytes of a hibernator, the 13-lined ground squirrel Ictidomys tridecemlineatus, and to investigate mobilization patterns for the first time at hibernation temperature. We isolated adipocytes from summer active and winter torpid squirrels and incubated them with 1 μM norepinephrine at 4°C (7 h) and 37°C (90 min). We measured the proportion of each fatty acid in the adipose tissue and in the buffer at the end of incubation. Patterns of mobilization were similar in both seasons and incubation temperatures. Saturated fatty acids (18:0 and 16:0) were highly mobilized relative to the average, while some unsaturated fatty acids (notably, 18:1ω9 and 18:2ω6) were retained. We conclude that hibernators have unique mechanisms at the level of adipose tissue that preferentially mobilize saturated fatty acids. Additionally, we found that adipocytes from hibernating squirrels produced more glycerol than those from summer squirrels (regardless of temperature), indicating a higher lipolytic capacity in hibernating squirrels.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | | | | | | |
Collapse
|
7
|
Phenotypic plasticity in the Antarctic nototheniid fish Trematomus newnesi: a guide to the identification of typical, large mouth and intermediate morphs. Polar Biol 2012. [DOI: 10.1007/s00300-011-1152-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Triacylglycerol catabolism in the prawn Macrobrachium borellii (Crustacea: Palaemoniade). Comp Biochem Physiol B Biochem Mol Biol 2011; 160:201-7. [PMID: 21889599 DOI: 10.1016/j.cbpb.2011.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 11/22/2022]
Abstract
While invertebrates store neutral lipids as their major energy source, little is known about triacylglycerol (TAG) class composition and their differential catabolism in aquatic arthropods. This study focuses on the composition of the main energy source and its catabolism by lipase from the midgut gland (hepatopancreas) of the crustacean Macrobrachium borellii. Silver-ion thin-layer chromatography of prawn large TAG deposit (80% of total lipids) and its subsequent fatty acid analysis by gas chromatography allowed the identification of 4 major fractions. These are composed of fatty acids of decreasing unsaturation and carbon chain length, the predominant being 18:1n-9. Fraction I, the most unsaturated one, contained mainly 20:5n-3; fraction II 18:2n-6; fraction III 18:1n-9 while the most saturated fraction contained mostly 16:0. Hepatopancreas main lipase (Mr 72 kDa) cross-reacted with polyclonal antibodies against insect lipase, was not dependent on the presence of Ca(2+) and had an optimum activity at 40°C and pH 8.0. Kinetic analysis showed a Michaelis-Menten behavior. A substrate competition assay evidenced lipase specificity following the order: 18:1n-9-TAG>PUFA-enriched-TAG>16:0-TAG different from that in vertebrates. These data indicate there is a reasonable correspondence between the fatty acid composition of TAG and the substrate specificity of lipase, which may be an important factor in determining which fatty acids are mobilized during lipolysis for oxidation in crustaceans.
Collapse
|
9
|
Rivera-Pérez C, del Toro MDLÁN, García-Carreño F. Purification and characterization of an intracellular lipase from pleopods of whiteleg shrimp (Litopenaeus vannamei). Comp Biochem Physiol B Biochem Mol Biol 2011; 158:99-105. [DOI: 10.1016/j.cbpb.2010.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/08/2010] [Accepted: 10/10/2010] [Indexed: 11/26/2022]
|
10
|
Xiao S, Zhang W, Yang Y, Ma C, Ahn DU, Li X, Lei J, Du M. Changes of hormone-sensitive lipase (HSL), adipose tissue triglyceride lipase (ATGL) and free fatty acids in subcutaneous adipose tissues throughout the ripening process of dry-cured ham. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.12.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Cruz-Garcia L, Saera-Vila A, Navarro I, Calduch-Giner J, Pérez-Sánchez J. Targets for TNFα-induced lipolysis in gilthead sea bream(Sparus aurata L.) adipocytes isolated from lean and fat juvenile fish. J Exp Biol 2009; 212:2254-60. [DOI: 10.1242/jeb.029025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SUMMARY
The present study aimed to analyze adiposity heterogeneity and the role of liver X receptor (LXRα) and peroxisome proliferator-activated receptors(PPARs) as targets of tumour necrosis factor-α (TNFα) in gilthead sea bream (Sparus aurata L.). The screening of 20 fish at the beginning of the warm season identified two major groups with fat and lean phenotypes. Fat fish showed increased liver and mesenteric fat depots. This increased adiposity was concurrent in the adipose tissue to enhanced expression of lipoprotein lipase (LPL) whereas mRNA levels of the hormone-sensitive lipase (HSL) remained almost unchanged. The resulting LPL/HSL ratio was thereby highest in fat fish, which suggests that this group of fish has not reached its peak fat storage capacity. This is not surprising given the increased expression of PPARγ in the absence of a counter-regulatory raise of TNFα. However, this lipolytic cytokine exerted dual effects in primary adipocyte cultures that differ within and between lean and fat fish. One set of fat fish did not respond to TNFαtreatment whereas a second set exhibited a lipolytic response (increased glycerol release) that was apparently mediated by the downregulated expression of PPARβ. In lean fish, TNFα exerted a strong and non-transcriptionally mediated lipolytic action. Alternatively, TNFαwould inhibit lipid deposition via the downregulated expression of adipogenic nuclear factors (PPARγ and LXRα). TNFα targets are therefore different in fish with lean and fat phenotypes, which is indicative of the complex network involved in the regulation of fish lipid metabolism.
Collapse
Affiliation(s)
- Lourdes Cruz-Garcia
- Departament de Fisiología, Facultat de Biología, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alfonso Saera-Vila
- Instituto de Acuicultura de Torre de la Sal (CSIC), Departamento de Biología, Cultivo y Patología de Especies Marinas, 12595 Ribera de Cabanes, Castellón, Spain
| | - Isabel Navarro
- Departament de Fisiología, Facultat de Biología, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josep Calduch-Giner
- Instituto de Acuicultura de Torre de la Sal (CSIC), Departamento de Biología, Cultivo y Patología de Especies Marinas, 12595 Ribera de Cabanes, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Instituto de Acuicultura de Torre de la Sal (CSIC), Departamento de Biología, Cultivo y Patología de Especies Marinas, 12595 Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
12
|
Park JW, Cho SY, Choi SJ. Purification and characterization of hepatic lipase from Todarodes pacificus. BMB Rep 2008; 41:254-8. [DOI: 10.5483/bmbrep.2008.41.3.254] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Price ER, Krokfors A, Guglielmo CG. Selective mobilization of fatty acids from adipose tissue in migratory birds. J Exp Biol 2008; 211:29-34. [DOI: 10.1242/jeb.009340] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
During times of high energy demand, stored fatty acids are mobilized from adipocytes. This mobilization has previously been shown to be a non-random process, with more hydrophilic fatty acids being mobilized most readily. The objectives of this study were to characterize the relative mobilization of fatty acids from adipocytes in two migratory bird species and to investigate possible changes in selective fatty acid mobilization associated with the migratory period. Captive ruffs (Philomachus pugnax) and white-crowned sparrows (Zonotrichia leucophrys) were studied. The sparrows were divided into two treatments: `winter' (photoperiod 8 h:16 h L:D)and `migrant' (in which migratory condition was induced with a photoperiodic manipulation of 8 h:16 h L:D, followed by 16 h:8 h L:D). Adipose tissue was removed from ruffs and sparrows and incubated for 90 min after stimulation with epinephrine. The proportions of individual fatty acid species released into the incubation medium were compared with their proportions in the adipocytes to determine relative mobilizations. We found that patterns of relative mobilization in ruffs and sparrows are similar to those of mammals,with shorter chain lengths and more double bonds leading to higher relative mobilization. Seasonal condition in sparrows did not alter this pattern. This pattern of relative mobilization from adipocytes seems to be a general rule amongst birds and mammals and should be considered before inferring functionality about selective retention or mobilization of certain fatty acids. The composition of adipose stores in birds may affect migratory performance; however, our results indicate that patterns of relative mobilization at the adipocytes do not vary with season in migratory birds.
Collapse
Affiliation(s)
- Edwin R. Price
- Division of Biological Sciences, University of Montana, Missoula, MT 59812,USA
| | - Anna Krokfors
- Faculty of Biosciences, University of Helsinki, Helsinki 00014, Finland
| | | |
Collapse
|
14
|
Selective Seasonal Fatty Acid Accumulation and Mobilization in the Wild Raccoon Dog (Nyctereutes procyonoides). Lipids 2007; 42:1155-67. [DOI: 10.1007/s11745-007-3118-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
|
15
|
Pernet F, Tremblay R, Comeau L, Guderley H. Temperature adaptation in two bivalve species from different thermal habitats: energetics and remodelling of membrane lipids. J Exp Biol 2007; 210:2999-3014. [PMID: 17704075 DOI: 10.1242/jeb.006007] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
We compared lipid dynamics and the physiological responses of blue mussels Mytilus edulis, a cold-adapted species, and oysters Crassostrea virginica, a warmer-water species, during simulated overwintering and passage to spring conditions. To simulate overwintering, animals were held at 0°C, 4°C and 9°C for 3 months and then gradually brought to and maintained at 20°C for 5 weeks to simulate spring–summer conditions. Changes in lipid class and fatty acid composition were related to clearance rate and oxygen consumption.
We found major differences between species in triglyceride (TAG) metabolism during overwintering. Mussels used digestive gland TAG stores for energy metabolism or reproductive processes during the winter, whereas oysters did not accumulate large TAG stores prior to overwintering. Mussel TAG contained high levels of 20:5n-3 compared to levels in oysters and in the diet. This may help to counteract the effect of low temperature by reducing the melting point of TAG and thus increasing the availability of storage fats at low temperature. Mussels seemed better able to mobilise 20:5n-3 and 18:4n-3 than other fatty acids.
We also found that both bivalves underwent a major remodelling of membrane phospholipids. The unsaturation index decreased in the gills and digestive glands of both species during the early stages of warming, principally due to decreases in 22:6n-3 and 20:5n-3. In digestive glands, the unsaturation index did not increase with decreasing temperature beyond a threshold attained at 9°C whereas a perfect negative relationship was observed in gills, as predicted by homeoviscous adaptation. The presence of digestive enzymes and acids in the digestive gland microenvironment may lead to specific requirements for membrane stability. That oysters had lower metabolic rates than mussels coincides with a lower unsaturation index of their lipids, as predicted by Hulbert's theory of membranes as metabolic pacemakers. Both species showed increased 20:4n-6 levels in their tissues as temperature rose,suggesting an increasing availability of this fatty acid for eicosanoid biosynthesis during stress responses.
The contrast between the species in TAG dynamics and the similarity of their phospholipid remodelling emphasises the essential functional role of membrane phospholipid structure and the contrasting use of TAG by oysters and mussels during overwintering.
Collapse
Affiliation(s)
- Fabrice Pernet
- Institut de Recherche sur les Zones Côtières, 232B rue de l'Eglise, Shippagan, Nouveau-Brunswick, E8S 1J2, Canada.
| | | | | | | |
Collapse
|
16
|
Phillips K. CHOOSY ENZYME KEEPS FISH AFLOAT. J Exp Biol 2004. [DOI: 10.1242/jeb.00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|