1
|
Bergamini G, Sacchi S, Ferri A, Franchi N, Montanari M, Ahmad M, Losi C, Nasi M, Cocchi M, Malagoli D. Clodronate Liposome-Mediated Phagocytic Hemocyte Depletion Affects the Regeneration of the Cephalic Tentacle of the Invasive Snail, Pomacea canaliculata. BIOLOGY 2023; 12:992. [PMID: 37508422 PMCID: PMC10376890 DOI: 10.3390/biology12070992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
After amputation, granular hemocytes infiltrate the blastema of regenerating cephalic tentacles of the freshwater snail Pomacea canaliculata. Here, the circulating phagocytic hemocytes were chemically depleted by injecting the snails with clodronate liposomes, and the effects on the cephalic tentacle regeneration onset and on Pc-Hemocyanin, Pc-transglutaminase (Pc-TG) and Pc-Allograft Inflammatory Factor-1 (Pc-AIF-1) gene expressions were investigated. Flow cytometry analysis demonstrated that clodronate liposomes targeted large circulating hemocytes, resulting in a transient decrease in their number. Corresponding with the phagocyte depletion, tentacle regeneration onset was halted, and it resumed at the expected pace when clodronate liposome effects were no longer visible. In addition to the regeneration progress, the expressions of Pc-Hemocyanin, Pc-TG, and Pc-AIF-1, which are markers of hemocyte-mediated functions like oxygen transport and immunity, clotting, and inflammation, were modified. After the injection of clodronate liposomes, a specific computer-assisted image analysis protocol still evidenced the presence of granular hemocytes in the tentacle blastema. This is consistent with reports indicating the large and agranular hemocyte population as the most represented among the professional phagocytes of P. canaliculata and with the hypothesis that different hemocyte morphologies could exert diverse biological functions, as it has been observed in other invertebrates.
Collapse
Affiliation(s)
- Giulia Bergamini
- Department Biology and Evolution of Marine Organisms, Zoological Station "Anton Dohrn", 80121 Naples, Italy
| | - Sandro Sacchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anita Ferri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Montanari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Mohamad Ahmad
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- LASIRE, Université de Lille, Cité Scientifique, 59650 Villeneuve-d'Ascq, France
| | - Chiara Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Milena Nasi
- Department of Surgical, Medical and Dental Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marina Cocchi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
2
|
Alesci A, Fumia A, Albano M, Messina E, D'Angelo R, Mangano A, Miller A, Spanò N, Savoca S, Capillo G. Investigating the internal system of defense of Gastropoda Aplysia depilans (Gmelin, 1791): Focus on hemocytes. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108791. [PMID: 37146849 DOI: 10.1016/j.fsi.2023.108791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/01/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
The internal defense system of mollusks represents an efficient protection against pathogens and parasites, involving several biological immune processes, such as phagocytosis, encapsulation, cytotoxicity, and antigenic recognition of self/non-self. Mollusks possess professional, migratory, and circulating cells that play a key role in the defense of the organism, the hemocytes. Several studies have been performed on hemocytes from different mollusks, but, to date, these cells are still scarcely explored. Different hemocyte populations have been found, according to the presence or absence of granules, size, and the species of mollusks studied. Our study aims to deepen the knowledge of the hemocytes of the gastropod Aplysia depilans using morphological techniques and light and confocal microscopy, testing Toll-like receptor 2, inducible nitric oxide synthetase, and nicotinic acetylcholine receptor alpha 7 subunit. Our results show two hemocyte populations distinguishable by size, and presence/absence of granules in the cytoplasm, strongly positive for the antibodies tested, suggesting for the first time the presence of these receptors on the surface of sea hare hemocytes by immunohistochemistry. These data help in the understanding of the immune system of this gastropod, providing additional data for comprehending the evolution of the defense response in metazoan phylogenesis.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", 98124, Messina, Italy.
| | - Marco Albano
- Department of Veterinary Sciences, University of Messina, 98168, Messina, Italy.
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Roberta D'Angelo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Angelica Mangano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Anthea Miller
- Department of Veterinary Sciences, University of Messina, 98168, Messina, Italy.
| | - Nunziacarla Spanò
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125, Messina, Italy; Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100, Messina, Italy.
| | - Serena Savoca
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125, Messina, Italy; Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100, Messina, Italy.
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, 98168, Messina, Italy; Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100, Messina, Italy.
| |
Collapse
|
3
|
A New Protocol of Computer-Assisted Image Analysis Highlights the Presence of Hemocytes in the Regenerating Cephalic Tentacles of Adult Pomacea canaliculata. Int J Mol Sci 2021; 22:ijms22095023. [PMID: 34065143 PMCID: PMC8126035 DOI: 10.3390/ijms22095023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
In humans, injuries and diseases can result in irreversible tissue or organ loss. This well-known fact has prompted several basic studies on organisms capable of adult regeneration, such as amphibians, bony fish, and invertebrates. These studies have provided important biological information and helped to develop regenerative medicine therapies, but important gaps concerning the regulation of tissue and organ regeneration remain to be elucidated. To this aim, new models for studying regenerative biology could prove helpful. Here, the description of the cephalic tentacle regeneration in the adult of the freshwater snail Pomacea canaliculata is presented. In this invasive mollusk, the whole tentacle is reconstructed within 3 months. Regenerating epithelial, connective, muscular and neural components are already recognizable 72 h post-amputation (hpa). Only in the early phases of regeneration, several hemocytes are retrieved in the forming blastema. In view of quantifying the hemocytes retrieved in regenerating organs, granular hemocytes present in the tentacle blastema at 12 hpa were counted, with a new and specific computer-assisted image analysis protocol. Since it can be applied in absence of specific cell markers and after a common hematoxylin-eosin staining, this protocol could prove helpful to evidence and count the hemocytes interspersed among regenerating tissues, helping to unveil the role of immune-related cells in sensory organ regeneration.
Collapse
|
4
|
Wang X, Wang G, Zingales S, Zhao B. Biomaterials Enabled Cell-Free Strategies for Endogenous Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:463-481. [PMID: 29897021 DOI: 10.1089/ten.teb.2018.0012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Repairing bone defects poses a major orthopedic challenge because current treatments are constrained by the limited regenerative capacity of human bone tissue. Novel therapeutic strategies, such as stem cell therapy and tissue engineering, have the potential to enhance bone healing and regeneration, and hence may improve quality of life for millions of people. However, the ex vivo expansion of stem cells and their in vivo delivery pose technical difficulties that hamper clinical translation and commercial development. A promising alternative to cell delivery-based strategies is to stimulate or augment the inherent self-repair mechanisms of the patient to promote endogenous restoration of the lost/damaged bone. There is growing evidence indicating that increasing the endogenous regenerative potency of bone tissues for therapeutics will require the design and development of new generations of biomedical devices that provide key signaling molecules to instruct cell recruitment and manipulate cell fate for in situ tissue regeneration. Currently, a broad range of biomaterial-based deployment technologies are becoming available, which allow for controlled spatial presentation of biological cues required for endogenous bone regeneration. This article aims to explore the proposed concepts and biomaterial-enabled strategies involved in the design of cell-free endogenous techniques in bone regenerative medicine.
Collapse
Affiliation(s)
- Xiaojing Wang
- 1 Dental Implant Center, Affiliated Hospital of Qingdao University , Qingdao, P.R. China .,2 School of Stomatology, Qingdao University , Qingdao, Shandong, P.R. China
| | - Guowei Wang
- 3 Department of Stomatology, Laoshan Branch of No. 401 Hospital of the Chinese Navy , Qingdao, Shandong, P.R. China
| | - Sarah Zingales
- 4 Department of Chemistry and Biochemistry, Georgia Southern University , Savannah, Georgia
| | - Baodong Zhao
- 1 Dental Implant Center, Affiliated Hospital of Qingdao University , Qingdao, P.R. China .,2 School of Stomatology, Qingdao University , Qingdao, Shandong, P.R. China
| |
Collapse
|
5
|
Wu X, He L, Li W, Li H, Wong WM, Ramakrishna S, Wu W. Functional self-assembling peptide nanofiber hydrogel for peripheral nerve regeneration. Regen Biomater 2017; 4:21-30. [PMID: 28149526 PMCID: PMC5274702 DOI: 10.1093/rb/rbw034] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 01/03/2023] Open
Abstract
Peripheral nerves are fragile and easily damaged, usually resulting in nervous tissue loss, motor and sensory function loss. Advances in neuroscience and engineering have been significantly contributing to bridge the damage nerve and create permissive environment for axonal regrowth across lesions. We have successfully designed two self-assembling peptides by modifying RADA 16-I with two functional motifs IKVAV and RGD. Nanofiber hydrogel formed when combing the two neutral solutions together, defined as RADA 16-Mix that overcomes the main drawback of RADA16-I associated with low pH. In the present study, we transplanted the RADA 16-Mix hydrogel into the transected rat sciatic nerve gap and effect on axonal regeneration was examined and compared with the traditional RADA16-I hydrogel. The regenerated nerves were found to grow along the walls of the large cavities formed in the graft of RADA16-I hydrogel, while the nerves grew into the RADA 16-Mix hydrogel toward distal position. RADA 16-Mix hydrogel induced more axons regeneration and Schwann cells immigration than RADA16-I hydrogel, resulting in better functional recovery as determined by the gait-stance duration percentage and the formation of new neuromuscular junction structures. Therefore, our results indicated that the functional SAP RADA16-Mix nanofibrous hydrogel provided a better environment for peripheral nerve regeneration than RADA16-I hydrogel and could be potentially used in peripheral nerve injury repair.
Collapse
Affiliation(s)
- Xiaoli Wu
- Department of Anatomy, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Liumin He
- Department of Anatomy, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
- Department of Anatomy, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Wen Li
- Department of Anatomy, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Heng Li
- Department of Anatomy, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Wai-Man Wong
- Department of Anatomy, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Seeram Ramakrishna
- Joint Laboratory of Jinan University and the University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- Department of Mechanical Engineering, Faculty of Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 117576, Singapore, Singapore
| | - Wutian Wu
- Department of Anatomy, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong SAR, China
- Joint Laboratory of Jinan University and the University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| |
Collapse
|
6
|
Abrogation of β-catenin signaling in oligodendrocyte precursor cells reduces glial scarring and promotes axon regeneration after CNS injury. J Neurosci 2014; 34:10285-97. [PMID: 25080590 DOI: 10.1523/jneurosci.4915-13.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
When the brain or spinal cord is injured, glial cells in the damaged area undergo complex morphological and physiological changes resulting in the formation of the glial scar. This scar contains reactive astrocytes, activated microglia, macrophages and other myeloid cells, meningeal cells, proliferating oligodendrocyte precursor cells (OPCs), and a dense extracellular matrix. Whether the scar is beneficial or detrimental to recovery remains controversial. In the acute phase of recovery, scar-forming astrocytes limit the invasion of leukocytes and macrophages, but in the subacute and chronic phases of injury the glial scar is a physical and biochemical barrier to axonal regrowth. The signals that initiate the formation of the glial scar are unknown. Both canonical and noncanonical signaling Wnts are increased after spinal cord injury (SCI). Because Wnts are important regulators of OPC and oligodendrocyte development, we examined the role of canonical Wnt signaling in the glial reactions to CNS injury. In adult female mice carrying an OPC-specific conditionally deleted β-catenin gene, there is reduced proliferation of OPCs after SCI, reduced accumulation of activated microglia/macrophages, and reduced astrocyte hypertrophy. Using an infraorbital optic nerve crush injury, we show that reducing β-catenin-dependent signaling in OPCs creates an environment that is permissive to axonal regeneration. Viral-induced expression of Wnt3a in the normal adult mouse spinal cord induces an injury-like response in glia. Thus canonical Wnt signaling is both necessary and sufficient to induce injury responses among glial cells. These data suggest that targeting Wnt expression after SCI may have therapeutic potential in promoting axon regeneration.
Collapse
|
7
|
Hermann PM, Park D, Beaulieu E, Wildering WC. Evidence for inflammation-mediated memory dysfunction in gastropods: putative PLA2 and COX inhibitors abolish long-term memory failure induced by systemic immune challenges. BMC Neurosci 2013; 14:83. [PMID: 23915010 PMCID: PMC3750374 DOI: 10.1186/1471-2202-14-83] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/02/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Previous studies associate lipid peroxidation with long-term memory (LTM) failure in a gastropod model (Lymnaea stagnalis) of associative learning and memory. This process involves activation of Phospholipase A2 (PLA2), an enzyme mediating the release of fatty acids such as arachidonic acid that form the precursor for a variety of pro-inflammatory lipid metabolites. This study investigated the effect of biologically realistic challenges of L. stagnalis host defense response system on LTM function and potential involvement of PLA2, COX and LOX therein. RESULTS Systemic immune challenges by means of β-glucan laminarin injections induced elevated H2O2 release from L. stagnalis circulatory immune cells within 3 hrs of treatment. This effect dissipated within 24 hrs after treatment. Laminarin exposure has no direct effect on neuronal activity. Laminarin injections disrupted LTM formation if training followed within 1 hr after injection but had no behavioural impact if training started 24 hrs after treatment. Intermediate term memory was not affected by laminarin injection. Chemosensory and motor functions underpinning the feeding response involved in this learning model were not affected by laminarin injection. Laminarin's suppression of LTM induction was reversed by treatment with aristolochic acid, a PLA2 inhibitor, or indomethacin, a putative COX inhibitor, but not by treatment with nordihydro-guaiaretic acid, a putative LOX inhibitor. CONCLUSIONS A systemic immune challenge administered shortly before behavioural training impairs associative LTM function in our model that can be countered with putative inhibitors of PLA2 and COX, but not LOX. As such, this study establishes a mechanistic link between the state of activity of this gastropod's innate immune system and higher order nervous system function. Our findings underwrite the rapidly expanding view of neuroinflammatory processes as a fundamental, evolutionary conserved cause of cognitive and other nervous system disorders.
Collapse
Affiliation(s)
- Petra M Hermann
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | | | |
Collapse
|
8
|
Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives. Biomaterials 2011; 32:3189-209. [DOI: 10.1016/j.biomaterials.2010.12.032] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 12/21/2010] [Indexed: 12/11/2022]
|
9
|
|