1
|
Birrell JH, Woods HA. Going with the flow - how a stream insect, Pteronarcys californica, exploits local flows to increase oxygen availability. J Exp Biol 2023; 226:286586. [PMID: 36633213 DOI: 10.1242/jeb.244609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
For insects, life in water is challenging because oxygen supply is typically low compared with in air. Oxygen limitation may occur when oxygen levels or water flows are low or when warm temperatures stimulate metabolic demand for oxygen. A potential mechanism for mitigating oxygen shortages is behavior - moving to cooler, more oxygenated or faster flowing microhabitats. Whether stream insects can make meaningful choices, however, depends on: (i) how temperature, oxygen and flow vary at microspatial scales and (ii) the ability of insects to sense and exploit that variation. To assess the extent of microspatial variation in conditions, we measured temperature, oxygen saturation and flow velocity within riffles of two streams in Montana, USA. In the lab, we then examined preferences of nymphs of the stonefly Pteronarcys californica to experimental gradients based on field-measured values. Temperature and oxygen level varied only slightly within stream riffles. By contrast, flow velocity was highly heterogeneous, often varying by more than 125 cm s-1 within riffles and 44 cm s-1 around individual cobbles. Exploiting micro-variation in flow may thus be the most reliable option for altering rates of oxygen transport. In support of this prediction, P. californica showed little ability to exploit gradients in temperature and oxygen but readily exploited micro-variation in flow - consistently choosing higher flows when conditions were warm or hypoxic. These behaviors may help stream insects mitigate low-oxygen stress from climate change and other anthropogenic disturbances.
Collapse
Affiliation(s)
- Jackson H Birrell
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
2
|
Woods HA, Moran AL. Reconsidering the Oxygen-Temperature Hypothesis of Polar Gigantism: Successes, Failures, and Nuance. Integr Comp Biol 2021; 60:1438-1453. [PMID: 32573680 DOI: 10.1093/icb/icaa088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
"Polar gigantism" describes a biogeographic pattern in which many ectotherms in polar seas are larger than their warmer-water relatives. Although many mechanisms have been proposed, one idea-the oxygen-temperature hypothesis-has received significant attention because it emerges from basic biophysical principles and is appealingly straightforward and testable. Low temperatures depress metabolic demand for oxygen more than supply of oxygen from the environment to the organism. This creates a greater ratio of oxygen supply to demand, releasing polar organisms from oxygen-based constraints on body size. Here we review evidence for and against the oxygen-temperature hypothesis. Some data suggest that larger-bodied taxa live closer to an oxygen limit, or that rising temperatures can challenge oxygen delivery systems; other data provide no evidence for interactions between body size, temperature, and oxygen sufficiency. We propose that these findings can be partially reconciled by recognizing that the oxygen-temperature hypothesis focuses primarily on passive movement of oxygen, implicitly ignoring other important processes including ventilation of respiratory surfaces or internal transport of oxygen by distribution systems. Thus, the hypothesis may apply most meaningfully to organisms with poorly developed physiological systems (eggs, embryos, egg masses, juveniles, or adults without mechanisms for ventilating internal or external surfaces). Finally, most tests of the oxygen-temperature hypothesis have involved short-term experiments. Many organisms can mount effective responses to physiological challenges over short time periods; however, the energetic cost of doing so may have impacts that appear only in the longer term. We therefore advocate a renewed focus on long-term studies of oxygen-temperature interactions.
Collapse
Affiliation(s)
- H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Amy L Moran
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
Moles J, Berning MI, Hooker Y, Padula V, Wilson NG, Schrödl M. Due South: The evolutionary history of Sub-Antarctic and Antarctic Tritoniidae nudibranchs. Mol Phylogenet Evol 2021; 162:107209. [PMID: 34044161 DOI: 10.1016/j.ympev.2021.107209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/03/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
The Tritoniidae provides one of the most famous model species for neurophysiology and behaviour, yet a well-developed phylogenetic framework for this family is still incomplete. In this study, we explored the species-level taxonomy, phylogenetic relationships, and geographic distributions of the tritoniid nudibranchs. During numerous expeditions, specimens from southern South America, Sub-Antarctic Islands, and Antarctica were collected, documented alive, and fixed for anatomical descriptions and genetic sequencing. DNA from 167 specimens were extracted and sequenced for mitochondrial (COI, 16S) and nuclear (H3) markers. An additional 109 sequences of all available tritoniids plus additional outgroups were downloaded from GenBank for comparative purposes. Maximum Likelihood under the GHOST model of evolution and Bayesian inference using the GTR + GAMMA model produced congruent topologies from concatenated alignments. The results of ABGD, GMYC, bPTP, and mPTP species delimitation analyses suggest many separately evolving units that do not coincide with traditionally recognized species limits. Southern Ocean Tritoniella and Tritonia species split into several previously unrecognized species. This result is in accordance with the limited dispersal abilities of some southern tritoniids. Along with the most complete phylogeny of Tritoniidae to date, we also provided many taxonomic notes at the species and genus level. Tritoniidae species are yet another example of under-recognized diversity in the Southern Ocean.
Collapse
Affiliation(s)
- Juan Moles
- SNSB-Bavarian State Collection of Zoology, Section Mollusca, Münchhausenstrasse 21, D-81247 Munich, Germany; Biozentrum Ludwig Maximilians University and GeoBio-Center LMU Munich, Germany.
| | - Maria I Berning
- SNSB-Bavarian State Collection of Zoology, Section Mollusca, Münchhausenstrasse 21, D-81247 Munich, Germany
| | - Yuri Hooker
- Universidad Peruana Cayetano Heredia, Laboratorio de Biología Marina, Facultad de Ciencias y Filosofía, Lima, Peru
| | - Vinicius Padula
- National Museum, Federal University of Rio de Janeiro, UFRJ, Quinta da Boa Vista, São Cristóvão, Rio de Janeiro, RJ 20940-040, Brazil
| | - Nerida G Wilson
- Collections & Research, Western Australian Museum, 49 Kew St, Welshpool, Perth, WA 6106, Australia; School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Section Mollusca, Münchhausenstrasse 21, D-81247 Munich, Germany; Biozentrum Ludwig Maximilians University and GeoBio-Center LMU Munich, Germany
| |
Collapse
|
4
|
The complete mitochondrial genome of the Antarctic sea spider Ammothea carolinensis (Chelicerata; Pycnogonida). Polar Biol 2013. [DOI: 10.1007/s00300-013-1288-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Bartolini F, Barausse A, Pörtner HO, Giomi F. Climate change reduces offspring fitness in littoral spawners: a study integrating organismic response and long-term time-series. GLOBAL CHANGE BIOLOGY 2013; 19:373-386. [PMID: 23504777 DOI: 10.1111/gcb.12050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 06/01/2023]
Abstract
Integrating long-term ecological observations with experimental findings on species response and tolerance to environmental stress supports an understanding of climate effects on population dynamics. Here, we combine the two approaches, laboratory experiments and analysis of multi-decadal time-series, to understand the consequences of climate anomalies and ongoing change for the population dynamics of a eurythermal littoral species, Carcinus aestuarii. For the generation of cause and effect hypotheses we investigated the thermal response of crab embryos at four developmental stages. We first measured metabolic rate variations in embryos following acute warming (16-24 °C) and after incubation at 20 and 24 °C for limited periods. All experiments consistently revealed differential thermal responses depending on the developmental stage. Temperature-induced changes in metabolic activity of early embryonic stages of blastula and gastrula suggested the onset of abnormal development. In contrast, later developmental stages, characterized by tissue and organ differentiation, were marginally affected by temperature anomalies, indicating enhanced resilience to thermal stress. Then, we extended these findings to a larger, population scale, by analyzing a time-series of C. aestuarii landings in the Venice lagoon from 1945 to 2010 (ripe crabs were recorded separately) in relation to temperature. Landings and extreme climatic events showed marked long-term and short-term variations. We found negative relationships between landings and thermal stress indices on both timescales, with time lags consistent with an impact on crab early life stages. When quantitatively evaluating the influence of thermal stress on population dynamics, we found that it has a comparable effect to that of the biomass of spawners. This work provides strong evidence that physiological responses to climatic anomalies translate into population-level changes and that apparently tolerant species may be impacted before the ontogeny of eurythermy. These ontogenetic bottlenecks markedly shape population dynamics and require study to assess the effects of global change.
Collapse
Affiliation(s)
- Fabrizio Bartolini
- Department of Evolutionary Biology, University of Florence, Florence, Italy
| | | | | | | |
Collapse
|
6
|
Moran AL, Woods HA. Why might they be giants? Towards an understanding of polar gigantism. J Exp Biol 2012; 215:1995-2002. [DOI: 10.1242/jeb.067066] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Beginning with the earliest expeditions to the poles, over 100 years ago, scientists have compiled an impressive list of polar taxa whose body sizes are unusually large. This phenomenon has become known as ‘polar gigantism’. In the intervening years, biologists have proposed a multitude of hypotheses to explain polar gigantism. These hypotheses run the gamut from invoking release from physical and physiological constraints, to systematic changes in developmental trajectories, to community-level outcomes of broader ecological and evolutionary processes. Here we review polar gigantism and emphasize two main problems. The first is to determine the true strength and generality of this pattern: how prevalent is polar gigantism across taxonomic units? Despite many published descriptions of polar giants, we still have a poor grasp of whether these species are unusual outliers or represent more systematic shifts in distributions of body size. Indeed, current data indicate that some groups show gigantism at the poles whereas others show nanism. The second problem is to identify underlying mechanisms or processes that could drive taxa, or even just allow them, to evolve especially large body size. The contenders are diverse and no clear winner has yet emerged. Distinguishing among the contenders will require better sampling of taxa in both temperate and polar waters and sustained efforts by comparative physiologists and evolutionary ecologists in a strongly comparative framework.
Collapse
Affiliation(s)
- Amy L. Moran
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - H. Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
7
|
Moran AL, Woods HA. Limits to diffusive O2 transport: flow, form, and function in nudibranch egg masses from temperate and polar regions. PLoS One 2010; 5:e12113. [PMID: 20711406 PMCID: PMC2920331 DOI: 10.1371/journal.pone.0012113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/14/2010] [Indexed: 11/18/2022] Open
Abstract
Background Many aquatic animals enclose embryos in gelatinous masses, and these embryos rely on diffusion to supply oxygen. Mass structure plays an important role in limiting or facilitating O2 supply, but external factors such as temperature and photosynthesis can play important roles as well. Other external factors are less well understood. Methodology/Principal Findings We first explored the effects of water flow on O2 levels inside nudibranch embryo masses and compared the effects of flow on masses from temperate and polar regions. Water flow (still vs. vigorously bubbled) had a strong effect on central O2 levels in all masses; in still water, masses were considerably more hypoxic than in bubbled water. This effect was stronger in temperate than in polar masses, likely due to the increased metabolic demand and O2 consumption of temperate masses. Second, we made what are to our knowledge the first measurements of O2 in invertebrate masses in the field. Consistent with laboratory experiments, O2 in Antarctic masses was high in masses in situ, suggesting that boundary-layer effects do not substantially limit O2 supply to polar embryos in the field. Conclusions/Significance All else being equal, boundary layers are more likely to depress O2 in masses in temperate or tropical regions; thus, selection on parents to choose high-flow sites for mass deposition is likely greater in warm water. Because of the large number of variables affecting diffusive O2 supply to embryos in their natural environment, field observations are necessary to test hypotheses generated from laboratory experiments and mathematical modeling.
Collapse
Affiliation(s)
- Amy L Moran
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America.
| | | |
Collapse
|
8
|
Woods HA, Moran AL, Arango CP, Mullen L, Shields C. Oxygen hypothesis of polar gigantism not supported by performance of Antarctic pycnogonids in hypoxia. Proc Biol Sci 2009; 276:1069-75. [PMID: 19129117 PMCID: PMC2679066 DOI: 10.1098/rspb.2008.1489] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 11/18/2008] [Indexed: 11/12/2022] Open
Abstract
Compared to temperate and tropical relatives, some high-latitude marine species are large-bodied, a phenomenon known as polar gigantism. A leading hypothesis on the physiological basis of gigantism posits that, in polar water, high oxygen availability coupled to low metabolic rates relieves constraints on oxygen transport and allows the evolution of large body size. Here, we test the oxygen hypothesis using Antarctic pycnogonids, which have been evolving in very cold conditions (-1.8-0 degrees C) for several million years and contain spectacular examples of gigantism. Pycnogonids from 12 species, spanning three orders of magnitude in body mass, were collected from McMurdo Sound, Antarctica. Individual sea spiders were forced into activity and their performance was measured at different experimental levels of dissolved oxygen (DO). The oxygen hypothesis predicts that, all else being equal, large pycnogonids should perform disproportionately poorly in hypoxia, an outcome that would appear as a statistically significant interaction between body size and oxygen level. In fact, although we found large effects of DO on performance, and substantial interspecific variability in oxygen sensitivity, there was no evidence for sizexDO interactions. These data do not support the oxygen hypothesis of Antarctic pycnogonid gigantism and suggest that explanations must be sought in other ecological or evolutionary processes.
Collapse
Affiliation(s)
- H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | | | | | | | | |
Collapse
|
9
|
Woods HA, Moran AL. Oxygen profiles in egg masses predicted from a diffusion-reaction model. ACTA ACUST UNITED AC 2008; 211:790-7. [PMID: 18281342 DOI: 10.1242/jeb.014613] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We developed a novel diffusion-reaction model to describe spatial and temporal changes in oxygen concentrations in gelatinous egg masses containing live, respiring embryos. We used the model in two ways. First, we constructed artificial egg masses of known metabolic density using embryos of the Antarctic sea urchin Sterechnius neumayeri, measured radial oxygen profiles at two temperatures, and compared our measurements to simulated radial oxygen profiles generated by the model. We parameterized the model by measuring the radius of the artificial masses, metabolic densities (=embryo metabolic rate x embryo density) and oxygen diffusion coefficients at both ambient (-1.5 degrees C) or slightly warmer (+1.5-2 degrees C) temperatures. Simulated and measured radial oxygen profiles were similar, indicating that the model captured the major biological features determining oxygen distributions. Second, we used the model to analyze sources of error in step-change experiments for determining oxygen diffusion coefficients (D), and to determine the suitability of simpler, analytical equations for estimating D. Our analysis indicated that embryo metabolism can lead to large (several-fold) overestimates of D if the analytical equation is fitted to step-down-traces of central oxygen concentration (i.e. external oxygen concentration stepped from some high value to zero). However, good estimates of D were obtained from step-up-traces. We used these findings to estimate D in egg masses of three species of nudibranch molluscs: two Antarctic species (Tritonia challengeriana and Tritoniella belli; -1.5 and +2 degrees C) and one temperate Pacific species (Tritonia diomedea; 12 and 22 degrees C). D for all three species was approximately 8 x 10(-6) cm(2) s(-1), and there was no detectable effect of temperature on estimated D. For the Antarctic species, D in egg masses was 70-90% of its value in seawater of similar temperature.
Collapse
Affiliation(s)
- H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | | |
Collapse
|