1
|
Inhibition of c-MYC-miRNA 19 Pathway Sensitized CML K562 Cells to Etoposide via NHE1 Upregulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9306614. [PMID: 35915613 PMCID: PMC9338868 DOI: 10.1155/2022/9306614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
As a previously discovered target of DNA damage, Na+/H+ exchanger 1 (NHE1) plays a role in regulation of intracellular pH (pHi) through the extrusion of intracellular proton (H+) in exchange for extracellular sodium (Na+). Its abnormal expression and dysfunction have been reported in solid tumor and hematopoietic malignancies. Here, we reported that suppression of NHE1 in BCR-ABL+ hematopoietic malignancies' K562 cells treated with Etoposide was manipulated by miR-19 and c-MYC. Inhibition of miR-19 or c-MYC enhanced the expression of NHE1 and sensitized K562 cells to Etoposide in vitro. The in vivo nude mouse transplantation model was also performed to confirm the enhanced sensitivity of K562 cells to Etoposide by inhibiting the miR-19 or c-MYC pathway. TCGA analysis conferred a negative correlation between miR-19 level and leukemia patients' survival. Thus, our results provided a potential management by which the c-MYC-miRNA 19 pathway might have a crucial impact on sensitizing K562 cells to Etoposide in the therapeutic approaches.
Collapse
|
2
|
Effects of Heat and WiFi (2.4 GHz) Exposure on Rat Cardiovascular System. HEALTH SCOPE 2022. [DOI: 10.5812/jhealthscope-120282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Today, wireless communication systems are destructive with increased lipid peroxidation and oxidation state and have adverse biological effects on human health. Objectives: In this study, we examined the effects of exposure to WiFi wireless frequency (2.4 GHz) on histopathological changes in the cardiovascular system of rats. Methods: The experimental groups included 32 adult male rats divided into control (not exposed to heat and WiFi), WiFi (exposed to 2.45 GHz for 52 consecutive days (2 h/day)), heat (water bath of 43°C for 52 consecutive days (10 min/day)), and heat+WiFi groups (exposed to 2.45 GHz then water bath of 43°C). On the 52nd day, the heart was removed, and its total volume and weight were determined using stereological techniques. The number of cardiomyocytes nuclei and the volume of the myocardium were determined. Blood samples were collected to measure reduced glutathione (GSH) content, Total Antioxidant Capacity (TAC), and malondialdehyde level (MDA). Data were analyzed by ANOVA, Kruskal-Wallis, and Mann-Whitney U tests. Results: The heart weight and volume density of the myocardium increased in the WiFi-irradiated group compared to the control group (P < 0.05). Also, exposure to WiFi increased MDA levels and decreased TAC and GSH compared to the control group (P < 0.05). Conclusions: This study indicated that RFW might cause structural changes and oxidative stress in the heart. Also, exposure to radiofrequency decreased total antioxidant activity in heart tissue with histological changes, including myocardium hypertrophy and decreased number of myocytes.
Collapse
|
3
|
Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers (Basel) 2022; 14:cancers14040901. [PMID: 35205649 PMCID: PMC8870118 DOI: 10.3390/cancers14040901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This review shows the advantages of heterogeneous heating of selected malignant cells in harmonic synergy with radiotherapy. The main clinical achievement of this complementary therapy is its extreme safety and minimal adverse effects. Combining the two methods opens a bright perspective, transforming the local radiotherapy to the antitumoral impact on the whole body, destroying the distant metastases by “teaching” the immune system about the overall danger of malignancy. Abstract (1) Background: Hyperthermia in oncology conventionally seeks the homogeneous heating of the tumor mass. The expected isothermal condition is the basis of the dose calculation in clinical practice. My objective is to study and apply a heterogenic temperature pattern during the heating process and show how it supports radiotherapy. (2) Methods: The targeted tissue’s natural electric and thermal heterogeneity is used for the selective heating of the cancer cells. The amplitude-modulated radiofrequency current focuses the energy absorption on the membrane rafts of the malignant cells. The energy partly “nonthermally” excites and partly heats the absorbing protein complexes. (3) Results: The excitation of the transmembrane proteins induces an extrinsic caspase-dependent apoptotic pathway, while the heat stress promotes the intrinsic caspase-dependent and independent apoptotic signals generated by mitochondria. The molecular changes synergize the method with radiotherapy and promote the abscopal effect. The mild average temperature (39–41 °C) intensifies the blood flow for promoting oxygenation in combination with radiotherapy. The preclinical experiences verify, and the clinical studies validate the method. (4) Conclusions: The heterogenic, molecular targeting has similarities with DNA strand-breaking in radiotherapy. The controlled energy absorption allows using a similar energy dose to radiotherapy (J/kg). The two therapies are synergistically combined.
Collapse
|
4
|
Crezee J, Oei AL, Franken NAP, Stalpers LJA, Kok HP. Response: Commentary: The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Front Oncol 2020; 10:528. [PMID: 32351897 PMCID: PMC7174773 DOI: 10.3389/fonc.2020.00528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Johannes Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Li H, Xing Y, Yang D, Tang X, Lu D, Wang H. Alpha-1 Adrenergic Receptor Agonist Phenylephrine Inhibits Sepsis-Induced Cardiomyocyte Apoptosis and Cardiac Dysfunction via Activating ERK1/2 Signal Pathway. Shock 2019; 52:122-133. [PMID: 29889817 DOI: 10.1097/shk.0000000000001205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It was demonstrated that α1 adrenergic receptor (α1-AR) activation by phenylephrine (PE) attenuated cardiac dysfunction in lipopolysaccharide (LPS)-challenged mice. However, it is unclear whether PE suppresses sepsis-induced cardiomyocyte apoptosis. Here, we investigated the effects of PE on cardiomyocyte apoptosis in LPS-treated adult rat ventricular myocytes (ARVMs) and septic rats induced by cecal ligation and puncture. Cardiomyocyte apoptosis and caspase activity were detected by TUNEL and spectrophotometrical assay, respectively. Bax, Bcl-2 and cytochrome c (Cyt c) levels as well as IκBα, ERK1/2, p38 MAPK, JNK and cardiac troponin I (cTnI) phosphorylation were analyzed by Western blotting, and TNF-α concentration was analyzed by ELISA. PE inhibited LPS-induced caspase-3 activation in ARVMs, which was reversed by prazosin (a membrane permeable α1-AR antagonist), but not by CGP12177A (a membrane impermeable α1-AR antagonist). PE upregulated phosphorylated ERK1/2 and Bcl-2 contents, decreased TNF-α and Bax levels, Cyt c release, caspase-8/-9 activities as well as IκBα, p38MAPK and JNK phosphorylation in LPS-treated ARVMs, all of which were abolished by prazosin. Treatment with U0126 (a specific ERK1/2 inhibitor) reversed the effects of PE on IκBα, p38MAPK and JNK phosphorylation as well as caspase-3/-8/-9 activation in LPS-treated ARVMs. In septic rats, PE not only inhibited myocardial apoptosis as well as IκBα, p38MAPK, and JNK phosphorylation, but also upregulated myocardial phosphorylated ERK1/2. Furthermore, PE inhibited myocardial cTnI phosphorylation and improved cardiac function in septic rats. Taken together, our data suggest that α1-AR activation by PE inhibits sepsis-induced cardiomyocyte apoptosis and cardiac dysfunction via activating ERK1/2 signal pathway.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | | | | | | | | | | |
Collapse
|
6
|
Mangiferin Attenuates Myocardial Ischemia-Reperfusion Injury via MAPK/Nrf-2/HO-1/NF- κB In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7285434. [PMID: 31249649 PMCID: PMC6535818 DOI: 10.1155/2019/7285434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/20/2019] [Accepted: 03/14/2019] [Indexed: 01/10/2023]
Abstract
The aim of this study was to investigate the cardioprotective effect of mangiferin (MAF) in vitro and in vivo. Oxidative stress and inflammatory injury were detected in coronary artery ligation in rats and also in hypoxia-reoxygenation- (H/R-) induced H9c2 cells. MAF inhibited myocardial oxidative stress and proinflammatory cytokines in rats with coronary artery occlusion. The ST segment of MAF treatment groups also resumed. Triphenyltetrazolium chloride (TTC) staining and pathological analysis showed that MAF could significantly reduce myocardial injury. In vitro data showed that MAF could improve hypoxia/reoxygenation- (H/R-) induced H9c2 cell activity. In addition, MAF could significantly reduce oxidative stress and inflammatory pathway protein expression in H/R-induced H9c2 cells. This study has clarified the protective effects of MAF on myocardial injury and also confirmed that oxidative stress and inflammation were involved in the myocardial ischemia-reperfusion injury (I/R) model.
Collapse
|
7
|
Jin H, Zhao Y, Yang J, Zhang X, Ma S. Hyperthermia enhances the sensitivity of pancreatic cancer SW1990 cells to gemcitabine through ROS/JNK signaling. Oncol Lett 2018; 16:6742-6748. [PMID: 30405817 DOI: 10.3892/ol.2018.9455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 05/25/2018] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive type of cancer. Gemcitabine (GEM) is a standard chemotherapeutic treatment of advanced PC; however, it requires improvement, and more effective therapeutic methods must be further explored. In the present study, hyperthermia combined with GEM was used on the PC cell line SW1990. The results revealed that mild hyperthermia (at 42°C) effectively increased the inhibitory effect of GEM on cell viability, as determined using an MTT assay, and increased the effect of GEM-induced apoptosis, as determined using an Annexin V-fluorescein isothiocyanate/propidium iodide assay, in PC SW1990 cells. Additionally, it resulted in increased S-phase arrest, downregulated the expression of the anti-apoptosis protein B-cell lymphoma 2 and upregulated the expression of the pro-apoptosis protein Bcl-2-associated X protein, cleaved caspase-3 and cleaved caspase-9, as determined using a reverse transcription-quantitative polymerase chain reaction and western blot analysis. Furthermore, it was revealed that hyperthermia resulted in the rapid generation of reactive oxygen species (ROS) and substantial activation of c-Jun-N-terminal kinase (JNK). The introduction of ROS and JNK inhibitors suppressed hyperthermia-induced apoptosis in GEM-treated cells, suggesting that hyperthermia increased GEM cytotoxicity in PC SW1990 cells by inducing apoptosis via the ROS/JNK signaling pathway.
Collapse
Affiliation(s)
- Hangbin Jin
- Department of Gastroenterology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China.,Department of Oncology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yanyan Zhao
- Department of Oncology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jianfeng Yang
- Department of Gastroenterology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shenglin Ma
- Department of Oncology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
8
|
Ray A, Kambali M, Ravindranath V. Thiol Oxidation by Diamide Leads to Dopaminergic Degeneration and Parkinsonism Phenotype in Mice: A Model for Parkinson's Disease. Antioxid Redox Signal 2016; 25:252-67. [PMID: 27121974 DOI: 10.1089/ars.2015.6602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS This study investigates the role of thiol homeostasis disruption in Parkinson's disease (PD) pathogenesis using a novel animal model. A single unilateral administration of the thiol oxidant, diamide (1.45 μmol) into substantia nigra (SN) of mice leads to locomotor deficits and degeneration of dopaminergic (DA) neurons in SN pars compacta (SNpc). RESULTS Diamide-injected mice showed hemiparkinsonian behavior, measured as spontaneous contralateral body rotations, poor grip strength, and impaired locomotion on a rotarod. We observed a significant loss of DA neurons in ipsilateral but not contralateral SNpc and their striatal fibers. This was accompanied by increased Fluoro-Jade C-positive cells and a loss of NeuN-positive neurons, indicative of neurodegeneration. Importantly, diamide injection led to α-synuclein aggregation in ipsilateral SNpc, a hallmark of PD pathology not often seen in animal models of PD. On investigating putative mechanism(s) involved, we observed a loss of glutathione, which is essential for maintaining protein thiol homeostasis (PTH). Concomitantly, the redox-sensitive ASK1-p38 mitogen-activated protein kinase (MAPK) death signaling pathway was activated in the ipsilateral but not contralateral ventral midbrain through dissociation of ASK1-Trx1 complex. In Neuro-2a cells, diamide activated ASK1-p38 cascade through Trx1 oxidation, leading to cell death, which was abolished by ASK1 knockdown. INNOVATION Since diamide selectively disrupts PTH, DA neurons appear to be vulnerable to such perturbations and even a single insult with a thiol oxidant can result in long-lasting degeneration. CONCLUSION Identification of the role of PTH dysregulation in neurodegeneration, especially in early PD, not only facilitates an understanding of novel regulatory features of molecular signaling cascades but also may aid in developing disease-modifying strategies for PD. Antioxid. Redox Signal. 25, 252-267.
Collapse
Affiliation(s)
- Ajit Ray
- 1 Centre for Neuroscience, Indian Institute of Science , Bangalore, India .,2 National Brain Research Centre , Manesar, India
| | - Maltesh Kambali
- 1 Centre for Neuroscience, Indian Institute of Science , Bangalore, India
| | | |
Collapse
|
9
|
Suppressed expression of mitogen-activated protein kinases in hyperthermia induced defective neural tube. Neurosci Lett 2015; 594:6-11. [PMID: 25818329 DOI: 10.1016/j.neulet.2015.03.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/05/2015] [Accepted: 03/23/2015] [Indexed: 11/23/2022]
Abstract
Neural tube defects (NTDs) are common congenital malformations. Mitogen-activated protein kinases (MAPKs) pathway is involved in many physiological processes. HMGB1 has been showed closely associated with neurulation and NTDs induced by hyperthermia and could activate MAPKs pathway. Since hyperthermia caused increased activation of MAPKs in many systems, the present study aims to investigate whether HMGB1 contributes to hyperthermia induced NTDs through MAPKs pathway. The mRNA levels of MAPKs and HMGB1 between embryonic day 8.5 and 10 (E8.5-10) in hyperthermia induced defective neural tube were detected by real-time quantitative polymerase chain reaction (qPCR). By immunofluorescence and western blotting, the expressions of HMGB1 and phosphorylated MAPKs (ERK1/2, JNK and p38) in neural tubes after hyperthermia were studied. The mRNA levels of MAPKs and HMGB1, as well as the expressions of HMGB1 along with phosphorylated JNK, p38 and ERK, were downregulated in NTDs groups induced by hyperthermia compared with control. The findings suggested that HMGB1 may contribute to hyperthermia induced NTDs formation through decreased cell proliferation due to inhibited phosphorylated ERK1/2 MAPK.
Collapse
|
10
|
Nilsson GE, Vaage J, Stensløkken KO. Oxygen- and temperature-dependent expression of survival protein kinases in crucian carp (Carassius carassius) heart and brain. Am J Physiol Regul Integr Comp Physiol 2015; 308:R50-61. [PMID: 25377478 DOI: 10.1152/ajpregu.00094.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Living without oxygen is limited to very few vertebrates, one species being the fresh water fish crucian carp (Carassius carassius), which can survive months of anoxia at low temperatures. Mammalian heart and brain are particularly intolerant to oxygen deprivation, yet these organs can be conditioned to display increased resistance, possibly due to activation of several protein kinases. We hypothesized increased phosphorylation status of these kinases in hypoxic and anoxic crucian carp heart and brain. Moreover, we wanted to investigate whether the kinases showing the strongest phosphorylation during hypoxia/anoxia, ERK 1/2, p38-MAPK, JNK, PKCε, and PKCδ, also had increased expression and phosphorylation at cold temperatures, to better cope with the anoxic periods during winter. We found small differences in the phosphorylation status of ERK 1/2, p38-MAPK, JNK, PKCε, and PKCδ during 10 days of severe hypoxia in both heart and brain (0.3 mg O₂/l) and varying responses to reoxygenation. In contrast, 7 days of anoxia (<0.01 mg O₂/l) markedly increased phosphorylation of ERK 1/2, p38-MAPK, JNK in the heart, and p38-MAPK and PKCε in the brain. Similarly, varying acclimation temperature between 4, 10 and 20°C induced large changes in phosphorylation status. Total protein expression in heart and brain neither changed during different oxygen regimes nor with different acclimation temperatures, except for ERK 1/2, which slightly decreased in the heart at 4°C compared with 20°C. A phylogenetic analysis confirmed that these protein kinases are evolutionarily conserved across a wide range of vertebrate species. Our findings indicate important roles of several protein kinases during oxygen deprivation.
Collapse
Affiliation(s)
- Göran E Nilsson
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo Hospital, Oslo, Norway; and
| | | |
Collapse
|
11
|
Cui ZG, Piao JL, Kondo T, Ogawa R, Tsuneyama K, Zhao QL, Feril LB, Inadera H. Molecular mechanisms of hyperthermia-induced apoptosis enhanced by docosahexaenoic acid: Implication for cancer therapy. Chem Biol Interact 2014; 215:46-53. [DOI: 10.1016/j.cbi.2014.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/08/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
|
12
|
Jin C, Guo J, Qiu X, Ma K, Xiang M, Zhu X, Guo J. IGF-1 induces iNOS expression via the p38 MAPK signal pathway in the anti-apoptotic process in pulmonary artery smooth muscle cells during PAH. J Recept Signal Transduct Res 2014; 34:325-31. [PMID: 24673524 DOI: 10.3109/10799893.2014.903417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Apoptosis and cell proliferation are two important cellular processes that determine the accumulation of pulmonary artery smooth muscle cells (PASMC) during pulmonary arterial hypertension (PAH). Insulin-like growth factor 1 (IGF-1) is an endocrine and autocrine/paracrine growth factor that circulates at high levels in the plasma and is expressed in most cell types. IGF-1 has major effects on development, cell growth and differentiation, also tissue repair. Inducible nitric oxide synthase (iNOS) has been shown to serve many vasoprotective roles in vascular smooth muscle cells (VSMCs) including inhibition of VSMC proliferation and migration and stimulation of endothelial cell growth. In this study, we investigated the involvement of iNOS in the process of IGF-1-induced inhibition of PASMC apoptosis. We also examined the role of p38 mitogen-activated protein kinase (MAPK) in the IGF-1-induced iNOS activation. Our results show that exogenous IGF-1 induced the up-regulation of iNOS in PASMC. Immunofluorescence of IGF-1 and iNOS showed a decreased immunostaining of both IGF-1 and iNOS in the cytoplasm and the perinucleus under serum deprivation condition. iNOS inhibition in PASMC in vitro markedly induced IGF-1-mediated anti-apoptosis as assessed by the cell viability measurement, Western blot, mitochondrial potential analysis and nuclear morphology determination. A p38 MAPK inhibitor blocked all the effects of IGF-1 on iNOS. Our findings suggest that IGF-1 inhibits cells apoptosis in PASMC by activating the p38 MAPK-iNOS transduction pathway. This mechanism may contribute to the accumulation of PASMC in early human PAH.
Collapse
|
13
|
Cui ZG, Piao JL, Rehman MU, Ogawa R, Li P, Zhao QL, Kondo T, Inadera H. Molecular mechanisms of hyperthermia-induced apoptosis enhanced by withaferin A. Eur J Pharmacol 2014; 723:99-107. [DOI: 10.1016/j.ejphar.2013.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 11/13/2013] [Accepted: 11/23/2013] [Indexed: 01/02/2023]
|
14
|
Protective effect of Homer 1a on tumor necrosis factor-α with cycloheximide-induced apoptosis is mediated by mitogen-activated protein kinase pathways. Apoptosis 2013; 17:975-88. [PMID: 22660975 DOI: 10.1007/s10495-012-0736-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Although Homer 1, of the postsynaptic density, regulates apoptosis, the signaling mechanisms are not fully elucidated. In this study, we found that tumor necrosis factor-α (TNF-α)/cycloheximide (CHX) treatment transiently increased Homer 1a (the short variant of Homer 1), but did not affect Homer 1b/c (the long variant of Homer 1). Overexpression of Homer 1a blocked TNF-α/CHX-induced apoptotic cell death, whereas inhibition of Homer 1a induction enhanced the pro-apoptotic effect of TNF-α/CHX treatment. Moreover, brain-derived neurotrophic factor, as a potential activator of endogenous Homer 1a, inhibited apoptotic cell death after TNF-α/CHX treatment through induction of Homer 1a. Since three major mitogen-activated protein kinase (MAPK) pathways have important roles in apoptosis, we examined if Homer 1a is involved in the effects of MAPK pathways on apoptosis. It was shown that inhibition of the ERK1/2 pathway increased the expression and the protective effect of Homer 1a, but inhibition of the p38 pathway produced the opposite effect. Cross-talk among MAPK pathways was also associated with the regulation of Homer 1a during apoptotic cell death. Blocking the p38 pathway increased the activity in the ERK1/2 pathway, while inhibition of ERK1/2 pathway abolished the effect of p38 inhibitor on Homer 1a. Furthermore, Homer 1a reversely affected the activation of MAPK pathways. These findings suggest that Homer 1a plays an important role in the prevention of apoptotic cell death and contributes to distinct regulatory effects of MAPK pathways on apoptotic cell death.
Collapse
|
15
|
Aggeli IK, Zacharias T, Papapavlou G, Gaitanaki C, Beis I. Calcium paradox induces apoptosis in the isolated perfused Rana ridibunda heart: involvement of p38-MAPK and calpain. Can J Physiol Pharmacol 2013; 91:1095-106. [DOI: 10.1139/cjpp-2013-0081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
“Calcium paradox” as a term describes the deleterious effects conferred to a heart perfused with a calcium-free solution followed by repletion, including loss of mechanical activity and sarcomere disruption. Given that the signaling mechanisms triggered by calcium paradox remain elusive, in the present study, we tried to investigate them in the isolated perfused heart from Rana ridibunda. Calcium paradox was found to markedly activate members of the MAPKs (p43-ERK, JNKs, p38-MAPK). In addition to lactate dehydrogenase (LDH) release in the perfusate (indicative of necrosis), we also confirmed the occurrence of apoptosis by using the TUNEL assay and identifying poly(ADP-ribose) polymerase (PARP) fragmentation and upregulated Bax expression. Furthermore, using MDL28170 (a selective calpain inhibitor), a role for this protease was revealed. In addition, various divalent cations were shown to exert a protective effect against the calcium paradox. Interestingly, SB203580, a p38-MAPK inhibitor, alleviated calcium-paradox-conferred apoptosis. This result indicates that p38-MAPK plays a pro-apoptotic role, contributing to the resulting myocardial dysfunction and cell death. To our knowledge, this is the first time that the calcium paradox has been shown to induce apoptosis in amphibians, with p38-MAPK and calpain playing significant roles.
Collapse
Affiliation(s)
- Ioanna-Katerina Aggeli
- Department of Animal and Human Physiology, School of Biology, University of Athens, University campus, Athens, 157 84, Greece
| | - Triantafyllos Zacharias
- Department of Animal and Human Physiology, School of Biology, University of Athens, University campus, Athens, 157 84, Greece
| | - Georgia Papapavlou
- Department of Animal and Human Physiology, School of Biology, University of Athens, University campus, Athens, 157 84, Greece
| | - Catherine Gaitanaki
- Department of Animal and Human Physiology, School of Biology, University of Athens, University campus, Athens, 157 84, Greece
| | - Isidoros Beis
- Department of Animal and Human Physiology, School of Biology, University of Athens, University campus, Athens, 157 84, Greece
| |
Collapse
|
16
|
Feidantsis K, Anestis A, Michaelidis B. Seasonal variations of anti-/apoptotic and antioxidant proteins in the heart and gastrocnemius muscle of the water frog Pelophylax ridibundus. Cryobiology 2013; 67:175-83. [DOI: 10.1016/j.cryobiol.2013.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/22/2013] [Accepted: 06/26/2013] [Indexed: 01/08/2023]
|
17
|
The combination of silencing BAG3 and inhibition of the JNK pathway enhances hyperthermia sensitivity in human oral squamous cell carcinoma cells. Cancer Lett 2013; 335:52-7. [DOI: 10.1016/j.canlet.2013.01.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 11/17/2022]
|
18
|
Lee BS, Kim SH, Jin T, Choi EY, Oh J, Park S, Lee SH, Chung JH, Kang SM. Protective effect of survivin in Doxorubicin-induced cell death in h9c2 cardiac myocytes. Korean Circ J 2013; 43:400-7. [PMID: 23882289 PMCID: PMC3717423 DOI: 10.4070/kcj.2013.43.6.400] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/25/2013] [Accepted: 05/02/2013] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Apoptosis has been known to be an important mechanism of doxorubicin-induced cardiotoxicity. Survivin, which belongs to the inhibitor of apoptosis protein family, is associated with apoptosis and alteration of the cardiac myocyte molecular pathways. Therefore, we investigated the anti-apoptotic effect and cellular mechanisms of survivin using a protein delivery system in a doxorubicin-induced cardiac myocyte injury model. MATERIALS AND METHODS We constructed a recombinant survivin which was fused to the protein transduction domain derived from HIV-TAT protein. In cultured H9c2 cardiac myocytes, TAT-survivin (1 µM) was added for 1 hour prior to doxorubicin (1 µM) treatment for 24 hours. Cell viability and apoptosis were evaluated by 2-(4,5-dimethyltriazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, caspase-3 activity, and terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling assay. We measured the expression levels of several apoptosis-related signal proteins. RESULTS The survivin level was significantly reduced in a dose dependent manner up to 1 µM of doxorubicin in concentration. Purified recombinant TAT-survivin protein was efficiently delivered to H9c2 cardiac myocytes, and its transduction showed an anti-apoptotic effect, demonstrated by reduced caspase-3 activity and the apoptotic index, concomitantly with increased cell viability against doxorubicin injury. The phosphorylation of p38 mitogen-activated protein (MAP) kinase and the release of Smac from mitochondria were suppressed and the expression levels of Bcl-2 and cAMP response element-binding protein (CREB), the transcription factor of Bcl-2, were recovered following TAT-survivin transduction, indicating that survivin had an anti-apoptotic effect against doxorubicin injury. CONCLUSION Our results suggest that survivin has a potentially cytoprotective effect against doxorubicin-induced cardiac myocyte apoptosis through mechanisms that involve a decrease in the phosphorylation of p38 MAP kinase, mitochondrial Smac release, and increased expression of Bcl-2 and CREB.
Collapse
Affiliation(s)
- Beom Seob Lee
- Graduate Program in Science for Aging, Yonsei University, Seoul, Korea. ; Cardiology Division, Severance Cardiovascular Hospital and Cardiovascular Research Institute, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Aggeli IK, Koustas E, Gaitanaki C, Beis I. Curcumin acts as a pro-oxidant inducing apoptosis via JNKs in the isolated perfused Rana ridibunda heart. ACTA ACUST UNITED AC 2013; 319:328-39. [PMID: 23630153 DOI: 10.1002/jez.1797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 02/05/2023]
Abstract
Amphibians are known to better tolerate and endure adverse environmental conditions such as redox imbalances conferred by reactive oxygen species (ROS), compared to mammals. Interestingly, the exact adaptation strategies and signaling mechanisms mediating these effects have not been fully elucidated. Therefore, in the present study, we probed into the molecular response of the isolated perfused Rana ridibunda heart to curcumin, in the context of mitogen-activated protein kinases (MAPKs) phosphorylation patterns and apoptotic markers occurrence. In particular, this polyphenol was found to exert a pro-oxidant effect in our model and to significantly upregulate p38-MAPK and JNKs phosphorylation (thus activation). The early apoptosis observed, substantiated by poly(ADP-ribose) polymerase (PARP) cleavage, was established to be JNKs- and ROS-mediated, while no involvement of p38-MAPK was detected. Subsequently, the pro-oxidative activity of curcumin was confirmed to mimic H(2) O(2). Furthermore, NADPH oxidase as well as Na(+) /K(+) -ATPase were found to mediate JNKs phosphorylation as well as PARP proteolytic cleavage. Curcumin exerts pleiotropic actions, both beneficial and detrimental and is currently the subject of intense scientific research. Being a low-molecular-weight antioxidant, it is intriguing to investigate curcumin's role in redox homeostasis in the amphibian heart, under conditions that apparently favor its pro-oxidative properties. Comparative studies of its multifaceted role in different species may contribute to the clarification of the signaling mechanisms it triggers and the terminal physiological response it confers. Collectively, this is to our knowledge, the first time that the signal transduction pathways stimulated by curcumin have been assessed in a non-mammalian species.
Collapse
Affiliation(s)
- Ioanna-Katerina Aggeli
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, Athens, Greece
| | | | | | | |
Collapse
|
20
|
Feidantsis K, Anestis A, Vasara E, Kyriakopoulou-Sklavounou P, Michaelidis B. Seasonal variations of cellular stress response in the heart and gastrocnemius muscle of the water frog (Pelophylax ridibundus). Comp Biochem Physiol A Mol Integr Physiol 2012; 162:331-9. [DOI: 10.1016/j.cbpa.2012.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
|
21
|
Yao CL, Somero GN. The impact of acute temperature stress on hemocytes of invasive and native mussels (Mytilus galloprovincialis and M. californianus): DNA damage, membrane integrity, apoptosis and signalling pathways. J Exp Biol 2012; 215:4267-77. [DOI: 10.1242/jeb.073577] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Summary
We investigated effects of acute heat- and cold stress on cell viability, lysosome membrane stability, double- and single-stranded DNA breakage, and signalling mechanisms involved in cellular homeostasis and apoptosis in hemocytes of native and invasive mussels, Mytilus californianus and M. galloprovincialis, respectively. Both heat stress (28ºC, 32ºC) and cold stress (2ºC, 6ºC) led to significant double- and single-stranded breaks in DNA. The types and extents of DNA damage were temperature- and time-dependent, as was caspase-3 activation, an indicator of apoptosis, which may occur in response to DNA damage. Hemocyte viability and lysosomal membrane stability decreased significantly under heat stress. Western blot analyses of hemocyte extracts with antibodies for proteins associated with cell signalling and stress responses [including members of the phospho-specific Mitogen Activated Protein Kinase (MAPK) family (c-JUN NH(2)-terminal kinase (JNK) and p38-MAPK) and apoptosis executor caspase-3] revealed that heat- and cold stress induced a time-dependent activation of JNK, p38-MAPK and caspase-3 and that these signalling and stress responses differed between species. Thermal limits for activation of cell signalling processes linked to repair of stress-induced damage may help determine cellular thermal tolerance limits. Our results show similarities in responses to cold- and heat stress and suggest causal linkages between levels of DNA damage at both extremes of temperature and downstream regulatory responses, including induction of apoptosis. Compared to M. californianus, M. galloprovincialis might have a wider temperature tolerance due to a lower amount of double-stranded DNA damage, faster signalling activation and transduction, and stronger repair ability against temperature stress.
Collapse
|
22
|
ROS and RNS signaling in heart disorders: could antioxidant treatment be successful? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:293769. [PMID: 21912722 PMCID: PMC3170796 DOI: 10.1155/2011/293769] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 11/29/2022]
Abstract
There is not too much success in the antioxidant treatment of heart deceases in humans. However a new approach is now developed that suggests that depending on their structures and concentrations antioxidants can exhibit much more complicated functions in many pathological disorders. It is now well established that physiological free radicals superoxide and nitric oxide together with their derivatives hydrogen peroxide and peroxynitrite (all are named reactive oxygen species (ROS) and reactive nitrogen species (RNS)) play a more important role in heart diseases through their signaling functions. Correspondingly this work is dedicated to the consideration of damaging signaling by ROS and RNS in various heart and vascular disorders: heart failure (congestive heart failure or CHF), left ventricular hypertrophy (LVH), coronary heart disease, cardiac arrhythmias, and so forth. It will be demonstrated that ROS overproduction (oxidative stress) is a main origin of the transformation of normal physiological signaling processes into the damaging ones. Furthermore the favorable effects of low/moderate oxidative stress through preconditioning mechanisms in ischemia/reperfusion will be considered. And in the last part we will discuss the possibility of efficient application of antioxidants and enzyme/gene inhibitors for the regulation of damaging ROS signaling in heart disorders.
Collapse
|
23
|
Li Y, Hao Y, Gao M, Dong W, Hu M, Yuan S, Song L. IKKβ downregulation is critical for triggering JNKs-dependent cell apoptotic response in the human hepatoma cells under arsenite exposure. Mol Cell Biochem 2011; 358:61-6. [PMID: 21688155 DOI: 10.1007/s11010-011-0921-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 06/07/2011] [Indexed: 11/26/2022]
Abstract
Arsenite has a long history in treating leukemia, which might be also effective in the therapy of other cancers. Our previous published data have demonstrated that arsenite exposure induces apoptosis in the HepG2 human hepatoma cells via activating JNKs/AP-1 pathway, but the upstream signaling events responsible for JNKs (c-Jun N-terminal kinase) cascade activation have not been fully discovered. Since cross-talk between IKK/NF-κB and JNKs pathways under stress conditions is a hot topic, in this article, we investigate the potential roles of IKKα and IKKβ, the catalytic subunits of IKK complexes, in the arsenite-induced JNKs pathway activation in the HepG2 cells. We found that arsenite exposure induced JNKs and AP-1 activation accompanying with a significant reduction of both IKKα and IKKβ expressions. Overexpression of IKKβ, but not of IKKα, inhibited arsenite-induced MKK7/JNKs/AP-1 pathway activation as well as the apoptotic response. Therefore, we conclude that the downregulation of IKKβ expression is the prerequisite signaling event for mediating JNKs pathway activation and the cellular apoptotic response in the HepG2 cells under arsenite exposure. Targeting IKKβ might be helpful to enhance the tumor therapeutic effect of arsenite.
Collapse
Affiliation(s)
- Yi Li
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, Beijing 100850, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Chiou SH, Wu CY. Clinical proteomics: current status, challenges, and future perspectives. Kaohsiung J Med Sci 2011; 27:1-14. [PMID: 21329886 DOI: 10.1016/j.kjms.2010.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 12/20/2022] Open
Abstract
This account will give an overview and evaluation of the current advances in mass spectrometry (MS)-based proteomics platforms and technology. A general review of some background information concerning the application of these methods in the characterization of molecular sizes and related protein expression profiles associated with different types of cells under varied experimental conditions will be presented. It is intended to provide a concise and succinct overview to those clinical researchers first exposed to this foremost powerful methodology in modern life sciences of postgenomic era. Proteomic characterization using highly sophisticated and expensive instrumentation of MS has been used to characterize biological samples of complex protein mixtures with vastly different protein structure and composition. These systems are then used to highlight the versatility and potential of the MS-based proteomic strategies for facilitating protein expression analysis of various disease-related organisms or tissues of interest. Major MS-based strategies reviewed herein include (1) matrix-assisted laser desorption ionization-MS and electron-spray ionization proteomics; (2) one-dimensional or two-dimensional gel-based proteomics; (3) gel-free shotgun proteomics in conjunction with liquid chromatography/tandem MS; (4) Multiple reaction monitoring coupled tandem MS quantitative proteomics and; (5) Phosphoproteomics based on immobilized metal affinity chromatography and liquid chromatography-MS/MS.
Collapse
Affiliation(s)
- Shyh-Horng Chiou
- Graduate Institute of Medicine and Center for Research Resources and Development, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | |
Collapse
|
25
|
Gourgou E, Aggeli IK, Beis I, Gaitanaki C. Hyperthermia-induced Hsp70 and MT20 transcriptional upregulation are mediated by p38-MAPK and JNKs in Mytilus galloprovincialis (Lamarck); a pro-survival response. ACTA ACUST UNITED AC 2010; 213:347-57. [PMID: 20038670 DOI: 10.1242/jeb.036277] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study we investigated the signal transduction cascades triggered by acute thermal stress in Mytilus galloprovincialis gills. This particular species has been reported to exhibit a significant tolerance to high temperatures; thus, it was intriguing to examine the molecular mechanisms responsible for this extraordinary trait. In particular, exposure to 30 degrees C was found to cause a significant and sustained stimulation of p38-MAPK phosphorylation while the activation profile of JNKs was transient and relatively moderate. We also observed that hyperthermia induced apoptosis as a delayed response, with both MAPK subfamilies rapidly translocating to the nucleus. The phosphorylation of cJun, ATF2 and NFkappaB was detected next. Using selective inhibitors, phosphorylation of these transcription factors was established to be dependent on p38-MAPK or JNKs. Subsequently, potential changes in gene expression were assessed. In this context, hyperthermia resulted in the transcriptional upregulation of Hsp70 and MT20 genes with a widely known salutary effect, preserving mussel fitness and performance under adverse environmental conditions. Interestingly, p38-MAPK and JNKs were found to mediate the hyperthermia-induced Hsp70 and MT20 upregulation as well as the delayed induction of apoptosis under the interventions studied. Overall this is, to our knowledge, the first time that an insight into the compensatory survival ;programme' initiated in Mytilus galloprovincialis gills, contributing to this organism's exceptional tolerance to thermal stress, has been gained. In particular, we provide evidence demonstrating the principal role of p38-MAPK and JNKs in transducing the stress signal via mobilization of specific transcription factors and the transcriptional upregulation of cytoprotective genes.
Collapse
Affiliation(s)
- E Gourgou
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, Athens, 157 84, Greece
| | | | | | | |
Collapse
|
26
|
Lipke AB, Matute-Bello G, Herrero R, Kurahashi K, Wong VA, Mongovin SM, Martin TR. Febrile-range hyperthermia augments lipopolysaccharide-induced lung injury by a mechanism of enhanced alveolar epithelial apoptosis. THE JOURNAL OF IMMUNOLOGY 2010; 184:3801-13. [PMID: 20200273 DOI: 10.4049/jimmunol.0903191] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fever is common in critically ill patients and is associated with worse clinical outcomes, including increased intensive care unit mortality. In animal models, febrile-range hyperthermia (FRH) worsens acute lung injury, but the mechanisms by which this occurs remain uncertain. We hypothesized that FRH augments the response of the alveolar epithelium to TNF-alpha receptor family signaling. We found that FRH augmented LPS-induced lung injury and increased LPS-induced mortality in mice. At 24 h, animals exposed to hyperthermia and LPS had significant increases in alveolar permeability without changes in inflammatory cells in bronchoalveolar lavage fluid or lung tissue as compared with animals exposed to LPS alone. The increase in alveolar permeability was associated with an increase in alveolar epithelial apoptosis and was attenuated by caspase inhibition with zVAD.fmk. At 48 h, the animals exposed to hyperthermia and LPS had an enhanced lung inflammatory response. In murine lung epithelial cell lines (MLE-15, LA-4) and in primary type II alveolar epithelial cells, FRH enhanced apoptosis in response to TNF-alpha but not Fas ligand. The increase in apoptosis was caspase-8 dependent and associated with suppression of NF-kappaB activity. The FRH-associated NF-kappaB suppression was not associated with persistence of IkappaB-alpha, suggesting that FRH-mediated suppression of NF-kappaB occurs by means other than alteration of IkappaB-alpha kinetics. These data show for the first time that FRH promotes lung injury in part by increasing lung epithelial apoptosis. The enhanced apoptotic response might relate to FRH-mediated suppression of NF-kappaB activity in the alveolar epithelium with a resultant increase in susceptibility to TNF-alpha-mediated cell death.
Collapse
Affiliation(s)
- Anne B Lipke
- Medical Research Service, VA Puget Sound Medical Center, University of Washington, Seattle, WA 98108, USA
| | | | | | | | | | | | | |
Collapse
|