1
|
Cohen HE, Ray W, Hawkins OH, Kane EA. Potential for Anthropogenic Fin Damage to Affect Individual Responses to Prey in Bluegill Sunfish ( Lepomis macrochirus): A New Hypothesis for Kinematic Studies. INTEGRATIVE ORGANISMAL BIOLOGY (OXFORD, ENGLAND) 2022; 4:obac050. [PMID: 36545048 PMCID: PMC9762888 DOI: 10.1093/iob/obac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022]
Abstract
In fishes, damage to important morphological structures such as fins through natural damage and anthropogenic factors can have cascading effects on prey capture performance and individual fitness. Bluegill sunfish (Lepomis macrochirus) are a common freshwater species in North America, are a model organism for performance studies, and often experience natural injuries. We opportunistically sampled two populations of fish in the lab to generate a hypothesis for the effect of sub-lethal fin damage resulting from the capture technique on kinematic performance during prey capture in bluegill. We found no statistical differences in mean prey capture kinematics or predator accuracy, but damaged fish used more variable kinematics and more readily struck at non-prey items. We suggest that a reduction in stability and individual consistency occurs as a result of fin damage. This difference could have consequences for higher-order ecological interactions such as competitive ability, despite a lack of apparent performance cost at the individual level, and deserves consideration in future studies of prey capture performance in fish.
Collapse
Affiliation(s)
| | - W Ray
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA
| | - O H Hawkins
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - E A Kane
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA,Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| |
Collapse
|
2
|
Peterson AN, Soto AP, McHenry MJ. Pursuit and evasion strategies in the predator-prey interactions of fishes. Integr Comp Biol 2021; 61:668-680. [PMID: 34061183 DOI: 10.1093/icb/icab116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Predator-prey interactions are critical to the biology of a diversity of animals. Although prey capture is determined by the direction, velocity, and timing of motion by both animals, it is generally unclear what strategies are employed by predators and prey to guide locomotion. Here we review our research on fishes that tests the pursuit strategy of predators and the evasion strategy of prey through kinematic measurements and agent-based models. This work demonstrates that fish predators track prey with variations on a deviated-pursuit strategy that is guided by visual cues. Fish prey employ a mixed strategy that varies with factors such as the direction of a predator's approach. Our models consider the stochastic nature of interactions by incorporating measured probability distributions to accurately predict measurements of survivorship. A sensitivity analysis of these models shows the importance of the response distance of prey to their survival. Collectively, this work demonstrates how strategy affects the outcome of predator-prey interactions and articulates the roles of sensing, control, and propulsion. The research program that we have developed has the potential to offer a framework for the study of strategy in the predator-prey interactions of a variety of animals.
Collapse
Affiliation(s)
- Ashley N Peterson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, 92697, CA, U.S.A
| | - Alberto P Soto
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, 92697, CA, U.S.A
| | - Matthew J McHenry
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, 92697, CA, U.S.A
| |
Collapse
|
3
|
Gerullis P, Reinel CP, Schuster S. Archerfish coordinate fin maneuvers with their shots. J Exp Biol 2021; 224:jeb.233718. [PMID: 33785500 DOI: 10.1242/jeb.233718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022]
Abstract
Archerfish down a variety of aerial prey from a range of distances using water jets that they adjust to the size and distance of their prey. We describe here that characteristic rapid fin maneuvers, most notably of the pectoral and pelvic fins, are precisely coordinated with the release of the jet. We discovered these maneuvers in two fish, the jets of which had been characterized in detail, that had been trained to shoot from fixed positions at targets at different heights and that remained stable during their shots. Based on the findings in these individuals, we examined shooting-associated fin movement in 28 further archerfish of two species that could shoot from freely chosen positions at targets at different heights. Slightly before the onset of the water jet, at a time when the shooter remains stable, the pectoral fins of all shooters switched from asynchronous low-amplitude beating to a synchronized rapid forward flap. The onset and duration of the forward and subsequent backward flap were robust across all individuals and shooting angles but depended on target height. The pelvic fins were slowly adducted at the start of the jet and stopped moving after its release. All other fins also showed a characteristic sequence of activation, some starting ∼0.5 s before the shot. Our findings suggest that shooting-related fin maneuvers are needed to stabilize the shooter, and that these maneuvers are an important component in the precise and powerful far-distance shooting in archerfish.
Collapse
Affiliation(s)
- Peggy Gerullis
- Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Caroline P Reinel
- Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
4
|
McKee A, McHenry MJ. The Strategy of Predator Evasion in Response to a Visual Looming Stimulus in Zebrafish ( Danio rerio). Integr Org Biol 2020; 2:obaa023. [PMID: 33791564 PMCID: PMC7750966 DOI: 10.1093/iob/obaa023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A diversity of animals survive encounters with predators by escaping from a looming visual stimulus. Despite the importance of this behavior, it is generally unclear how visual cues facilitate a prey’s survival from predation. Therefore, the aim of this study was to understand how the visual angle subtended on the eye of the prey by the predator affects the distance of adult zebrafish (Danio rerio) from predators. We performed experiments to measure the threshold visual angle and mathematically modeled the kinematics of predator and prey. We analyzed the responses to the artificial stimulus with a novel approach that calculated relationships between hypothetical values for a threshold-stimulus angle and the latency between stimulus and response. These relationships were verified against the kinematic responses of zebrafish to a live fish predator (Herichthys cyanoguttatus). The predictions of our model suggest that the measured threshold visual angle facilitates escape when the predator’s approach is slower than approximately twice the prey’s escape speed. These results demonstrate the capacity and limits to how the visual angle provides a prey with the means to escape a predator.
Collapse
Affiliation(s)
- A McKee
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, Irvine
| | - M J McHenry
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, Irvine
| |
Collapse
|
5
|
Aiello BR, Olsen AM, Mathis CE, Westneat MW, Hale ME. Pectoral fin kinematics and motor patterns are shaped by fin ray mechanosensation during steady swimming in Scarus quoyi. ACTA ACUST UNITED AC 2020; 223:jeb.211466. [PMID: 31862848 DOI: 10.1242/jeb.211466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023]
Abstract
For many fish species, rhythmic movement of the pectoral fins, or forelimbs, drives locomotion. In terrestrial vertebrates, normal limb-based rhythmic gaits require ongoing modulation with limb mechanosensors. Given the complexity of the fluid environment and dexterity of fish swimming through it, we hypothesize that mechanosensory modulation is also critical to normal fin-based swimming. Here, we examined the role of sensory feedback from the pectoral fin rays and membrane on the neuromuscular control and kinematics of pectoral fin-based locomotion. Pectoral fin kinematics and electromyograms of the six major fin muscles of the parrotfish, Scarus quoyi, a high-performance pectoral fin swimmer, were recorded during steady swimming before and after bilateral transection of the sensory nerves extending into the rays and surrounding membrane. Alternating activity of antagonistic muscles was observed and drove the fin in a figure-of-eight fin stroke trajectory before and after nerve transection. After bilateral transections, pectoral fin rhythmicity remained the same or increased. Differences in fin kinematics with the loss of sensory feedback also included fin kinematics with a significantly more inclined stroke plane angle, an increased angular velocity and fin beat frequency, and a transition to the body-caudal fin gait at lower speeds. After transection, muscles were active over a larger proportion of the fin stroke, with overlapping activation of antagonistic muscles rarely observed in the trials of intact fish. The increased overlap of antagonistic muscle activity might stiffen the fin system in order to enhance control and stability in the absence of sensory feedback from the fin rays. These results indicate that fin ray sensation is not necessary to generate the underlying rhythm of fin movement, but contributes to the specification of pectoral fin motor pattern and movement during rhythmic swimming.
Collapse
Affiliation(s)
- Brett R Aiello
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Aaron M Olsen
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Chris E Mathis
- The College, University of Chicago, Chicago, IL 60637, USA
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.,The College, University of Chicago, Chicago, IL 60637, USA
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA .,The College, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Higham TE, Seamone SG, Arnold A, Toews D, Janmohamed Z, Smith SJ, Rogers SM. The ontogenetic scaling of form and function in the spotted ratfish, Hydrolagus colliei (Chondrichthyes: Chimaeriformes): Fins, muscles, and locomotion. J Morphol 2018; 279:1408-1418. [PMID: 30184247 DOI: 10.1002/jmor.20876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 11/07/2022]
Abstract
The alteration of form and function through the life of a fish can have profound impacts on the ability to move through water. Although several studies have examined morphology and function in relation to body size, there is a paucity of data for chondrichthyans, an ancient group of fishes. Ratfishes are interesting in that they utilize flapping pectoral fins to drive movement, and they diverged from elasmobranchs early in the gnathostome phylogeny. Using the spotted ratfish, Hydrolagus colliei, we quantified the scaling of traits relevant for locomotion, including median and paired fin external anatomy, the musculature of the pectoral and pelvic fins, and the kinematics of the pectoral fins. Whereas pelvic fins scaled with either positive allometry (fin span and area) or isometry (fin chord length at the base of the fin), pectoral fin measurements either scaled with negative allometry (fin span and aspect ratio) or isometry (fin area and chord length). Correspondingly, all pelvic fin muscles exhibited positive allometry, whereas pectoral muscles exhibited a mix of isometric and positively allometric growth. Caudal fin area and body frontal area both scaled with positive allometry, whereas dorsal fin area and span scale with isometry. Pectoral fin amplitude during swimming exhibited isometry, and fin beat frequency decreased with body size. Our results highlight the complex changes in form and function throughout ontogeny. Finally, we highlight that hierarchical differentiation in morphology can occur during growth, potentially leading to complex changes in performance of a functional system.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California
| | - Scott G Seamone
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Amanda Arnold
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Desiree Toews
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Zeanna Janmohamed
- Department of Applied Animal Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sara J Smith
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Siomava N, Diogo R. Comparative anatomy of zebrafish paired and median fin muscles: basis for functional, developmental, and macroevolutionary studies. J Anat 2018; 232:186-199. [PMID: 29148042 PMCID: PMC5770327 DOI: 10.1111/joa.12728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2017] [Indexed: 12/17/2022] Open
Abstract
In the last decades, Danio rerio became one of the most used model organisms in various evo-devo studies devoted to the fin skeletal anatomy and fin-limb transition. Surprisingly, there is not even a single paper about the detailed anatomy of the adult muscles of the five fin types of this species. To facilitate more integrative developmental, functional, genetic, and evolutionary studies of the appendicular musculoskeletal system of the zebrafish and to provide a basis for further comparisons with other fishes and tetrapods, we describe here the identity, overall configuration, and attachments of appendicular muscles in a way that can be easily understood and implemented by non-anatomist researchers. We show that the muscle pattern of the caudal fin is very different from patterns seen in other fins but is very consistent within teleosts. Our observations support the idea of the developmental and evolutionary distinction of the caudal fin and point out that the musculature of the adult zebrafish pectoral and pelvic fins is in general very similar. Both paired fins have superficial and deep layers of abductors and adductors going to all/most rays plus the dorsal and ventral arrectors going only to the first ray. Nevertheless, we noted three major differences between the pelvic and pectoral fins of adult zebrafishes: (i) the pectoral girdle lacks a retractor muscle, which is present in the pelvic girdle - the retractor ischii; (ii) the protractor of the pelvic girdle is an appendicular/trunk muscle, while that of the pectoral girdle is a branchiomeric muscle; (iii) the first ray of the pectoral fin is moved by an additional arrector-3. The anal and dorsal fins consist of serially repeated units, each of which comprises one half-ray and three appendicular muscles (one erector, depressor, and inclinator) on each side of the body. The outermost rays are attachment points for the longitudinal protractor and retractor. Based on our results, we discuss whether the pectoral appendage might evolutionarily be closer to the head than to the pelvic appendage and whether the pelvic appendage might have been derived from the trunk/median fins. We discuss a hypothesis of paired fin origin that is a hybrid of the fin-fold and Gegenbaur's theories. Lastly, our data indicate that D. rerio is indeed an appropriate model organism for the appendicular musculature of teleosts in particular and, at least in the case of the paired fins, also of actinopterygians as a whole.
Collapse
Affiliation(s)
- Natalia Siomava
- Department of AnatomyHoward University College of MedicineWashingtonDCUSA
| | - Rui Diogo
- Department of AnatomyHoward University College of MedicineWashingtonDCUSA
| |
Collapse
|
8
|
Lateral movements of a massive tail influence gecko locomotion: an integrative study comparing tail restriction and autotomy. Sci Rep 2017; 7:10865. [PMID: 28883491 PMCID: PMC5589804 DOI: 10.1038/s41598-017-11484-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/22/2017] [Indexed: 11/27/2022] Open
Abstract
Tails are an intricate component of the locomotor system for many vertebrates. Leopard geckos (Eublepharis macularius) possess a large tail that is laterally undulated during steady locomotion. However, the tail is readily shed via autotomy, resulting in the loss of tail function, loss in body mass, and a cranial shift in the center of mass. To elucidate the function of tail undulations, we investigated changes in limb kinematics after manipulating the tail artificially by restricting tail undulations and naturally by removing the tail via autotomy. Restricting tail undulations resulted in kinematic adjustments similar to those that occur following tail autotomy, characterized by more flexed hind limb joints. These data suggest that effects of autotomy on locomotion may be linked to the loss of tail movements rather than the loss of mass or a shift in center of mass. We also provide empirical support for the link between lateral tail undulations and step length through the rotation of the pelvic girdle and retraction of the femur. Restriction and autotomy of the tail limits pelvic rotation, which reduces femur retraction and decreases step length. Our findings demonstrate a functional role for tail undulations in geckos, which likely applies to other terrestrial vertebrates.
Collapse
|
9
|
Williams R, Hale ME. Fin ray sensation participates in the generation of normal fin movement in the hovering behavior of the bluegill sunfish (Lepomis macrochirus). ACTA ACUST UNITED AC 2015; 218:3435-47. [PMID: 26347560 DOI: 10.1242/jeb.123638] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/26/2015] [Indexed: 11/20/2022]
Abstract
For many fish species, the pectoral fins serve as important propulsors and stabilizers and are precisely controlled. Although it has been shown that mechanosensory feedback from the fin ray afferent nerves provides information on ray bending and position, the effects of this feedback on fin movement are not known. In other taxa, including insects and mammals, sensory feedback from the limbs has been shown to be important for control of limb-based behaviors and we hypothesized that this is also the case for the fishes. In this study, we examined the impact of the loss of sensory feedback from the pectoral fins on movement kinematics during hover behavior. Research was performed with bluegill sunfish (Lepomis macrochirus), a model for understanding the biomechanics of swimming and for bio-inspired design of engineered fins. The bluegill beats its pectoral fins rhythmically, and in coordination with pelvic and median fin movement, to maintain a stationary position while hovering. Bilateral deafferentation of the fin rays results in a splay-finned posture where fins beat regularly but at a higher frequency and without adducting fully against the side of the body. For unilateral transections, more irregular changes in fin movements were recorded. These data indicate that sensory feedback from the fin rays and membrane is important for generating normal hover movements but is not necessary for generating rhythmic fin movement.
Collapse
Affiliation(s)
- Richard Williams
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Melina E Hale
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Higham TE, Stewart WJ, Wainwright PC. Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes. Integr Comp Biol 2015; 55:6-20. [DOI: 10.1093/icb/icv052] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Soto A, Stewart WJ, McHenry MJ. When Optimal Strategy Matters to Prey Fish. Integr Comp Biol 2015; 55:110-20. [PMID: 25964496 DOI: 10.1093/icb/icv027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Predator-prey interactions are commonly studied with an interest in determining the optimal strategy for prey. However, the implications of deviating from optimal strategy are often unclear. The present study considered these consequences by studying how the direction of an escape response affects the strategy of prey fish. We simulated these interactions with numerical and analytical mathematics and compared our predictions with measurements in zebrafish larvae (Danio rerio), which are preyed upon by adults of the same species. Consistent with existing theory, we treated the minimum distance between predator and prey as the strategic payoff that prey aim to maximize. We found that these interactions may be characterized by three strategic domains that are defined by the speed of predator relative to the prey. The "fast predator" domain occurs when the predator is more than an order of magnitude faster than the prey. The escape direction of the prey had only a small effect on the minimum distance under these conditions. For the "slow predator" domain, when the prey is faster than the predator, we found that differences in direction had no effect on the minimum distance for a broad range of escape angles. This was the regime in which zebrafish were found to operate. In contrast, the optimal escape angle offers a large benefit to the minimum distance in the intermediate strategic domain. Therefore, optimal strategy is most meaningful to prey fish when predators are faster than prey by less than a factor of 10. This demonstrates that the strategy of a prey animal does not matter under certain conditions that are created by the behavior of the predator.
Collapse
Affiliation(s)
- Alberto Soto
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - William J Stewart
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Matthew J McHenry
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Fu C, Cao ZD, Fu SJ. The effects of caudal fin loss and regeneration on the swimming performance of three cyprinid fish with different swimming capacities. J Exp Biol 2013; 216:3164-74. [DOI: 10.1242/jeb.084244] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
In nature, the caudal fins of fish species are frequently lost to some extent by aggressive behaviour, predation and diseases. To test whether the swimming performance of fish with different swimming capacities would be differentially affected due to caudal fin loss and regeneration, we investigated the critical swimming speed (Ucrit), the swimming metabolic rate (MO2), the tail beat frequency (TBF) and the tail beat amplitude (TBA) after caudal fin loss and regeneration (20 days) in juveniles of three cyprinid fish species: the qingbo (Spinibarbus sinensis) (strong swimmer), the common carp (Cyprinus carpio) (intermediate) and the goldfish (Carassius auratus) (poor swimmer). The Ucrits of the caudal-fin-lost qingbo, common carp and goldfish were 49%, 32% and 35% significantly lower than those of the control groups, respectively. The maximum tail beat amplitude (TBAmax) (all three fishes), the maximum tail beat frequency (TBFmax) (only the common carp and the goldfish) and/or the active metabolic rate (MO2active) (only the common carp) of the caudal-fin-lost fish were significantly higher than those of the control groups. After 20 days of recovery, the caudal fins recovered to 41%, 47% and 24% of those of the control groups for the qingbo, the common carp and the goldfish, respectively. However, the Ucrit values of the fin-regenerated qingbo, common carp and goldfish recovered to 86%, 91% and 95% of those of the control group, respectively. The caudal-fin-regenerated qingbo and common carp showed a significantly higher TBAmax and TBFmax, respectively, compared with those of the control groups. The qingbo had a higher TBFmax but a lower TBAmax than the common carp and the goldfish, which suggested that a strong swimmer may maintain swimming speed primarily by maintaining a greater TBFmax, for which the caudal fin plays a more important role during swimming, than a poor swimmer. The MO2active of fish (common carp) with a redundant respiratory capacity could increase due to caudal fin loss to meet the increase in energy expenditure required by an increase in TBFmax. In addition, the sustain swimming performance may not be the only selective pressure acting on caudal fin size in the qingbo, the common carp and the goldfish and the present caudal fin size of these three fish species may be a trade-off between sustain swimming performance and other factors (e. g. sexual selection; escape responses).
Collapse
|
13
|
The effects of caudal fin amputation on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish species with different metabolic modes. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:456-65. [PMID: 23269108 DOI: 10.1016/j.cbpa.2012.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 11/23/2022]
Abstract
Metabolic competitive modes between digestion and locomotion are classified into three categories, termed the additive, digestion- and locomotion-priority modes. In nature, the caudal fin is frequently observed to sustain damage as a result of social rank, predation or disease. To test whether the metabolic mode changed differently for fish with different metabolic mode after caudal fin amputation as a consequence of intensified energy competition, we investigated the swimming performance of fasting and fed fish with and without the caudal fin in juveniles of three cyprinid fish species: qingbo (Spinibarbus sinensis, locomotion-priority mode), common carp (Cyprinus carpio, additive mode) and goldfish (Carassius auratus, digestion-priority mode). The critical swimming speed (U(crit)) of fasting qingbo, common carp and goldfish decreased significantly by 49%, 32% and 35% after caudal fin amputation. The maximum tail beat amplitude (TBA(max)) (all three fishes), maximum tail beat frequency (TBF(max)) (only common carp and goldfish) and (or) active metabolic rate (M˙O(2active)) (only common carp) increased significantly after caudal fin amputation. In the control fish, digestion let to a significantly lower U(crit) in goldfish but not in qingbo and common carp, and the M˙O(2active) of digesting common carp was higher than that of fasting fish, suggesting locomotion-priority, additive and digestion-priority metabolic modes in qingbo, common carp and goldfish, respectively. However, after fin amputation, digestion showed no effect on U(crit) in any of the three fishes, and only the digesting common carp showed a higher M˙O(2active) than their fasting counterparts. This result suggested that the metabolic mode of the goldfish changed from the digestion- to the locomotion-priority mode, whereas the metabolic mode of the other two fishes remained the same after fin amputation. The metabolic mode of the common carp showed no change after fin amputation likely due to the high flexibility of the cardio-respiratory capacity of this fish, as indicated by the increased M˙O(2active). Although the metabolic mode remained the same, the feeding metabolism in the fin-amputated qingbo was down-regulated at a lower swimming speed than that of the control group due to the intensified competition between digestion and locomotion. The underlying mechanism for the metabolic mode change in the goldfish is not clear and needs further investigation. However, we speculated that in caudal-fin-intact goldfish, the decreased swimming efficiency, rather than irreducible digestive loading, caused a decreased U(crit) in digesting fish (i.e. false digestion-priority mode), and the metabolic mode should not be judged simply by the relative magnitude of the metabolic rates of fasting and digesting fish.
Collapse
|
14
|
Weese DJ, Ferguson MM, Robinson BW. Contemporary and historical evolutionary processes interact to shape patterns of within-lake phenotypic divergences in polyphenic pumpkinseed sunfish, Lepomis gibbosus. Ecol Evol 2012; 2:574-92. [PMID: 22822436 PMCID: PMC3399146 DOI: 10.1002/ece3.72] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/23/2022] Open
Abstract
Historical and contemporary evolutionary processes can both contribute to patterns of phenotypic variation among populations of a species. Recent studies are revealing how interactions between historical and contemporary processes better explain observed patterns of phenotypic divergence than either process alone. Here, we investigate the roles of evolutionary history and adaptation to current environmental conditions in structuring phenotypic variation among polyphenic populations of sunfish inhabiting 12 postglacial lakes in eastern North America. The pumpkinseed sunfish polyphenism includes sympatric ecomorphs specialized for littoral or pelagic lake habitats. First, we use population genetic methods to test the evolutionary independence of within-lake phenotypic divergences of ecomorphs and to describe patterns of genetic structure among lake populations that clustered into three geographical groupings. We then used multivariate analysis of covariance (MANCOVA) to partition body shape variation (quantified with geometric morphometrics) among the effects of evolutionary history (reflecting phenotypic variation among genetic clusters), the shared phenotypic response of all populations to alternate habitats within lakes (reflecting adaptation to contemporary conditions), and unique phenotypic responses to habitats within lakes nested within genetic clusters. All effects had a significant influence on body form, but the effects of history and the interaction between history and contemporary habitat were larger than contemporary processes in structuring phenotypic variation. This highlights how divergence can be better understood against a known backdrop of evolutionary history.
Collapse
Affiliation(s)
- Dylan J Weese
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
15
|
Noble C, Jones HAC, Damsgård B, Flood MJ, Midling KØ, Roque A, Sæther BS, Cottee SY. Injuries and deformities in fish: their potential impacts upon aquacultural production and welfare. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:61-83. [PMID: 21918861 DOI: 10.1007/s10695-011-9557-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 09/04/2011] [Indexed: 05/31/2023]
Abstract
Fish can be the recipients of numerous injuries that are potentially deleterious to aquacultural production performance and welfare. This review will employ a systematic approach that classifies injuries in relation to specific anatomical areas of the fish and will evaluate the effects of injury upon production and welfare. The selected areas include the (1) mouth, (2) eye, (3) epidermis and (4) fins. These areas cover a large number of external anatomical features that can be injured during aquacultural procedures and husbandry practices. In particular, these injuries can be diagnosed on live fish, in a farm environment. For each anatomical feature, this review addresses (a) its structure and function and (b) defines key injuries that can affect the fish from a production and a welfare perspective. Particular attention is then given to (c) defining known and potential aquacultural risk factors before (d) identifying and outlining potential short- and long-term farming practices and mitigation strategies to reduce the incidence and prevalence of these injuries. The review then concludes with an analysis of potential synergies between risk factors the type of injury, in addition to identifying potential synergies in mitigation strategies. The paper covers both aquaculture and capture-based aquaculture.
Collapse
Affiliation(s)
- Chris Noble
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Green MH, Ho RK, Hale ME. Movement and function of the pectoral fins of the larval zebrafish (Danio rerio) during slow swimming. J Exp Biol 2011; 214:3111-23. [DOI: 10.1242/jeb.057497] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Pectoral fins are known to play important roles in swimming for many adult fish; however, their functions in fish larvae are unclear. We examined routine pectoral fin movement during rhythmic forward swimming and used genetic ablation to test hypotheses of fin function in larval zebrafish. Fins were active throughout bouts of slow swimming. Initiation was characterized by asymmetric fin abduction that transitioned to alternating rhythmic movement with first fin adduction. During subsequent swimming, fin beat amplitude decreased while tail beat amplitude increased over swimming speeds ranging from 1.47 to 4.56 body lengths per second. There was no change in fin or tail beat frequency with speed (means ± s.d.: 28.2±3.5 and 29.6±1.9 Hz, respectively). To examine potential roles of the pectoral fins in swimming, we compared the kinematics of finless larvae generated with a morpholino knockdown of the gene fgf24 to those of normal fish. Pectoral fins were not required for initiation nor did they significantly impact forward rhythmic swimming. We investigated an alternative hypothesis that the fins function in respiration. Dye visualization demonstrated that pectoral fin beats bring distant fluid toward the body and move it caudally behind the fins, disrupting the boundary layer along the body's surface, a major site of oxygen absorption in larvae. Larval zebrafish also demonstrated more fin beating in low oxygen conditions. Our data reject the hypothesis that the pectoral fins of larval zebrafish have a locomotor function during slow, forward locomotion, but are consistent with the hypothesis that the fins have a respiratory function.
Collapse
Affiliation(s)
- Matthew H. Green
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Robert K. Ho
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Melina E. Hale
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Blob RW, Kawano SM, Moody KN, Bridges WC, Maie T, Ptacek MB, Julius ML, Schoenfuss HL. Morphological Selection and the Evaluation of Potential Tradeoffs Between Escape from Predators and the Climbing of Waterfalls in the Hawaiian Stream Goby Sicyopterus stimpsoni. Integr Comp Biol 2010; 50:1185-99. [DOI: 10.1093/icb/icq070] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Abstract
Maneuverability is essential for locomotion. For animals in the environment, maneuverability is directly related to survival. For humans, maneuvers such as turning are associated with increased risk for injury, either directly through tissue loading or indirectly through destabilization. Consequently, understanding the mechanics and motor control of maneuverability is a critical part of locomotion research. We briefly review the literature on maneuvering during locomotion with a focus on turning in bipeds. Walking turns can use one of several different strategies. Anticipation can be important to adjust kinematics and dynamics for smooth and stable maneuvers. During running, turns may be substantially constrained by the requirement for body orientation to match movement direction at the end of a turn. A simple mathematical model based on the requirement for rotation to match direction can describe leg forces used by bipeds (humans and ostriches). During running turns, both humans and ostriches control body rotation by generating fore-aft forces. However, whereas humans must generate large braking forces to prevent body over-rotation, ostriches do not. For ostriches, generating the lateral forces necessary to change movement direction results in appropriate body rotation. Although ostriches required smaller braking forces due in part to increased rotational inertia relative to body mass, other movement parameters also played a role. Turning performance resulted from the coordinated behavior of an integrated biomechanical system. Results from preliminary experiments on horizontal-plane stabilization support the hypothesis that controlling body rotation is an important aspect of stable maneuvers. In humans, body orientation relative to movement direction is rapidly stabilized during running turns within the minimum of two steps theoretically required to complete analogous maneuvers. During straight running and cutting turns, humans exhibit spring-mass behavior in the horizontal plane. Changes in the horizontal projection of leg length were linearly related to changes in horizontal-plane leg forces. Consequently, the passive dynamic stabilization associated with spring-mass behavior may contribute to stability during maneuvers in bipeds. Understanding the mechanics of maneuverability will be important for understanding the motor control of maneuvers and also potentially be useful for understanding stability.
Collapse
Affiliation(s)
- Devin L Jindrich
- Department of Kinesiology, Center for Adaptive Neural Systems, 551 E. Orange St., PEBE 107B, Tempe, Arizona 85287-0404, USA.
| | | |
Collapse
|
19
|
RICE AARONN, COOPER WJAMES, WESTNEAT MARKW. Diversification of coordination patterns during feeding behaviour in cheiline wrasses. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2007.00915.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Abstract
The innervation and actuation of limbs have been major areas of research in motor control. Here we describe the innervation of the pectoral fins of the larval zebrafish (Danio rerio) and its ontogeny. Imaging and genetic tools available in this species provide opportunities to add new perspectives to the growing body of work on limbs. We used immunocytological and gross histological techniques with confocal microscopy to characterize the pattern of pectoral fin nerves. We retrogradely labeled fin neurons to describe the distributions of the pectoral fin motor pool in the spinal cord. At 5 days postfertilization, four nerves innervate the pectoral fins. We found that the rostral three nerves enter the fin from the dorsal side of the fin base and service the dorsal and middle fin regions. The fourth nerve enters the fin from the ventral fin base and innervates the ventral region. We found no mediolateral spatial segregation between adductor and abductor cell bodies in the spinal cord. During the larval stage pectoral fins have one adductor and one abductor muscle with an endoskeletal disc between them. As the skeleton and muscles expand and differentiate through postlarval development, there are major changes in fin innervation including extensive elaboration to the developing muscles and concentration of innervation to specific nerves and fin regions. The pattern of larval fin innervation recorded is associated with later muscle subdivision, suggesting that fin muscles may be functionally subdivided before they are morphologically subdivided.
Collapse
Affiliation(s)
- Dean H Thorsen
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
21
|
Blob RW, Wright KM, Becker M, Maie T, Iverson TJ, Julius ML, Schoenfuss HL. Ontogenetic change in novel functions: waterfall climbing in adult Hawaiian gobiid fishes. J Zool (1987) 2007. [DOI: 10.1111/j.1469-7998.2007.00315.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Higham TE. Feeding, fins and braking maneuvers: locomotion during prey capture in centrarchid fishes. J Exp Biol 2007; 210:107-17. [PMID: 17170154 DOI: 10.1242/jeb.02634] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYLocomotion is an integral aspect of the prey capture strategy of almost every predatory animal. For fishes that employ suction to draw prey into their mouths, locomotor movements are vital for the correct positioning of the mouth relative to the prey item. Despite this, little is known regarding the relationships between locomotor movements and prey capture. To gain insights into how fishes move during prey capture and the mechanisms underlying deceleration during prey capture, I measured the fin and body movements of largemouth bass, Micropterus salmoides, and bluegill sunfish, Lepomis macrochirus. Using a high-speed video camera (500 frames s-1), I captured locomotor and feeding movements in lateral and ventral (via a mirror) view. Largemouth bass swam considerably faster than bluegill during the approach to the prey item, and both species decelerated substantially following prey capture. The mean magnitude of deceleration was significantly higher in largemouth bass (-1089 cm s-2) than bluegill (-235 cm s-2), and the timing of maximum deceleration was much later for largemouth bass (30.3 ms after maximum gape) than bluegill (6.7 ms after maximum gape). Both species employed their pectoral, anal and caudal fins in order to decelerate during prey capture. However, largemouth bass protracted their pectoral fins more and faster,likely contributing to the greater magnitude of deceleration in the species. The primary mechanism for increased deceleration was an increase in approach speed. The drag forces experienced by the fins and body are proportional to the velocity of the flow squared. Thus, the braking forces exerted by fins,without any change in kinematics, will increase exponentially with small increases in swimming speed, perhaps allowing these fishes to achieve higher braking forces at higher swimming speeds without altering body or fin kinematics. This result can likely be extended to other maneuvers such as turning.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Organismic and Evolutionary Biology, Concord Field Station, Harvard University, 100 Old Causeway Road, Bedford, MA 01730, USA.
| |
Collapse
|
23
|
Abstract
The diversity of both the locomotor and feeding systems in fish is extensive, although little is known about the integrated evolution of the two systems. Virtually, all fish swim to ingest prey and all open their buccal cavity during prey capture, but the relationship between these two ubiquitous components of fish feeding strikes is unknown. We predicted that there should be a positive correlation between ram speed (RS) and maximum gape (MG) because the accuracy of a predatory strike goes down with an increase in RS and fish with larger mouths eat larger, more evasive prey. For 18 species of neotropical cichlids, we used phylogenetic-independent contrasts to study the relationship between the predator closing speed (RS) and mouth size (MG) during prey capture. To provide a robust comparative framework, we augmented existing phylogenetic information available from the mitochondrial cytochrome b gene with sequences from the S7 nuclear ribosomal intron for these species. Then, we captured high-speed (500 images per second), lateral view feeding sequences of each species by using a digital video camera and measured both RS and MG. Uncorrected species values of MG and RS were positively and significantly correlated. When accounting for any of the set of phylogenetic relationships recovered, the independent contrasts of RS and MG remained significantly, and positively, correlated. This tight evolutionary coupling highlights what is likely a common relationship between locomotor behaviour and feeding kinematics in many organisms.
Collapse
Affiliation(s)
- T E Higham
- Section of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
24
|
Lauder GV, Madden PGA, Mittal R, Dong H, Bozkurttas M. Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish. BIOINSPIRATION & BIOMIMETICS 2006; 1:S25-34. [PMID: 17671315 DOI: 10.1088/1748-3182/1/4/s04] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A full understanding of the mechanics of locomotion can be achieved by incorporating descriptions of (1) three-dimensional kinematics of propulsor movement, (2) material properties of the propulsor, (3) power input and control and (4) the fluid dynamics effects of propulsor motion into (5) a three-dimensional computational framework that models the complexity of propulsors that deform and change area. In addition, robotic models would allow for further experimental investigation of changes to propulsor design and for testing of hypothesized relationships between movement and force production. Such a comprehensive suite of data is not yet available for any flexible propulsor. In this paper, we summarize our research program with the goal of producing a comprehensive data set for each of the five components noted above through a study of pectoral fin locomotion in one species of fish: the bluegill sunfish Lepomis macrochirus. Many fish use pectoral fins exclusively for locomotion, and pectoral fins in most fish are integral to generating force during maneuvering. Pectoral fins are complex structures composed of jointed bony supports that are under active control via pectoral fin musculature. During propulsion in sunfish, the fin deforms considerably, has two leading edges, and sunfish can rotate the whole fin or just control individual sections to vector thrust. Fin material properties vary along the length of fin rays and among rays. Experimental fluid dynamic analysis of sunfish pectoral fin locomotion reveals that the fin generates thrust throughout the fin beat cycle, and that the upper and lower edges each produce distinct simultaneous leading edge vortices. The following companion paper provides data on the computational approach taken to understand locomotion using flexible pectoral fins.
Collapse
Affiliation(s)
- George V Lauder
- The Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | |
Collapse
|
25
|
Husak JF, Fox SF. FIELD USE OF MAXIMAL SPRINT SPEED BY COLLARED LIZARDS (CROTAPHYTUS COLLARIS): COMPENSATION AND SEXUAL SELECTION. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb00532.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Higham TE, Day SW, Wainwright PC. Multidimensional analysis of suction feeding performance in fishes: fluid speed, acceleration, strike accuracy and the ingested volume of water. J Exp Biol 2006; 209:2713-25. [PMID: 16809462 DOI: 10.1242/jeb.02315] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYSuction feeding fish draw prey into the mouth using a flow field that they generate external to the head. In this paper we present a multidimensional perspective on suction feeding performance that we illustrate in a comparative analysis of suction feeding ability in two members of Centrarchidae, the largemouth bass (Micropterus salmoides) and bluegill sunfish(Lepomis macrochirus). We present the first direct measurements of maximum fluid speed capacity, and we use this to calculate local fluid acceleration and volumetric flow rate. We also calculated the ingested volume and a novel metric of strike accuracy. In addition, we quantified for each species the effects of gape magnitude, time to peak gape, and swimming speed on features of the ingested volume of water. Digital particle image velocimetry (DPIV) and high-speed video were used to measure the flow in front of the mouths of three fish from each species in conjunction with a vertical laser sheet positioned on the mid-sagittal plane of the fish. From this we quantified the maximum fluid speed (in the earthbound and fish's frame of reference), acceleration and ingested volume. Our method for determining strike accuracy involved quantifying the location of the prey relative to the center of the parcel of ingested water. Bluegill sunfish generated higher fluid speeds in the earthbound frame of reference, accelerated the fluid faster, and were more accurate than largemouth bass. However, largemouth bass ingested a larger volume of water and generated a higher volumetric flow rate than bluegill sunfish. In addition, because largemouth bass swam faster during prey capture, they generated higher fluid speeds in the fish's frame of reference. Thus, while bluegill can exert higher drag forces on stationary prey items, largemouth bass more quickly close the distance between themselves and prey. The ingested volume and volumetric flow rate significantly increased as gape increased for both species, while time to peak gape had little effect on the volume. However, peak gape distance did not affect the maximum fluid speed entering the mouth for either species. We suggest that species that generate high fluid speeds in the earthbound frame of reference will commonly exhibit small mouths and a high capacity to deliver force to buccal expansion,while species that ingest a large volume of water and generate high volumetric flow rates will have larger buccal cavities and cranial expansion linkage systems that favor displacement over force delivery.
Collapse
Affiliation(s)
- Timothy E Higham
- Section of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | | | |
Collapse
|
27
|
McHenry MJ, Lauder GV. Ontogeny of form and function: Locomotor morphology and drag in zebrafish (Danio rerio). J Morphol 2006; 267:1099-109. [PMID: 16752407 DOI: 10.1002/jmor.10462] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many fish species transform in body shape during growth, but it remains unclear how this influences the mechanics of locomotion. Therefore, the present study focused on understanding how drag generation during coasting is affected by ontogenetic changes in the morphology of zebrafish (Danio rerio). The shapes of the body and fins were measured from photographs of fish ranging in size from small larvae to mature adults and these morphometrics were compared to drag coefficients calculated from high-speed video recordings of routine swimming. We found that the viscous drag coefficient of larval and juvenile fish increased by more than an order of magnitude during growth and the inertial drag coefficient decreased at a comparable rate in adults. These hydrodynamic changes occurred as zebrafish disproportionately increased the span of their fins and their body changed shape from elongated to streamlined, as reflected by the logistic growth of a newly defined streamlining index, SL. These results suggest that morphological changes incur a performance cost by generating greater drag when larvae and juveniles operate in the viscous regime, but later provide a performance benefit by reducing pressure drag in the inertial regime of the adult stage.
Collapse
Affiliation(s)
- Matthew J McHenry
- Department of Ecology & Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
28
|
Husak JF, Fox SF. FIELD USE OF MAXIMAL SPRINT SPEED BY COLLARED LIZARDS (CROTAPHYTUS COLLARIS): COMPENSATION AND SEXUAL SELECTION. Evolution 2006. [DOI: 10.1554/05-648.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|