1
|
Gordy C, Straka H. Vestibular Influence on Vertebrate Skeletal Symmetry and Body Shape. Front Syst Neurosci 2021; 15:753207. [PMID: 34690711 PMCID: PMC8526847 DOI: 10.3389/fnsys.2021.753207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/17/2021] [Indexed: 11/15/2022] Open
Abstract
Vestibular endorgans in the vertebrate inner ear form the principal sensors for head orientation and motion in space. Following the evolutionary appearance of these organs in pre-vertebrate ancestors, specific sensory epithelial patches, such as the utricle, which is sensitive to linear acceleration and orientation of the head with respect to earth’s gravity, have become particularly important for constant postural stabilization. This influence operates through descending neuronal populations with evolutionarily conserved hindbrain origins that directly and indirectly control spinal motoneurons of axial and limb muscles. During embryogenesis and early post-embryonic periods, bilateral otolith signals contribute to the formation of symmetric skeletal elements through a balanced activation of axial muscles. This role has been validated by removal of otolith signals on one side during a specific developmental period in Xenopus laevis tadpoles. This intervention causes severe scoliotic deformations that remain permanent and extend into adulthood. Accordingly, the functional influence of weight-bearing otoconia, likely on utricular hair cells and resultant afferent discharge, represents a mechanism to ensure a symmetric muscle tonus essential for establishing a normal body shape. Such an impact is presumably occurring within a critical period that is curtailed by the functional completion of central vestibulo-motor circuits and by the modifiability of skeletal elements before ossification of the bones. Thus, bilateral otolith organs and their associated sensitivity to head orientation and linear accelerations are not only indispensable for real time postural stabilization during motion in space but also serve as a guidance for the ontogenetic establishment of a symmetric body.
Collapse
Affiliation(s)
- Clayton Gordy
- Department Biology II, Ludwig-Maximilians-University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
2
|
Bonnefoy J, Ghislin S, Beyrend J, Coste F, Calcagno G, Lartaud I, Gauquelin-Koch G, Poussier S, Frippiat JP. Gravitational Experimental Platform for Animal Models, a New Platform at ESA's Terrestrial Facilities to Study the Effects of Micro- and Hypergravity on Aquatic and Rodent Animal Models. Int J Mol Sci 2021; 22:2961. [PMID: 33803957 PMCID: PMC7998548 DOI: 10.3390/ijms22062961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023] Open
Abstract
Using rotors to expose animals to different levels of hypergravity is an efficient means of understanding how altered gravity affects physiological functions, interactions between physiological systems and animal development. Furthermore, rotors can be used to prepare space experiments, e.g., conducting hypergravity experiments to demonstrate the feasibility of a study before its implementation and to complement inflight experiments by comparing the effects of micro- and hypergravity. In this paper, we present a new platform called the Gravitational Experimental Platform for Animal Models (GEPAM), which has been part of European Space Agency (ESA)'s portfolio of ground-based facilities since 2020, to study the effects of altered gravity on aquatic animal models (amphibian embryos/tadpoles) and mice. This platform comprises rotors for hypergravity exposure (three aquatic rotors and one rodent rotor) and models to simulate microgravity (cages for mouse hindlimb unloading and a random positioning machine (RPM)). Four species of amphibians can be used at present. All murine strains can be used and are maintained in a specific pathogen-free area. This platform is surrounded by numerous facilities for sample preparation and analysis using state-of-the-art techniques. Finally, we illustrate how GEPAM can contribute to the understanding of molecular and cellular mechanisms and the identification of countermeasures.
Collapse
Affiliation(s)
- Julie Bonnefoy
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Stéphanie Ghislin
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Jérôme Beyrend
- Animalerie du Campus Biologie Santé, ACBS, Université de Lorraine, F-54000 Nancy, France; (J.B.); (I.L.); (S.P.)
| | - Florence Coste
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Gaetano Calcagno
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Isabelle Lartaud
- Animalerie du Campus Biologie Santé, ACBS, Université de Lorraine, F-54000 Nancy, France; (J.B.); (I.L.); (S.P.)
| | | | - Sylvain Poussier
- Animalerie du Campus Biologie Santé, ACBS, Université de Lorraine, F-54000 Nancy, France; (J.B.); (I.L.); (S.P.)
| | - Jean-Pol Frippiat
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| |
Collapse
|
3
|
Jung J, Kim SJ, Pérez Arias SM, McDaniel JG, Warkentin KM. How do red-eyed treefrog embryos sense motion in predator attacks? Assessing the role of vestibular mechanoreception. ACTA ACUST UNITED AC 2019; 222:jeb.206052. [PMID: 31586019 DOI: 10.1242/jeb.206052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/28/2019] [Indexed: 01/18/2023]
Abstract
The widespread ability to alter timing of hatching in response to environmental cues can serve as a defense against threats to eggs. Arboreal embryos of red-eyed treefrogs, Agalychnis callidryas, can hatch up to 30% prematurely to escape predation. This escape-hatching response is cued by physical disturbance of eggs during attacks, including vibrations or motion, and thus depends critically on mechanosensory ability. Predator-induced hatching appears later in development than flooding-induced, hypoxia-cued hatching; thus, its onset is not constrained by the development of hatching ability. It may, instead, reflect the development of mechanosensor function. We hypothesize that vestibular mechanoreception mediates escape-hatching in snake attacks, and that the developmental period when hatching-competent embryos fail to flee from snakes reflects a sensory constraint. We assessed the ontogenetic congruence of escape-hatching responses and an indicator of vestibular function, the vestibulo-ocular reflex (VOR), in three ways. First, we measured VOR in two developmental series of embryos 3-7 days old to compare with the published ontogeny of escape success in attacks. Second, during the period of greatest variation in VOR and escape success, we compared hatching responses and VOR across sibships. Finally, in developmental series, we compared the response of individual embryos to a simulated attack cue with their VOR. The onset of VOR and hatching responses were largely concurrent at all three scales. Moreover, latency to hatch in simulated attacks decreased with increasing VOR. These results are consistent with a key role of the vestibular system in the escape-hatching response of A. callidryas embryos to attacks.
Collapse
Affiliation(s)
- Julie Jung
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Su J Kim
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Sonia M Pérez Arias
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - James G McDaniel
- Department of Mechanical Engineering, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Karen M Warkentin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.,Gamboa Laboratory, Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| |
Collapse
|
4
|
Lychakov DV. Behavioural and functional vestibular disorders after space flight: 2. Fish, amphibians and birds. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s0022093016010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Horn ER, Gabriel M. Gender-related sensitivity of development and growth to real microgravity inXenopus laevis. ACTA ACUST UNITED AC 2013; 321:1-12. [DOI: 10.1002/jez.1831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 06/18/2013] [Accepted: 08/16/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Eberhard R. Horn
- Zoological Institute; Cell and Developmental Biology; Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - Martin Gabriel
- Büsgen Institut; Universität Göttingen; Göttingen Germany
| |
Collapse
|
6
|
Gabriel M, Frippiat JP, Frey H, Horn ER. The sensitivity of an immature vestibular system to altered gravity. ACTA ACUST UNITED AC 2012; 317:333-46. [PMID: 22570271 DOI: 10.1002/jez.1727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 12/23/2022]
Abstract
Stimulus deprivation or stimulus augmentation can induce long-lasting modifications to sensory and motor systems. If deprivation is effective only during a limited period of life this phase is called "critical period." A critical period was described for the development of the roll-induced vestibuloocular reflex (rVOR) of Xenopus laevis using spaceflights. Spaceflight durations and basic conditions of Xenopus' development did not make it possible to answer the question whether exposure of the immature vestibular organ to weightlessness affects rVOR development. The embryonic development of Pleurodeles waltl is slow enough to solve this problem because the rVOR cannot be induced before 15 dpf. Stage 20-21 embryos (4 dpf) were exposed to microgravity during a 10-day spaceflight, or to 3g hypergravity following the same time schedule. After termination of altered gravity, the rVOR was recorded twice in most animals. The main observations were as follows: (1) after the first rVOR appearance at stage 37 (16 dpf), both rVOR gain and amplitude increased steadily up to saturation levels of 0.22 and 20°, respectively. (2) Three days after termination of microgravity, flight and ground larvae showed no rVOR; 1 day later, the rVOR could be induced only in ground larvae. Differences disappeared after 3 weeks. (3) For 10 days after 3g exposure, rVOR development was similar to that of 1g-controls but 3 weeks later, 3g-larvae showed a larger rVOR than 1g-controls. These observations indicate that the immature vestibular system is transiently sensitive to microgravity exposure and that exposure of the immature vestibular system to hypergravity leads to a slowly growing vestibular sensitization.
Collapse
|
7
|
Horn ER, El-Yamany NA, Gradl D. The vestibuloocular reflex of tadpoles (Xenopus laevis) after knock-down of the isthmus related transcription factor XTcf-4. J Exp Biol 2012; 216:733-41. [DOI: 10.1242/jeb.079319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Summary
Development of the amphibian vestibular organ is regulated by molecular and neuronal mechanisms and by environmental input. The molecular component includes inductive signals derived from neural tissue of the hindbrain and from the surrounding mesoderm. The integrity of hindbrain patterning, on the other hand, depends on instructive signals from the isthmus organizer of the midbrain including the transcription factor XTcf-4. If the development of the vestibular system depends on the integrity of the isthmus as organizing centre, suppression of isthmus maintenance should modify vestibular morphology and function. We tested this hypothesis by down-regulation of the transcription factor XTcf-4. 10 pMol XTcf-4-specific antisense morpholino oligonucleotide were injected in one blastomere of 2-cell stage embryos of Xenopus laevis. For reconstitution experiments, 500 pg mRNA of the repressing XTcf-4A isoform or the activating XTcf-4C isoform were co-injected. Over-expression experiments were included using the same isoforms. Otoconia formation and vestibular controlled behaviour such as the roll-induced vestibuloocular reflex (rVOR) and swimming were recorded two weeks later. In 50% of tadpoles, down-regulation of XTcf-4 induced (1) a depression of otoconia formation accompanied by a reduction of the rVOR, (2) abnormal tail development, and (3) loop swimming behaviour. (4) All effects were rescued by co-injection of XTcf-4C but not or only partially by XTcf-4A. (5) Over-expression of XTcf-4A caused similar morphological and rVOR modifications as XTcf-4 depletion while over-expression of XTcf-4C had no effect. Because XTcf-4C has been described as essential factor for isthmus development, we postulate that the isthmus is strongly involved in vestibular development.
Collapse
Affiliation(s)
- Eberhard R. Horn
- Zoological Institute, Cell and Developmental Biology, Karlsruhe Institute of Technology, Germany
| | | | - Dietmar Gradl
- Zoological Institute, Cell and Developmental Biology, Karlsruhe Institute of Technology, Germany
| |
Collapse
|
8
|
Horn ER, Gabriel M. Gravity-related critical periods in vestibular and tail development of Xenopus laevis. ACTA ACUST UNITED AC 2011; 315:505-11. [DOI: 10.1002/jez.698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 06/20/2011] [Accepted: 06/24/2011] [Indexed: 01/20/2023]
|
9
|
Abstract
Numerous studies indicate that microgravity affects cell growth and differentiation in many living organisms, and various processes are modified when cells are placed under conditions of weightlessness. However, until now, there is no coherent explanation for these observations, and little information is available concerning the biomolecules involved. Our aim has been to investigate the protein pattern of Xenopus laevis embryos exposed to simulated microgravity during the first 6 days of development. A proteomic approach was applied to compare the protein profiles of Xenopus embryos developed in simulated microgravity and in normal conditions. Attention was focused on embryos that do not present visible malformations in order to investigate if weightlessness has effects at protein level in the absence of macroscopic alterations. The data presented strongly suggest that some of the major components of the cytoskeleton vary in such conditions. Three major findings are described for the first time: (i) the expression of important factors involved in the organization and stabilization of the cytoskeleton, such as Arp (actin-related protein) 3 and stathmin, is heavily affected by microgravity; (ii) the amount of the two major cytoskeletal proteins, actin and tubulin, do not change in such conditions; however, (iii) an increase in the tyrosine nitration of these two proteins can be detected. The data suggest that, in the absence of morphological alterations, simulated microgravity affects the intracellular movement system of cells by altering cytoskeletal proteins heavily involved in the regulation of cytoskeleton remodelling.
Collapse
|
10
|
Balaban PM, Malyshev AY, Ierusalimsky VN, Aseyev N, Korshunova TA, Bravarenko NI, Lemak MS, Roshchin M, Zakharov IS, Popova Y, Boyle R. Functional changes in the snail statocyst system elicited by microgravity. PLoS One 2011; 6:e17710. [PMID: 21479267 PMCID: PMC3066201 DOI: 10.1371/journal.pone.0017710] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 02/11/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The mollusk statocyst is a mechanosensing organ detecting the animal's orientation with respect to gravity. This system has clear similarities to its vertebrate counterparts: a weight-lending mass, an epithelial layer containing small supporting cells and the large sensory hair cells, and an output eliciting compensatory body reflexes to perturbations. METHODOLOGY/PRINCIPAL FINDINGS In terrestrial gastropod snail we studied the impact of 16- (Foton M-2) and 12-day (Foton M-3) exposure to microgravity in unmanned orbital missions on: (i) the whole animal behavior (Helix lucorum L.), (ii) the statoreceptor responses to tilt in an isolated neural preparation (Helix lucorum L.), and (iii) the differential expression of the Helix pedal peptide (HPep) and the tetrapeptide FMRFamide genes in neural structures (Helix aspersa L.). Experiments were performed 13-42 hours after return to Earth. Latency of body re-orientation to sudden 90° head-down pitch was significantly reduced in postflight snails indicating an enhanced negative gravitaxis response. Statoreceptor responses to tilt in postflight snails were independent of motion direction, in contrast to a directional preference observed in control animals. Positive relation between tilt velocity and firing rate was observed in both control and postflight snails, but the response magnitude was significantly larger in postflight snails indicating an enhanced sensitivity to acceleration. A significant increase in mRNA expression of the gene encoding HPep, a peptide linked to ciliary beating, in statoreceptors was observed in postflight snails; no differential expression of the gene encoding FMRFamide, a possible neurotransmission modulator, was observed. CONCLUSIONS/SIGNIFICANCE Upregulation of statocyst function in snails following microgravity exposure parallels that observed in vertebrates suggesting fundamental principles underlie gravi-sensing and the organism's ability to adapt to gravity changes. This simple animal model offers the possibility to describe general subcellular mechanisms of nervous system's response to conditions on Earth and in space.
Collapse
Affiliation(s)
- Pavel M. Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Aleksey Y. Malyshev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Victor N. Ierusalimsky
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Tania A. Korshunova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Natasha I. Bravarenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - M. S. Lemak
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Matvey Roshchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Igor S. Zakharov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yekaterina Popova
- NASA Ames Research Center, Moffett Field, California, United States of America
| | - Richard Boyle
- NASA Ames Research Center, Moffett Field, California, United States of America
| |
Collapse
|
11
|
Lindsey BW, Dumbarton TC, Moorman SJ, Smith FM, Croll RP. Effects of simulated microgravity on the development of the swimbladder and buoyancy control in larval zebrafish (Danio rerio). ACTA ACUST UNITED AC 2011; 315:302-13. [DOI: 10.1002/jez.677] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/29/2010] [Accepted: 02/07/2011] [Indexed: 11/06/2022]
|
12
|
Rizzo AM, Montorfano G, Negroni M, Corsetto P, Berselli P, Marciani P, Zava S, Berra B. Simulated microgravity induce glutathione antioxidant pathway in Xenopus laevis embryos. Cell Biol Int 2009; 33:893-8. [PMID: 19426823 DOI: 10.1016/j.cellbi.2009.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 03/27/2009] [Accepted: 04/24/2009] [Indexed: 12/25/2022]
Abstract
Space flights cause a number of patho-physiological changes. Oxidative damage has been demonstrated in astronauts after space flights. Oxidative stress is due to an imbalance between production of oxidant and antioxidative defence. In embryos of Xenopus laevis, the glutathione system is an inducible antioxidant defence. For this reason, we investigated the effect of gravity deprivation on endogenous antioxidant enzymes in X. laevis embryos developed for 6 days in a Random Positioning Machine. The results show that glutathione content and the activity of antioxidant enzymes increase in RPM embryos, suggesting the presence of a protective mechanism. An induction of antioxidant defence might play an important role for animals to adapt to micro-gravitational stress, possibly during actual space flights.
Collapse
Affiliation(s)
- Angela M Rizzo
- Dipartimento di Scienze Molecolari Applicate ai Biosistemi, DISMAB, Via D. Trentacoste 2, I-20134 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Horn E, Böser S, Membre H, Dournon C, Husson D, Gualandris-Parisot L. Morphometric investigations of sensory vestibular structures in tadpoles (Xenopus laevis) after a spaceflight: implications for microgravity-induced alterations of the vestibuloocular reflex. PROTOPLASMA 2006; 229:193-203. [PMID: 17180501 DOI: 10.1007/s00709-006-0213-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 11/25/2005] [Indexed: 05/13/2023]
Abstract
In lower vertebrates, gravity deprivation by orbital flights modifies the vestibuloocular reflex. Using the amphibian Xenopus laevis, the experiments should clarify to which extent macular structures of the labyrinth are responsible for these modifications. In particular, the shape of otoconia and number and size of sensory macular cells expressing CalBindin were considered. CalBindin is common in mature sensory cells including vestibular hair cells and is probably involved in otoconia formation. Two developmental stages were used for this study: stage 26/27 embryos, which were unable to perform the roll-induced vestibuloocular reflex (rVOR) at onset of microgravity, and stage 45 tadpoles, which had already developed the reflex. The main observations were that the developmental progress of the animals was not affected by microgravity; that in the young tadpole group with normal body shape the rVOR was not modified by microgravity, while in the older group with microgravity experience, the rVOR was augmented; and that significant effects on the shape of otoconia and on the number and size of CalBindin-expressing cells of the labyrinthine maculae cells were absent. In addition, behavioural data were never significantly correlated with morphological features of macular structures such as size and number of CalBindin-expressing cells. It is postulated that mechanisms of vestibular adaptation to microgravity during early development are probably based on mechanisms located in central structures of the vestibular system.
Collapse
Affiliation(s)
- E Horn
- Gravitationsphysiologie, Abteilung Neurobiologie, Universität Ulm, Ulm, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|