1
|
McLean CJ, Brassey CA, Seiter M, Garwood RJ, Gardiner JD. The kinematics of amblypygid (Arachnida) pedipalps during predation: extreme elongation in raptorial appendages does not result in a proportionate increase in reach and closing speed. J Exp Biol 2024; 227:jeb246654. [PMID: 38304965 DOI: 10.1242/jeb.246654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
The link between form and function is key to understanding the evolution of unique and/or extreme morphologies. Amblypygids, or whip spiders, are arachnids that often have highly elongated spined pedipalps. These limbs are used to strike at, and secure, prey before processing by the chelicerae. Amblypygi pedipalps are multifunctional, however, being used in courtship and contest, and vary greatly in form between species. Increased pedipalp length may improve performance during prey capture, but length could also be influenced by factors including territorial contest and sexual selection. Here, for the first time, we used high-speed videography and manual tracking to investigate kinematic differences in prey capture between amblypygid species. Across six morphologically diverse species, spanning four genera and two families, we created a total dataset of 86 trials (9-20 per species). Prey capture kinematics varied considerably between species, with differences being expressed in pedipalp joint angle ranges. In particular, maximum reach ratio did not remain constant with total pedipalp length, as geometric scaling would predict, but decreased with longer pedipalps. This suggests that taxa with the most elongated pedipalps do not deploy their potential length advantage to proportionally increase reach. Therefore, a simple mechanical explanation of increased reach does not sufficiently explain pedipalp elongation. We propose other factors to help explain this phenomenon, such as social interactions or sexual selection, which would produce an evolutionary trade-off in pedipalp length between prey capture performance and other behavioural and/or anatomical pressures.
Collapse
Affiliation(s)
- Callum J McLean
- The School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M15 6BH, UK
| | - Charlotte A Brassey
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M15 6BH, UK
| | - Michael Seiter
- Department of Evolutionary Biology, Unit Integrative Zoology, University of Vienna, 1010 Vienna, Austria
- Naturhistorisches Museum Wien, 1010 Vienna, Austria
| | - Russell J Garwood
- Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PY, UK
- The Natural History Museum, London SW7 5BD, UK
| | - James D Gardiner
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M15 6BH, UK
| |
Collapse
|
2
|
Laird MF, Ross CF, Kang V, Konow N. Introduction: food processing and nutritional assimilation in animals. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220559. [PMID: 37839455 PMCID: PMC10577032 DOI: 10.1098/rstb.2022.0559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
How animals process and absorb nutrients from their food is a fundamental question in biology. Despite the continuity and interaction between intraoral food processing and post-oesophageal nutritional extraction, these topics have largely been studied separately. At present, we lack a synthesis of how pre- and post-oesophageal mechanisms of food processing shape the ability of various taxa to effectively assimilate nutrients from their diet. The aim of this special issue is to catalyse a unification of these distinct approaches as a functional continuum. We highlight questions that derive from this synthesis, as well as technical advances to address these questions. At present, there is also a skew toward vertebrates in studies of feeding form-function mechanics; by including perspectives from researchers working on both vertebrates and invertebrates, we hope to stimulate integrative and comparative research on food processing and nutritional assimilation. Below, we discuss how the papers in this issue contribute to these goals in three areas: championing a functional-comparative approach, quantifying performance and emphasizing the effects of life history, and food substrate and extrinsic factors in current and future studies of oral food processing and nutritional assimilation. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Myra F. Laird
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104-6243, USA
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Victor Kang
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
| |
Collapse
|
3
|
Hawkins OH, Crawford CH, Hoover RC, Kane EA. Intraspecific variation in feeding and locomotor kinematics during prey capture in redbreast sunfish (Lepomis auritus). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:706-722. [PMID: 37306263 DOI: 10.1002/jez.2721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Biomechanics research often revolves around understanding traits impacting suction feeding performance in fishes, using freshwater ray-finned sunfishes (Family Centrarchidae) as models. However, simultaneous feeding and locomotion kinematics during prey capture are not recorded for many species and there is less information on how these kinematics vary within a species and within individuals. To (1) add to existing data on the prey capture kinematics of centrarchids, (2) assess variation in a species both within and across individuals, and (3) compare morphology and prey capture kinematics of well-sampled centrarchids, we filmed five redbreast sunfish (Lepomis auritus) at 500 fps-1 approaching and striking non-evasive prey. Redbreast approach prey at ~30 cm s-1 and use approximately 70% of their maximum gape size. Traits related to feeding are more repeatable than traits related to locomotion. However, the Accuracy Index (AI) was consistent across individuals (AI = 0.76 ± 0.07). Functionally, redbreast sunfish are more similar to bluegill sunfish but morphologically they fall in the intermediate morphospace alongside green sunfish when compared with other centrarchids. These data show that whole organism outcomes (AI) are similar despite variation present both within and across individuals and demonstrate the importance of considering both interspecific and intraspecific differences in the functional diversity of ecologically and evolutionarily important behaviors such as prey capture.
Collapse
Affiliation(s)
- Olivia H Hawkins
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Callie H Crawford
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
| | - Richard C Hoover
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Emily A Kane
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| |
Collapse
|
4
|
Matthews DG, Dial TR, Lauder GV. Genes, Morphology, Performance, and Fitness: Quantifying Organismal Performance to Understand Adaptive Evolution. Integr Comp Biol 2023; 63:843-859. [PMID: 37422435 DOI: 10.1093/icb/icad096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
To understand the complexities of morphological evolution, we must understand the relationships between genes, morphology, performance, and fitness in complex traits. Genomicists have made tremendous progress in finding the genetic basis of many phenotypes, including a myriad of morphological characters. Similarly, field biologists have greatly advanced our understanding of the relationship between performance and fitness in natural populations. However, the connection from morphology to performance has primarily been studied at the interspecific level, meaning that in most cases we lack a mechanistic understanding of how evolutionarily relevant variation among individuals affects organismal performance. Therefore, functional morphologists need methods that will allow for the analysis of fine-grained intraspecific variation in order to close the path from genes to fitness. We suggest three methodological areas that we believe are well suited for this research program and provide examples of how each can be applied within fish model systems to build our understanding of microevolutionary processes. Specifically, we believe that structural equation modeling, biological robotics, and simultaneous multi-modal functional data acquisition will open up fruitful collaborations among biomechanists, evolutionary biologists, and field biologists. It is only through the combined efforts of all three fields that we will understand the connection between evolution (acting at the level of genes) and natural selection (acting on fitness).
Collapse
Affiliation(s)
- David G Matthews
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Terry R Dial
- Department of Biology and Ecology Center, Utah State University, Moab, UT 84322, USA
- Department of Environment and Society, Utah State University, Moab, UT 84322, USA
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Haak CR, Power M, Wilson ADM, Danylchuk AJ. Stable isotopes and foraging behaviors support the role of antipredator benefits in driving the association between two marine fishes. Oecologia 2023:10.1007/s00442-023-05390-1. [PMID: 37291257 DOI: 10.1007/s00442-023-05390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 05/20/2023] [Indexed: 06/10/2023]
Abstract
Research from terrestrial communities shows that diminished predation risk is a principal driver of heterospecific grouping behavior, with foraging ecology predicting the roles that species play in groups, as more vulnerable foragers preferentially join more vigilant ones from whom they can benefit. Meanwhile, field studies examining the adaptive significance of heterospecific shoaling among marine fish have focused disproportionately on feeding advantages such as scrounging or prey-flushing. Juvenile bonefish (Albula vulpes) occur almost exclusively among mojarras (Eucinostomus spp.) and even elect to join them over conspecifics, suggesting they benefit from doing so. We evaluated the roles of risk-related and food-related factors in motivating this pattern of affiliation, estimating: (1) the relative levels of risk associated with each species' search and prey capture activities, via behavioral vulnerability traits discerned from in situ video of heterospecific shoals, and (2) resource use redundancy, using stable isotopes (δ13C, δ15N, and δ34S) to quantify niche overlap. Across four distinct metrics, bonefish behaviors implied a markedly greater level of risk than those of mojarras, typified by higher activity levels and a reduced capacity for overt vigilance; consistent with expectations if their association conformed to patterns of joining observed in terrestrial habitats. Resource use overlap inferred from stable isotopes was low, indicating that the two species partitioned resources and making it unlikely that bonefish derived substantive food-related benefits. Collectively, these findings suggest that the attraction of juvenile bonefish to mojarras is motivated primarily by antipredator advantages, which may include the exploitation of risk-related social cues.
Collapse
Affiliation(s)
- Christopher R Haak
- Department of Environmental Conservation and Intercampus Marine Science Graduate Program, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA, 01003, USA.
| | - Michael Power
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Alexander D M Wilson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, Devon, UK
| | - Andy J Danylchuk
- Department of Environmental Conservation and Intercampus Marine Science Graduate Program, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA, 01003, USA
| |
Collapse
|
6
|
Cohen HE, Ray W, Hawkins OH, Kane EA. Potential for Anthropogenic Fin Damage to Affect Individual Responses to Prey in Bluegill Sunfish ( Lepomis macrochirus): A New Hypothesis for Kinematic Studies. INTEGRATIVE ORGANISMAL BIOLOGY (OXFORD, ENGLAND) 2022; 4:obac050. [PMID: 36545048 PMCID: PMC9762888 DOI: 10.1093/iob/obac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022]
Abstract
In fishes, damage to important morphological structures such as fins through natural damage and anthropogenic factors can have cascading effects on prey capture performance and individual fitness. Bluegill sunfish (Lepomis macrochirus) are a common freshwater species in North America, are a model organism for performance studies, and often experience natural injuries. We opportunistically sampled two populations of fish in the lab to generate a hypothesis for the effect of sub-lethal fin damage resulting from the capture technique on kinematic performance during prey capture in bluegill. We found no statistical differences in mean prey capture kinematics or predator accuracy, but damaged fish used more variable kinematics and more readily struck at non-prey items. We suggest that a reduction in stability and individual consistency occurs as a result of fin damage. This difference could have consequences for higher-order ecological interactions such as competitive ability, despite a lack of apparent performance cost at the individual level, and deserves consideration in future studies of prey capture performance in fish.
Collapse
Affiliation(s)
| | - W Ray
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA
| | - O H Hawkins
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - E A Kane
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA,Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| |
Collapse
|
7
|
McInturf AG, Zillig KW, Cook K, Fukumoto J, Jones A, Patterson E, Cocherell DE, Michel CJ, Caillaud D, Fangue NA. In hot water? Assessing the link between fundamental thermal physiology and predation of juvenile Chinook salmon. Ecosphere 2022. [DOI: 10.1002/ecs2.4264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Alexandra G. McInturf
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
- Animal Behavior Graduate Group University of California Davis California USA
- Coastal Oregon Marine Experiment Station Oregon State University Newport Oregon USA
| | - Ken W. Zillig
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
- Graduate Group in Ecology University of California Davis California USA
| | - Katherine Cook
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Jacqueline Fukumoto
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Anna Jones
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Emily Patterson
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Dennis E. Cocherell
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Cyril J. Michel
- NOAA Southwest Fisheries Science Center, Fisheries Ecology Division Santa Cruz California USA
| | - Damien Caillaud
- Department of Anthropology University of California Davis California USA
| | - Nann A. Fangue
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| |
Collapse
|
8
|
Functional morphology of prey capture in stream-dwelling sailfin silversides (Telmatherinidae) based on high-speed video recordings. ZOOMORPHOLOGY 2022. [DOI: 10.1007/s00435-022-00570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
AbstractUnderstanding how ecology shapes the evolution of morphological traits is a major goal in organismal biology. By quantifying force of motion, hypotheses on the function of fundamental tasks of animals like feeding can be tested. Ray-finned fishes use various feeding strategies, classified into three main feeding modes: suction, ram and manipulation. While manipulation feeders are usually distinct in morphology and feeding behavior, differentiation between suction and ram feeders is often fine-scaled and transitional. Previous studies have identified different feeding modes and biomechanical adaptations on interspecific and intersexual levels in lake-dwelling sailfin silversides, species of a Sulawesi freshwater radiation. Functional feeding morphology of stream-dwelling species remained in contrast unstudied. We hypothesized that different requirements of riverine habitats favor the evolution of alternative functional adaptations in stream-dwelling sailfin silversides. To test this hypothesis, we investigated feeding of two phenotypically distinct riverine species, Telmatherina bonti and Marosatherina ladigesi, and their sexes, by high-speed videos and biomechanical models. The kinematic approaches identify T. bonti as ram feeder and M. ladigesi as suction feeder. Surprisingly, the biomechanical models of the jaw apparatus provide contradicting results: only one out of three studied parameters varies between both species. Contrarily to lake-dwelling Telmatherina, sexes of both species do not differ in feeding biomechanics. We conclude that T. bonti predominantly uses ram feeding while M. ladigesi primarily uses suction feeding as its main hunting strategy. Feeding biomechanics of stream-dwelling sailfin silversides are less distinct compared to lake-dwelling species, likely due to different trophic ecologies or less stable ecological conditions.
Collapse
|
9
|
Camp AL, Brainerd EL. A new conceptual framework for the musculoskeletal biomechanics and physiology of ray-finned fishes. J Exp Biol 2022; 225:jeb243376. [PMID: 35258609 PMCID: PMC8987723 DOI: 10.1242/jeb.243376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Suction feeding in ray-finned fishes requires substantial muscle power for fast and forceful prey capture. The axial musculature located immediately behind the head has been long known to contribute some power for suction feeding, but recent XROMM and fluoromicrometry studies found nearly all the axial musculature (over 80%) provides effectively all (90-99%) of the power for high-performance suction feeding. The dominance of axial power suggests a new framework for studying the musculoskeletal biomechanics of fishes: the form and function of axial muscles and bones should be analysed for power production in feeding (or at least as a compromise between swimming and feeding), and cranial muscles and bones should be analysed for their role in transmitting axial power and coordinating buccal expansion. This new framework is already yielding novel insights, as demonstrated in four species for which suction power has now been measured. Interspecific comparisons suggest high suction power can be achieved in different ways: increasing the magnitude of suction pressure or the rate of buccal volume change, or both (as observed in the most powerful of these species). Our framework suggests that mechanical and evolutionary interactions between the head and the body, and between the swimming and feeding roles of axial structures, may be fruitful areas for continued study.
Collapse
Affiliation(s)
- Ariel L. Camp
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Elizabeth L. Brainerd
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
10
|
Moby-bass: suction feeding by predators limits direct release of alarm cues in fishes. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03146-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Mihalitsis M, Bellwood DR. Functional groups in piscivorous fishes. Ecol Evol 2021; 11:12765-12778. [PMID: 34594537 PMCID: PMC8462170 DOI: 10.1002/ece3.8020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023] Open
Abstract
Piscivory is a key ecological function in aquatic ecosystems, mediating energy flow within trophic networks. However, our understanding of the nature of piscivory is limited; we currently lack an empirical assessment of the dynamics of prey capture and how this differs between piscivores. We therefore conducted aquarium-based performance experiments, to test the feeding abilities of 19 piscivorous fish species. We quantified their feeding morphology, striking, capturing, and processing behavior. We identify two major functional groups: grabbers and engulfers. Grabbers are characterized by horizontal, long-distance strikes, capturing their prey tailfirst and subsequently processing their prey using their oral jaw teeth. Engulfers strike from short distances, from high angles above or below their prey, engulfing their prey and swallowing their prey whole. Based on a meta-analysis of 2,209 published in situ predator-prey relationships in marine and freshwater aquatic environments, we show resource partitioning between grabbers and engulfers. Our results provide a functional classification for piscivorous fishes delineating patterns, which transcend habitats, that may help explain size structures in fish communities.
Collapse
Affiliation(s)
- Michalis Mihalitsis
- Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQldAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- Australian Research CouncilCentre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQldAustralia
| | - David R. Bellwood
- Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQldAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- Australian Research CouncilCentre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQldAustralia
| |
Collapse
|
12
|
Panessiti C, Rull-Garza M, Rickards G, Konow N. Thermal sensitivity of Axolotl feeding behaviors. Integr Comp Biol 2021; 61:1881-1891. [PMID: 34117757 DOI: 10.1093/icb/icab120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Musculoskeletal movement results from muscle contractions, recoil of elastic tendons, aponeuroses, and ligaments, or combinations thereof. Muscular and elastic contributions can vary both across behaviors and with changes in temperature. Skeletal muscles reach peak contraction speed at a temperature optimum with performance declining away from that optimum by approximately 50% per 10 °C, following the Q10 principle. Elastic recoil action, however, is less temperature sensitive. We subjected Axolotls (Ambystoma mexicanum) to changes from warm (23 °C), via medium (14 °C), to cold (6 °C) temperature across most of their thermal tolerance range, and recorded jaw kinematics during feeding on crickets. We sought to determine if suction feeding strikes and food processing chews involve elastic mechanisms and, specifically, if muscular versus elastic contribution vary with temperature for gape opening and closing. Measurements of peak and mean speed for gape opening and closing during strikes and chews across temperature treatments were compared to Q10-based predictions. We found that strike gape speed decreased significantly from warm and medium to cold treatments, indicating low thermal robustness, and no performance-enhancement due to elastic recoil. For chews, peak and mean gape closing speeds, as well as peak gape opening speed, also decreased significantly from warm to cold treatments. However, peak gape opening and closing speeds for chews showed performance-enhancement, consistent with a previously demonstrated presence of elastic action in the Axolotl jaw system. Our results add to a relatively small body of evidence suggesting that elastic recoil plays significant roles in aquatic vertebrate feeding systems, and in cyclic food processing mechanisms.
Collapse
|
13
|
Guo P, Zhang K, Yasuda Y, Yang W, Galipon J, Rival DE. On the influence of biomimetic shark skin in dynamic flow separation. BIOINSPIRATION & BIOMIMETICS 2021; 16:034001. [PMID: 33482662 DOI: 10.1088/1748-3190/abdf31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The effect of shark skin on the boundary-layer separation process under dynamic conditions (maneuvers) has been studied experimentally. We use a foil covered with biomimetic shark skin to explore how this type of surface impacts boundary-layer dynamics in both steady and accelerating conditions. The effect of denticles is assessed via particle image velocimetry in the wake. It is shown that dynamic conditions and small-scale disturbances can mitigate boundary-layer separation through instantaneous modification of the local pressure-gradient distribution. For instance, the region of favourable pressure gradient can be extended by accelerating the foil. The acceleration results in a thinner separated shear layer on the foil surface when compared to the steady reference case. This remarkable difference indicates that local roughness (introduced through for instance biomimetic shark skin) may trigger an interaction with relatively large-scale structures in the boundary layer for effective boundary-layer control during unsteady propulsion and maneuvering.
Collapse
Affiliation(s)
- Pengming Guo
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada
| | - Kai Zhang
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada
| | - Yuji Yasuda
- Keio University Institute for Advanced Biosciences, Tsuruoka, Yamagata, Japan
| | - Wenchao Yang
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada
| | - Josephine Galipon
- Keio University Institute for Advanced Biosciences, Tsuruoka, Yamagata, Japan
- Nagoya University, Neuroscience Institute, Graduate School of Science, Nagoya, Japan
| | - David E Rival
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada
| |
Collapse
|
14
|
Leung DB, Eldredge JD, Gordon MS. A simplified computational model of possible hydrodynamic interactions between respiratory and swimming-related water flows in labriform-swimming fishes. BIOINSPIRATION & BIOMIMETICS 2021; 16:036002. [PMID: 33434901 DOI: 10.1088/1748-3190/abdab7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Hydrodynamic interactions in bony fishes between respiratory fluid flows leaving the opercular openings and simultaneous flows generated by movements of downstream pectoral fins are both poorly understood and likely to be complex. Labriform-swimming fishes that swim primarily by moving only their pectoral fins are good subjects for these studies. We performed a computational fluid dynamics investigation of a simplified 2D model of these interactions based on previously published experimental observations of both respiratory and pectoral fin movements under both resting and slow, steady swimming conditions in two similar labriform swimmers: the bluegill sunfish (L. macrochirus) and the largemouth bass (M. salmoides). We carried out a parametric study investigating the effects that swimming speed, strength of opercular flow and phase difference between the pectoral fin motion and the opercular opening and closing have on the thrust and sideslip forces generated by the pectoral fins during both the abduction and adduction portions of the fin movement cycle. We analyzed pressure distributions on the fin surface to determine physical differences in flows with and without opercular jets. The modeling indicates that complex flow structures emerge from the coupling between the opercular jets and vortex shedding from pectoral fins. The jets from the opercular openings appear to exert significant influence on the forces generated by the fins; they are potentially significant in the maneuverability of at least some labriform swimmers. The numerical simulations and the analysis establish a framework for the study of these interactions in various labriform swimmers in a variety of flow regimes. Similar situations in groups of fishes using other swimming modes should also be investigated.
Collapse
Affiliation(s)
- David B Leung
- Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States of America
| | - Jeff D Eldredge
- Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States of America
| | - Malcolm S Gordon
- Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States of America
| |
Collapse
|
15
|
Knifefish's suction makes water boil. Sci Rep 2020; 10:18698. [PMID: 33122715 PMCID: PMC7596043 DOI: 10.1038/s41598-020-75788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/06/2020] [Indexed: 11/08/2022] Open
Abstract
We discovered that knifefish (Apteronotus albifrons) during suction feeding can produce millimeter-sized cavitation bubbles and flow accelerations up to ~ 450 times the acceleration of gravity. Knifefish may use this powerful suction-induced cavitation to cause physical damage on prey hiding in narrow refuges, therefore facilitating capture.
Collapse
|
16
|
Müller UK, Berg O, Schwaner JM, Brown MD, Li G, Voesenek CJ, van Leeuwen JL. Bladderworts, the smallest known suction feeders, generate inertia-dominated flows to capture prey. THE NEW PHYTOLOGIST 2020; 228:586-595. [PMID: 32506423 DOI: 10.1111/nph.16726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 05/02/2023]
Abstract
Aquatic bladderworts (Utricularia gibba and U. australis) capture zooplankton in mechanically triggered underwater traps. With characteristic dimensions less than 1 mm, the trapping structures are among the smallest known to capture prey by suction, a mechanism that is not effective in the creeping-flow regime where viscous forces prevent the generation of fast and energy-efficient suction flows. To understand what makes suction feeding possible on the small scale of bladderwort traps, we characterised their suction flows experimentally (using particle image velocimetry) and mathematically (using computational fluid dynamics and analytical mathematical models). We show that bladderwort traps avoid the adverse effects of creeping flow by generating strong, fast-onset suction pressures. Our findings suggest that traps use three morphological adaptations: the trap walls' fast release of elastic energy ensures strong and constant suction pressure; the trap door's fast opening ensures effectively instantaneous onset of suction; the short channel leading into the trap ensures undeveloped flow, which maintains a wide effective channel diameter. Bladderwort traps generate much stronger suction flows than larval fish with similar gape sizes because of the traps' considerably stronger suction pressures. However, bladderworts' ability to generate strong suction flows comes at considerable energetic expense.
Collapse
Affiliation(s)
- Ulrike K Müller
- Department of Biology, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Otto Berg
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Janneke M Schwaner
- Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
| | - Matthew D Brown
- Department of Biology, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Gen Li
- Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Showa-machi, Kanazawa-ku, Yokohama-city, Kanagawa, 3173-25, 236-0001, Japan
| | - Cees J Voesenek
- Experimental Zoology Group, Wageningen University, De Elst 1, Wageningen, 6708WD, the Netherlands
| | - Johan L van Leeuwen
- Experimental Zoology Group, Wageningen University, De Elst 1, Wageningen, 6708WD, the Netherlands
| |
Collapse
|
17
|
Deban SM, Holzman R, Müller UK. Suction Feeding by Small Organisms: Performance Limits in Larval Vertebrates and Carnivorous Plants. Integr Comp Biol 2020; 60:852-863. [PMID: 32658970 DOI: 10.1093/icb/icaa105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Suction feeding has evolved independently in two highly disparate animal and plant systems, aquatic vertebrates and carnivorous bladderworts. We review the suction performance of animal and plant suction feeders to explore biomechanical performance limits for aquatic feeders based on morphology and kinematics, in the context of current knowledge of suction feeding. While vertebrates have the greatest diversity and size range of suction feeders, bladderworts are the smallest and fastest known suction feeders. Body size has profound effects on aquatic organismal function, including suction feeding, particularly in the intermediate flow regime that tiny organisms can experience. A minority of tiny organisms suction feed, consistent with model predictions that generating effective suction flow is less energetically efficient and also requires more flow-rate specific power at small size. Although the speed of suction flows generally increases with body and gape size, some specialized tiny plant and animal predators generate suction flows greater than those of suction feeders 100 times larger. Bladderworts generate rapid flow via high-energy and high-power elastic recoil and suction feed for nutrients (relying on photosynthesis for energy). Small animals may be limited by available muscle energy and power, although mouth protrusion can offset the performance cost of not generating high suction pressure. We hypothesize that both the high energetic costs and high power requirements of generating rapid suction flow shape the biomechanics of small suction feeders, and that plants and animals have arrived at different solutions due in part to their different energy budgets.
Collapse
Affiliation(s)
- Stephen M Deban
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave, SCA 110, Tampa, FL 33620, USA
| | - Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.,The Inter-University for Marine Sciences in Eilat, Israel
| | - Ulrike K Müller
- Department of Biology, California State University Fresno, Fresno, CA 93740, USA
| |
Collapse
|
18
|
Dial TR, Lauder GV. Longer development provides first-feeding fish time to escape hydrodynamic constraints. J Morphol 2020; 281:956-969. [PMID: 32557795 DOI: 10.1002/jmor.21224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 11/08/2022]
Abstract
What is the functional effect of prolonged development? By controlling for size, we quantify first-feeding performance and hydrodynamics of zebrafish and guppy offspring (5 ± 0.5 mm in length), which differ fivefold in developmental time and twofold in ontogenetic state. By manipulating water viscosity, we control the hydrodynamic regime, measured as Reynolds number. We predicted that if feeding performance were strictly the result of hydrodynamics, and not development, feeding performance would scale with Reynolds number. We find that guppy offspring successfully feed at much greater distances to prey (1.0 vs. 0.2 mm) and with higher capture success (90 vs. 20%) compared with zebrafish larvae, and that feeding performance was not a result of Reynolds number alone. Flow visualization shows that zebrafish larvae produce a bow wave ~0.2 mm in length, and that the flow field produced during suction does not extend beyond this bow wave. Due to well-developed oral jaw protrusion, the similar-sized suction field generated by guppy offspring extends beyond the horizon of their bow wave, leading to successful prey capture from greater distances. These findings suggest that prolonged development and increased ontogenetic state provides first-feeding fish time to escape the pervasive hydrodynamic constraints (bow wave) of being small.
Collapse
Affiliation(s)
- Terry R Dial
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Kane EA, Higham TE. Kinematic integration during prey capture varies among individuals but not ecological contexts in bluegill sunfish, Lepomis macrochirus (Perciformes: Centrarchidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The general ability of components of an organism to work together to achieve a common goal has been termed integration and is often studied empirically by deconstructing organisms into component parts and quantifying covariation between them. Kinematic traits describing movement are useful for allowing organisms to respond to ecological contexts that vary over short time spans (milliseconds, minutes, etc.). Integration of these traits can contribute to the maintenance of the function of the whole organism, but it is unclear how modulation of component kinematic traits affects their integration. We examined the integration of swimming and feeding during capture of alternative prey types in bluegill sunfish (Lepomis macrochirus). Despite the expected modulation of kinematics, integration within individuals was inflexible across prey types, suggesting functional redundancy for solving a broad constraint. However, integration was variable among individuals, suggesting that individuals vary in their solutions for achieving whole-organism function and that this solution acts as a ‘top-down’ regulator of component traits, which provides insight into why kinematic variation is observed. Additionally, variation in kinematic integration among individuals could serve as an understudied target of environmental selection on prey capture, which is a necessary first step towards the observed divergence in integration among populations and species.
Collapse
Affiliation(s)
- Emily A Kane
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
20
|
Berg O, Singh K, Hall MR, Schwaner MJ, Müller UK. Thermodynamics of the Bladderwort Feeding Strike-Suction Power from Elastic Energy Storage. Integr Comp Biol 2020; 59:1597-1608. [PMID: 31406979 DOI: 10.1093/icb/icz144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The carnivorous plant bladderwort exemplifies the use of accumulated elastic energy to power motion: respiration-driven pumps slowly load the walls of its suction traps with elastic energy (∼1 h). During a feeding strike, this energy is released suddenly to accelerate water (∼1 ms). However, due to the traps' small size and concomitant low Reynolds number, a significant fraction of the stored energy may be dissipated as viscous friction. Such losses and the mechanical reversibility of Stokes flow are thought to degrade the feeding success of other suction feeders in this size range, such as larval fish. In contrast, triggered bladderwort traps are generally successful. By mapping the energy budget of a bladderwort feeding strike, we illustrate how this smallest of suction feeders can perform like an adult fish.
Collapse
Affiliation(s)
- Otto Berg
- Department of Chemistry, California State University Fresno, Fresno, CA, USA
| | - Krizma Singh
- Department of Biology, California State University Fresno, Fresno, CA, USA
| | - Maxwell R Hall
- Department of Biology, California State University Fresno, Fresno, CA, USA
| | | | - Ulrike K Müller
- Department of Biology, California State University Fresno, Fresno, CA, USA
| |
Collapse
|
21
|
Suction Flows Generated by the Carnivorous Bladderwort Utricularia—Comparing Experiments with Mechanical and Mathematical Models. FLUIDS 2020. [DOI: 10.3390/fluids5010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Suction feeding is a well-understood feeding mode among macroscopic aquatic organisms. The little we know about small suction feeders from larval fish suggests that small suction feeders are not effective. Yet bladderworts, an aquatic carnivorous plant with microscopic underwater traps, have strong suction performances despite having the same mouth size as that of fish larvae. Previous experimental studies of bladderwort suction feeding have focused on the solid mechanics of the trap door’s opening mechanism rather than the mechanics of fluid flow. As flows are difficult to study in small suction feeders due to their small size and brief event durations, we combine flow visualization on bladderwort traps with measurements on a mechanical, dynamically scaled model of a suction feeder. We find that bladderwort traps generate flows that are more similar to the inertia-dominated flows of adult fish than the viscosity-dominated flows of larval fish. Our data further suggest that axial flow transects through suction flow fields, often used in biological studies to characterize suction flows, are less diagnostic of the relative contribution of inertia versus viscosity than transverse transects.
Collapse
|
22
|
Wood TC, Smiley PC, Gillespie RB, Gonzalez JM, King KW. Injury frequency and severity in crayfish communities as indicators of physical habitat quality and water quality within agricultural headwater streams. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:227. [PMID: 32157442 DOI: 10.1007/s10661-020-8171-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Crayfishes (Decapoda) are common inhabitants of agricultural headwater streams in the Midwestern USA that have been impacted by physical habitat degradation and contamination by agricultural pollutants. The frequency and severity of injuries within crayfish communities are indicators of crayfish aggression, which is influenced by physical, chemical, and biotic factors. Previous studies have not evaluated the relationships of the frequency and severity of crayfish injuries with physical habitat quality, water quality, and biotic factors within agricultural headwater streams. Understanding these relationships will assist with determining if crayfish injury variables can serve as an indicator of physical habitat quality or water quality in these small degraded streams. We sampled crayfishes, documented the frequency and type of injuries, and measured instream habitat and water chemistry in 2014 and 2015 within 12 agricultural headwater streams in Indiana, Michigan, and Ohio. We documented five native crayfish species from 1641 adult captures. The most abundant species were Faxonius rusticus, Faxonius immunis, and Faxonius propinquus. Linear mixed effect model analyses indicated that four crayfish injury response variables were positively correlated (p < 0.05) with crayfish density, physical habitat quality, and water velocity diversity and that crayfish injury response variables were more strongly correlated with crayfish density than physical habitat quality or water quality. Our results indicate that response variables describing the severity and frequency of crayfish injuries can be effective indicators of physical habitat quality in agricultural headwater streams.
Collapse
Affiliation(s)
- Tyler C Wood
- Laboratory for Sensory Ecology, Department of Bilogical Sciences, Bowling Green State University, Bowling Green, OH, USA.
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, USA.
| | | | - Robert B Gillespie
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, USA
| | | | - Kevin W King
- USDA Agricultural Research Service, Columbus, OH, USA
| |
Collapse
|
23
|
Camarillo H, Arias Rodriguez L, Tobler M. Functional consequences of phenotypic variation between locally adapted populations: Swimming performance and ventilation in extremophile fish. J Evol Biol 2020; 33:512-523. [DOI: 10.1111/jeb.13586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Henry Camarillo
- Division of Biology Kansas State University Manhattan KS USA
| | - Lenin Arias Rodriguez
- División Académica de Ciencias Biológicas Universidad Juárez Autónoma de Tabasco Villahermosa México
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| |
Collapse
|
24
|
Spatial and temporal changes in buccal pressure during prey-capture in the trumpetfish (Aulostomus maculatus). ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Kane EA, Cohen HE, Hicks WR, Mahoney ER, Marshall CD. Beyond Suction-Feeding Fishes: Identifying New Approaches to Performance Integration During Prey Capture in Aquatic Vertebrates. Integr Comp Biol 2019; 59:456-472. [DOI: 10.1093/icb/icz094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Organisms are composed of hierarchically arranged component parts that must work together to successfully achieve whole organism functions. In addition to integration among individual parts, some ecological demands require functional systems to work together in a type of inter-system performance integration. While performance can be measured by the ability to successfully accomplish ecologically relevant tasks, integration across performance traits can provide a deeper understanding of how these traits allow an organism to survive. The ability to move and the ability to consume food are essential to life, but during prey capture these two functions are typically integrated. Suction-feeding fishes have been used as a model of these interactions, but it is unclear how other ecologically relevant scenarios might reduce or change integration. To stimulate further research into these ideas, we highlight three contexts with the potential to result in changes in integration and underlying performance traits: (1) behavioral flexibility in aquatic feeding modes for capturing alternative prey types, (2) changes in the physical demands imposed by prey capture across environments, and (3) secondary adaptation for suction prey capture behaviors. These examples provide a broad scope of potential drivers of integration that are relevant to selection pressures experienced across vertebrate evolution. To demonstrate how these ideas can be applied and stimulate hypotheses, we provide observations from preliminary analyses of locally adapted populations of Trinidadian guppies (Poecilia reticulata) capturing prey using suction and biting feeding strategies and an Atlantic mudskipper (Periophthalmus barbarus) capturing prey above and below water. We also include a re-analysis of published data from two species of secondarily aquatic cetaceans, beluga whales (Delphinapterus leucas) and Pacific white-sided dolphins (Lagenorhynchus obliquidens), to examine the potential for secondary adaptation to affect integration in suction prey capture behaviors. Each of these examples support the broad importance of integration between locomotor and feeding performance but outline new ways that these relationships can be important when suction demands are reduced or altered. Future work in these areas will yield promising insights into vertebrate evolution and we hope to encourage further discussion on possible avenues of research on functional integration during prey capture.
Collapse
Affiliation(s)
- Emily A Kane
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Hannah E Cohen
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - William R Hicks
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Emily R Mahoney
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Christopher D Marshall
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
26
|
Stuart HS, Wang S, Cutkosky MR. Tunable Contact Conditions and Grasp Hydrodynamics Using Gentle Fingertip Suction. IEEE T ROBOT 2019. [DOI: 10.1109/tro.2018.2880094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Whitford MD, Freymiller GA, Higham TE, Clark RW. Determinants of predation success: How to survive an attack from a rattlesnake. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Malachi D. Whitford
- Department of Biology San Diego State University San Diego California
- Ecology Graduate Group University of California Davis California
| | - Grace A. Freymiller
- Department of Biology San Diego State University San Diego California
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside California
| | - Timothy E. Higham
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside California
| | - Rulon W. Clark
- Department of Biology San Diego State University San Diego California
- Chiricahua Desert Museum Rodeo New Mexico
| |
Collapse
|
28
|
Montuelle SJ, Kane EA. Food Capture in Vertebrates: A Complex Integrative Performance of the Cranial and Postcranial Systems. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Schuster S. Hunting in archerfish - an ecological perspective on a remarkable combination of skills. ACTA ACUST UNITED AC 2018; 221:221/24/jeb159723. [PMID: 30530768 DOI: 10.1242/jeb.159723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Archerfish are well known for using jets of water to dislodge distant aerial prey from twigs or leaves. This Review gives a brief overview of a number of skills that the fish need to secure prey with their shooting technique. Archerfish are opportunistic hunters and, even in the wild, shoot at artificial objects to determine whether these are rewarding. They can detect non-moving targets and use efficient search strategies with characteristics of human visual search. Their learning of how to engage targets can be remarkably efficient and can show impressive degrees of generalization, including learning from observation. In other cases, however, the fish seem unable to learn and it requires some understanding of the ecological and biophysical constraints to appreciate why. The act of shooting has turned out not to be of a simple all-or-none character. Rather, the fish adjust the volume of water fired according to target size and use fine adjustments in the timing of their mouth opening and closing manoeuvre to adjust the hydrodynamic stability of their jets to target distance. As soon as prey is dislodged and starts falling, the fish make rapid and yet sophisticated multi-dimensional decisions to secure their prey against many intraspecific and interspecific competitors. Although it is not known why and how archerfish evolved an ability to shoot in the first place, I suggest that the evolution of shooting has strongly pushed the co-evolution of diverse other skills that are needed to secure a catch.
Collapse
Affiliation(s)
- Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
30
|
Thompson M, Van Wassenbergh S, Rogers SM, Seamone SG, Higham TE. Angling-induced injuries have a negative impact on suction feeding performance and hydrodynamics in marine shiner perch, Cymatogaster aggregata. ACTA ACUST UNITED AC 2018; 221:221/19/jeb180935. [PMID: 30301821 DOI: 10.1242/jeb.180935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/06/2018] [Indexed: 11/20/2022]
Abstract
Fishing is a popular and lucrative sport around the world and, in some cases, may contribute to declining fish stocks. To mediate this problem and maintain fish biomass in aquatic ecosystems, catch-and-release fishing, whereby a fish is caught and immediately released, has been implemented in many countries. It is unclear whether the injuries to the mouth that are caused by the hook have an impact on feeding performance of fishes. Using high-speed video and computational fluid dynamics (CFD), we asked whether injuries around the mouth caused by fishing hooks have a negative impact on suction feeding performance (measured as maximum prey velocity) of the commonly angled marine shiner perch (Cymatogaster aggregata). We hypothesized that fish with mouth injuries would exhibit decreased feeding performance compared with controls. Ten shiner perch were caught using scientific angling and 10 were caught using a seine net. Feeding events were then recorded at 500 frames per second using a high-speed camera. Compared with the control group, maximum prey velocity was significantly lower in the injured group (P<0.01). Maximum gape, time to peak gape, maximum jaw protrusion and predator-prey distance were comparable between the control and injured groups, leading us to conclude that the injury-induced hole in the buccal cavity wall reduced the pressure gradient during mouth expansion, thereby reducing the velocity of water entering the fish's mouth. This was confirmed with our CFD modelling. Fishing injuries in nature are likely to depress feeding performance of fish after they have been released, although it is currently unclear whether this has a significant impact on survival.
Collapse
Affiliation(s)
- Melissa Thompson
- Department of Biology, University of Alberta, Edmonton, AB, Canada, T6G 2G7
| | - Sam Van Wassenbergh
- Département Adaptations du Vivant, UMR 7179 CNRS/MNHN, 57 rue Cuvier, Case Postale 55, 75231 Paris Cedex 05, France.,Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Scott G Seamone
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
31
|
Jimenez YE, Camp AL, Grindall JD, Brainerd EL. Axial morphology and 3D neurocranial kinematics in suction-feeding fishes. Biol Open 2018; 7:7/9/bio036335. [PMID: 30237249 PMCID: PMC6176947 DOI: 10.1242/bio.036335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many suction-feeding fish use neurocranial elevation to expand the buccal cavity for suction feeding, a motion necessarily accompanied by the dorsal flexion of joints in the axial skeleton. How much dorsal flexion the axial skeleton accommodates and where that dorsal flexion occurs may vary with axial skeletal morphology, body shape and the kinematics of neurocranial elevation. We measured three-dimensional neurocranial kinematics in three species with distinct body forms: laterally compressed Embiotoca lateralis, fusiform Micropterus salmoides, and dorsoventrally compressed Leptocottus armatus The area just caudal to the neurocranium occupied by bone was 42±1.5%, 36±1.8% and 22±5.5% (mean±s.e.m.; N=3, 6, 4) in the three species, respectively, and the epaxial depth also decreased from E. lateralis to L. armatus Maximum neurocranial elevation for each species was 11, 24 and 37°, respectively, consistent with a hypothesis that aspects of axial morphology and body shape may constrain neurocranial elevation. Mean axis of rotation position for neurocranial elevation in E. lateralis, M. salmoides and L. armatus was near the first, third and fifth intervertebral joints, respectively, leading to the hypothesis of a similar relationship with the number of intervertebral joints that flex. Although future work must test these hypotheses, our results suggest the relationships merit further inquiry.
Collapse
Affiliation(s)
- Yordano E Jimenez
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA .,Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA
| | - Ariel L Camp
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA
| | - Jonathan D Grindall
- Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA.,School of Aquatic and Fishery Sciences, University of Washington, 1122 Boat Street, Seattle, WA 98105, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA.,Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA
| |
Collapse
|
32
|
Waves cue distinct behaviors and differentiate transport of congeneric snail larvae from sheltered versus wavy habitats. Proc Natl Acad Sci U S A 2018; 115:E7532-E7540. [PMID: 30037993 DOI: 10.1073/pnas.1804558115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine population dynamics often depend on dispersal of larvae with infinitesimal odds of survival, creating selective pressure for larval behaviors that enhance transport to suitable habitats. One intriguing possibility is that larvae navigate using physical signals dominating their natal environments. We tested whether flow-induced larval behaviors vary with adults' physical environments, using congeneric snail larvae from the wavy continental shelf (Tritia trivittata) and from turbulent inlets (Tritia obsoleta). Turbulence and flow rotation (vorticity) induced both species to swim more energetically and descend more frequently. Accelerations, the strongest signal from waves, induced a dramatic response in T. trivittata but almost no response in competent T. obsoleta Early stage T. obsoleta did react to accelerations, ruling out differences in sensory capacities. Larvae likely distinguished turbulent vortices from wave oscillations using statocysts. Statocysts' ability to sense acceleration would also enable detection of low-frequency sound from wind and waves. T. trivittata potentially hear and react to waves that provide a clear signal over the continental shelf, whereas T. obsoleta effectively "go deaf" to wave motions that are weak in inlets. Their contrasting responses to waves would cause these larvae to move in opposite directions in the water columns of their respective adult habitats. Simulations showed that the congeners' transport patterns would diverge over the shelf, potentially reinforcing the separate biogeographic ranges of these otherwise similar species. Responses to turbulence could enhance settlement but are unlikely to aid large-scale navigation, whereas shelf species' responses to waves may aid retention over the shelf via Stokes drift.
Collapse
|
33
|
Camp AL, Roberts TJ, Brainerd EL. Bluegill sunfish use high power outputs from axial muscles to generate powerful suction-feeding strikes. ACTA ACUST UNITED AC 2018; 221:221/11/jeb178160. [PMID: 29871983 DOI: 10.1242/jeb.178160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/13/2018] [Indexed: 11/20/2022]
Abstract
Suction-feeding fish rapidly expand the mouth cavity to generate high-velocity fluid flows that accelerate food into the mouth. Such fast and forceful suction expansion poses a challenge, as muscle power is limited by muscle mass and the muscles in fish heads are relatively small. The largemouth bass powers expansion with its large body muscles, with negligible power produced by the head muscles (including the sternohyoideus). However, bluegill sunfish - with powerful strikes but different morphology and feeding behavior - may use a different balance of cranial and axial musculature to power feeding and different power outputs from these muscles. We estimated the power required for suction expansion in sunfish from measurements of intraoral pressure and rate of volume change, and measured muscle length and velocity. Unlike largemouth bass, the sternohyoideus did shorten to generate power, but it and other head muscles were too small to contribute more than 5-10% of peak expansion power in sunfish. We found no evidence of catapult-style power amplification. Instead, sunfish powered suction feeding by generating high power outputs (up to 438 W kg-1) from their axial muscles. These muscles shortened across the cranial half of the body as in bass, but at faster speeds that may be nearer the optimum for power production. Sunfish were able to generate strikes of the same absolute power as bass, but with 30-40% of the axial muscle mass. Thus, species may use the body and head muscles differently to meet the requirements of suction feeding, depending on their morphology and behavior.
Collapse
Affiliation(s)
- Ariel L Camp
- Dept. of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Thomas J Roberts
- Dept. of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Elizabeth L Brainerd
- Dept. of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
34
|
Charters JE, Heiniger J, Clemente CJ, Cameron SF, Amir Abdul Nasir AF, Niehaus AC, Wilson RS. Multidimensional analyses of physical performance reveal a size‐dependent trade‐off between suites of traits. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jordan E. Charters
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| | - Jaime Heiniger
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| | - Christofer J. Clemente
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
- School of Life Sciences University of the Sunshine Coast Sippy Downs Qld Australia
| | - Skye F. Cameron
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| | | | - Amanda C. Niehaus
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| | - Robbie S. Wilson
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| |
Collapse
|
35
|
Jacobs C, Holzman R. Conserved spatio-temporal patterns of suction-feeding flows across aquatic vertebrates: a comparative flow visualization study. J Exp Biol 2018; 221:jeb.174912. [DOI: 10.1242/jeb.174912] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/28/2018] [Indexed: 11/20/2022]
Abstract
Suction feeding is a widespread prey capture strategy among aquatic vertebrates. It is almost omnipresent across fishes, and has repeatedly evolved in other aquatic vertebrates. By rapidly expanding the mouth cavity, suction-feeders generate a fluid flow outside of their mouth, drawing prey inside. Fish and other suction feeding organisms display remarkable trophic diversity, echoed in the diversity of their skull and mouth morphologies. Yet, it is unclear how variable suction flows are across species, and whether variation in suction flows supports trophic diversity. Using a high-speed flow visualization technique, we characterized the spatio-temporal patterns in the flow fields produced during feeding in 14 species of aquatic suction feeders. We found that suction-feeding hydrodynamics are highly conserved across species. Suction flows affected only a limited volume of ∼1 gape diameter away from the mouth, and peaked around the timing of maximal mouth opening. The magnitude of flow speed increased with increasing mouth diameter and, to a lesser extent, with decreasing time to peak gape opening. Other morphological, kinematic and behavioral variables played a minor role in shaping suction-feeding dynamics. We conclude that the trophic diversity within fishes, and likely other aquatic vertebrates, is not supported by a diversity of mechanisms that modify the characteristics of suction flow. Rather, we suggest that suction feeding supports such trophic diversity due to the general lack of strong trade-offs with other mechanisms that contribute to prey capture.
Collapse
Affiliation(s)
- Corrine Jacobs
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| | - Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| |
Collapse
|
36
|
Higham TE, Rogers SM, Langerhans RB, Jamniczky HA, Lauder GV, Stewart WJ, Martin CH, Reznick DN. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation. Proc Biol Sci 2017; 283:rspb.2016.1294. [PMID: 27629033 DOI: 10.1098/rspb.2016.1294] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/24/2016] [Indexed: 11/12/2022] Open
Abstract
Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator-prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Biology, University of California, Riverside, CA, USA
| | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - R Brian Langerhans
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | | | - David N Reznick
- Department of Biology, University of California, Riverside, CA, USA
| |
Collapse
|
37
|
Stinson CM, Deban SM. Functional trade-offs in the aquatic feeding performance of salamanders. ZOOLOGY 2017; 125:69-78. [DOI: 10.1016/j.zool.2017.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
|
38
|
Freymiller GA, Whitford MD, Higham TE, Clark RW. Recent interactions with snakes enhance escape performance of desert kangaroo rats (Rodentia: Heteromyidae) during simulated attacks. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
39
|
Higham TE, Jamniczky HA, Jagnandan K, Smith SJ, Barry TN, Rogers SM. Comparative dynamics of suction feeding in marine and freshwater three-spined stickleback, Gasterosteus aculeatus: kinematics and geometric morphometrics. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
40
|
Cundall D, Fernandez E, Irish F. The suction mechanism of the pipid frog, Pipa pipa (Linnaeus, 1758). J Morphol 2017; 278:1229-1240. [PMID: 28547886 DOI: 10.1002/jmor.20707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 11/06/2022]
Abstract
Most suction-feeding, aquatic vertebrates create suction by rapidly enlarging the oral cavity and pharynx. Forceful enlargement of the pharynx is powered by longitudinal muscles that retract skeletal elements of the hyoid, more caudal branchial arches, and, in many fish, the pectoral girdle. This arrangement was thought to characterize all suction-feeding vertebrates. However, it does not exist in the permanently aquatic, tongueless Pipa pipa, an Amazonian frog that can catch fish. Correlating high-speed (250 and 500 fps) video records with anatomical analysis and functional tests shows that fundamental features of tetrapod body design are altered to allow P. pipa to suction-feed. In P. pipa, the hyoid apparatus is not connected to the skull and is enclosed by the pectoral girdle. The major retractor of the hyoid apparatus arises not from the pectoral girdle but from the femur, which lies largely within the soft tissue boundaries of the trunk. Retraction of the hyoid is coupled with expansion of the anterior trunk, which occurs when the hypertrophied ventral pectoral elements are depressed and the urostyle and sacral vertebra are protracted and slide forward on the pelvic girdle, thereby elongating the entire trunk. We suggest that a single, robust pair of muscles adduct the cleithra to depress the ventral pectoral elements with force, while modified tail muscles slide the axial skeleton cranially on the pelvic girdle. Combined hyoid retraction, axial protraction, and pectoral depression expand the buccopharyngeal cavity to a volume potentially equal to that of the entire resting body of the frog. Pipa may be the only tetrapod vertebrate clade that enlarges its entire trunk during suction-feeding.
Collapse
Affiliation(s)
- David Cundall
- Biological Sciences, Lehigh University, 1 W. Packer Ave, Bethlehem, Pennsylvania, 18015-3001
| | - Edward Fernandez
- Biological Sciences, Lehigh University, 1 W. Packer Ave, Bethlehem, Pennsylvania, 18015-3001.,Cooper Medical School of Rowan University, 401 South Broad St, Camden, New Jersey, 08103
| | - Frances Irish
- Biological Sciences, Moravian College, 1200 Main St, Bethlehem, Pennsylvania, 18018
| |
Collapse
|
41
|
Dewenter J, Gerullis P, Hecker A, Schuster S. Archerfish use their shooting technique to produce adaptive underwater jets. ACTA ACUST UNITED AC 2017; 220:1019-1025. [PMID: 28082614 DOI: 10.1242/jeb.146936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/20/2016] [Indexed: 11/20/2022]
Abstract
Archerfish are renowned for dislodging aerial prey using well-aimed shots of water. Recently it has been shown that these fish can shape their aerial jets by adjusting the dynamics of their mouth opening and closing. This allows the fish to adjust their jet to target distance so that they can forcefully hit prey over considerable distances. Here, we suggest that archerfish use the same technique to also actively control jets under water. Fired from close range, the underwater jets are powerful enough to lift up buried food particles, which the fish then can pick up. We trained fish so that we could monitor their mouth opening and closing maneuvers during underwater shooting and compare them with those employed in aerial shooting. Our analysis suggests that the fish use the same dynamic mechanism to produce aerial and underwater jets and that they employ the same basic technique to adjust their jets in both conditions. When food is buried in substrate that consists of large particles, the fish use a brief pulse, but they use a longer one when the substrate is more fine-grained. These findings extend the notion that archerfish can flexibly shape their jets to be appropriate in different contexts and suggest that archerfish shooting might have been shaped both by constraints in aerial and underwater shooting.
Collapse
Affiliation(s)
- Jana Dewenter
- Department of Animal Physiology, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Peggy Gerullis
- Department of Animal Physiology, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Alexander Hecker
- Department of Animal Physiology, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
42
|
Gardiner JM, Atema J, Hueter RE, Motta PJ. Modulation of shark prey capture kinematics in response to sensory deprivation. ZOOLOGY 2016; 120:42-52. [PMID: 27618704 DOI: 10.1016/j.zool.2016.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/23/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
The ability of predators to modulate prey capture in response to the size, location, and behavior of prey is critical to successful feeding on a variety of prey types. Modulating in response to changes in sensory information may be critical to successful foraging in a variety of environments. Three shark species with different feeding morphologies and behaviors were filmed using high-speed videography while capturing live prey: the ram-feeding blacktip shark, the ram-biting bonnethead, and the suction-feeding nurse shark. Sharks were examined intact and after sensory information was blocked (olfaction, vision, mechanoreception, and electroreception, alone and in combination), to elucidate the contribution of the senses to the kinematics of prey capture. In response to sensory deprivation, the blacktip shark demonstrated the greatest amount of modulation, followed by the nurse shark. In the absence of olfaction, blacktip sharks open the jaws slowly, suggestive of less motivation. Without lateral line cues, blacktip sharks capture prey from greater horizontal angles using increased ram. When visual cues are absent, blacktip sharks elevate the head earlier and to a greater degree, allowing them to overcome imprecise position of the prey relative to the mouth, and capture prey using decreased ram, while suction remains unchanged. When visual cues are absent, nurse sharks open the mouth wider, extend the labial cartilages further, and increase suction while simultaneously decreasing ram. Unlike some bony fish, neither species switches feeding modalities (i.e. from ram to suction or vice versa). Bonnetheads failed to open the mouth when electrosensory cues were blocked, but otherwise little to no modulation was found in this species. These results suggest that prey capture may be less plastic in elasmobranchs than in bony fishes, possibly due to anatomical differences, and that the ability to modulate feeding kinematics in response to available sensory information varies by species, rather than by feeding modality.
Collapse
Affiliation(s)
- Jayne M Gardiner
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Ave., Tampa, FL 33620, USA; Mote Marine Laboratory, Center for Shark Research, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Jelle Atema
- Boston University Marine Program, 5 Cummington Mall, Boston, MA 02215, USA
| | - Robert E Hueter
- Mote Marine Laboratory, Center for Shark Research, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA
| | - Philip J Motta
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| |
Collapse
|
43
|
Böni L, Fischer P, Böcker L, Kuster S, Rühs PA. Hagfish slime and mucin flow properties and their implications for defense. Sci Rep 2016; 6:30371. [PMID: 27460842 PMCID: PMC4961968 DOI: 10.1038/srep30371] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023] Open
Abstract
When hagfish (Myxinidae) are attacked by predators, they form a dilute, elastic, and cohesive defensive slime made of mucins and protein threads. In this study we propose a link between flow behavior and defense mechanism of hagfish slime. Oscillatory rheological measurements reveal that hagfish slime forms viscoelastic networks at low concentrations. Mucins alone did not contribute viscoelasticity, however in shear flow, viscosity was observed. The unidirectional flow, experienced by hagfish slime during suction feeding by predators, was mimicked with extensional rheology. Elongational stresses were found to increase mucin viscosity. The resulting higher resistance to flow could support clogging of the attacker's gills. Shear flow in contrast decreases the slime viscosity by mucin aggregation and leads to a collapse of the slime network. Hagfish may benefit from this collapse when trapped in their own slime and facing suffocation by tying a sliding knot with their body to shear off the slime. This removal could be facilitated by the apparent shear thinning behavior of the slime. Therefore hagfish slime, thickening in elongation and thinning in shear, presents a sophisticated natural high water content gel with flow properties that may be beneficial for both, defense and escape.
Collapse
Affiliation(s)
- Lukas Böni
- Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Peter Fischer
- Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Lukas Böcker
- Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Simon Kuster
- Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Patrick A. Rühs
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
44
|
Kenaley CP, Lauder GV. A biorobotic model of the suction-feeding system in largemouth bass: the roles of motor program speed and hyoid kinematics. J Exp Biol 2016; 219:2048-59. [PMID: 27122547 DOI: 10.1242/jeb.132514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 04/21/2016] [Indexed: 11/20/2022]
Abstract
The vast majority of ray-finned fishes capture prey through suction feeding. The basis of this behavior is the generation of subambient pressure through rapid expansion of a highly kinetic skull. Over the last four decades, results from in vivo experiments have elucidated the general relationships between morphological parameters and subambient pressure generation. Until now, however, researchers have been unable to tease apart the discrete contributions of, and complex relationships among, the musculoskeletal elements that support buccal expansion. Fortunately, over the last decade, biorobotic models have gained a foothold in comparative research and show great promise in addressing long-standing questions in vertebrate biomechanics. In this paper, we present BassBot, a biorobotic model of the head of the largemouth bass (Micropterus salmoides). BassBot incorporates a 3D acrylic plastic armature of the neurocranium, maxillary apparatus, lower jaw, hyoid, suspensorium and opercular apparatus. Programming of linear motors permits precise reproduction of live kinematic behaviors including hyoid depression and rotation, premaxillary protrusion, and lateral expansion of the suspensoria. BassBot reproduced faithful kinematic and pressure dynamics relative to live bass. We show that motor program speed has a direct relationship to subambient pressure generation. Like vertebrate muscle, the linear motors that powered kinematics were able to produce larger magnitudes of force at slower velocities and, thus, were able to accelerate linkages more quickly and generate larger magnitudes of subambient pressure. In addition, we demonstrate that disrupting the kinematic behavior of the hyoid interferes with the anterior-to-posterior expansion gradient. This resulted in a significant reduction in subambient pressure generation and pressure impulse of 51% and 64%, respectively. These results reveal the promise biorobotic models have for isolating individual parameters and assessing their role in suction feeding.
Collapse
Affiliation(s)
| | - George V Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
45
|
Marshall CD. Morphology of the Bearded Seal (Erignathus barbatus) Muscular-Vibrissal Complex: A Functional Model for Phocid Subambient Pressure Generation. Anat Rec (Hoboken) 2016; 299:1043-53. [DOI: 10.1002/ar.23377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/01/2016] [Accepted: 04/15/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Christopher D. Marshall
- Department of Marine Biology; Texas A&M University; Texas
- Department of Wildlife and Fisheries Biology; Texas A&M University; Texas
| |
Collapse
|
46
|
Collar DC, Quintero M, Buttler B, Ward AB, Mehta RS. Body shape transformation along a shared axis of anatomical evolution in labyrinth fishes (Anabantoidei). Evolution 2016; 70:555-67. [DOI: 10.1111/evo.12887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- David C. Collar
- Department of Organismal and Environmental Biology; Christopher Newport University; Newport News Virginia 23606
| | - Michelle Quintero
- Department of Ecology and Evolutionary Biology; University of California; Santa Cruz California 95060
| | - Bernardo Buttler
- Department of Ecology and Evolutionary Biology; University of California; Santa Cruz California 95060
| | - Andrea B. Ward
- Department of Biology; Adelphi University; Garden City New York 11530
| | - Rita S. Mehta
- Department of Ecology and Evolutionary Biology; University of California; Santa Cruz California 95060
| |
Collapse
|
47
|
McGee MD, Reustle JW, Oufiero CE, Wainwright PC. Intermediate Kinematics Produce Inferior Feeding Performance in a Classic Case of Natural Hybridization. Am Nat 2015; 186:807-14. [DOI: 10.1086/683464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Fuchs HL, Christman AJ, Gerbi GP, Hunter EJ, Diez FJ. Directional flow sensing by passively stable larvae. J Exp Biol 2015; 218:2782-92. [DOI: 10.1242/jeb.125096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mollusk larvae have a stable, velum-up orientation that may influence how they sense and react to hydrodynamic signals applied in different directions. Directional sensing abilities and responses could affect how a larva interacts with anisotropic fluid motions, including those in feeding currents and in boundary layers encountered during settlement. Oyster larvae (Crassostrea virginica) were exposed to simple shear in a Couette device and to solid-body rotation in a single rotating cylinder. Both devices were operated in two different orientations, one with the axis of rotation parallel to the gravity vector, and one with the axis perpendicular. Larvae and flow were observed simultaneously with near-infrared particle-image velocimetry, and behavior was quantified as a response to strain rate, vorticity and centripetal acceleration. Only flows rotating about a horizontal axis elicited the diving response observed previously for oyster larvae in turbulence. The results provide strong evidence that the turbulence-sensing mechanism relies on gravity-detecting organs (statocysts) rather than mechanosensors (cilia). Flow sensing with statocysts sets oyster larvae apart from zooplankters such as copepods and protists that use external mechanosensors in sensing spatial velocity gradients generated by prey or predators. Sensing flow-induced changes in orientation, rather than flow deformation, would enable more efficient control of vertical movements. Statocysts provide larvae with a mechanism of maintaining their upward swimming when rotated by vortices and initiating dives toward the seabed in response to the strong turbulence associated with adult habitats.
Collapse
Affiliation(s)
- Heidi L. Fuchs
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Adam J. Christman
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gregory P. Gerbi
- Physics Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Elias J. Hunter
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - F. Javier Diez
- Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
49
|
Stoffels RJ. Physiological Trade-Offs Along a Fast-Slow Lifestyle Continuum in Fishes: What Do They Tell Us about Resistance and Resilience to Hypoxia? PLoS One 2015; 10:e0130303. [PMID: 26070078 PMCID: PMC4466508 DOI: 10.1371/journal.pone.0130303] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/19/2015] [Indexed: 11/18/2022] Open
Abstract
It has recently been suggested that general rules of change in ecological communities might be found through the development of functional relationships between species traits and performance. The physiological, behavioural and life-history traits of fishes are often organised along a fast-slow lifestyle continuum (FSLC). With respect to resistance (capacity for population to resist change) and resilience (capacity for population to recover from change) to environmental hypoxia, the literature suggests that traits enhancing resilience may come at the expense of traits promoting resistance to hypoxia; a trade-off may exist. Here I test whether three fishes occupying different positions along the FSLC trade-off resistance and resilience to environmental hypoxia. Static respirometry experiments were used to determine resistance, as measured by critical oxygen tension (Pcrit), and capacity for (RC) and magnitude of metabolic reduction (RM). Swimming respirometry experiments were used to determine aspects of resilience: critical (Ucrit) and optimal swimming speed (Uopt), and optimal cost of transport (COTopt). Results pertaining to metabolic reduction suggest a resistance gradient across species described by the inequality Melanotaenia fluviatilis (fast lifestyle) < Hypseleotris sp. (intermediate lifestyle) < Mogurnda adspersa (slow lifestyle). The Ucrit and COTopt data suggest a resilience gradient described by the reverse inequality, and so the experiments generally indicate that three fishes occupying different positions on the FSLC trade-off resistance and resilience to hypoxia. However, the scope of inferences that can be drawn from an individual study is narrow, and so steps towards general, trait-based rules of fish community change along environmental gradients are discussed.
Collapse
Affiliation(s)
- Rick J. Stoffels
- Commonwealth Scientific and Industrial Research Organisation, Land and Water, Murray-Darling Freshwater Research Centre, Wodonga, VIC, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Wodonga, VIC, Australia
- * E-mail:
| |
Collapse
|
50
|
Day SW, Higham TE, Holzman R, Van Wassenbergh S. Morphology, Kinematics, and Dynamics: The Mechanics of Suction Feeding in Fishes. Integr Comp Biol 2015; 55:21-35. [PMID: 25980568 DOI: 10.1093/icb/icv032] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Suction feeding is pervasive among aquatic vertebrates, and our understanding of the functional morphology and biomechanics of suction feeding has recently been advanced by combining experimental and modeling approaches. Key advances include the visualization of the patterns of flow in front of the mouth of a feeding fish, the measurement of pressure inside their mouth cavity, and the employment of analytical and computational models. Here, we review the key components of the morphology and kinematics of the suction-feeding system of anatomically generalized, adult ray-finned fishes, followed by an overview of the hydrodynamics involved. In the suction-feeding apparatus, a strong mechanistic link among morphology, kinematics, and the capture of prey is manifested through the hydrodynamic interactions between the suction flows and solid surfaces (the mouth cavity and the prey). It is therefore a powerful experimental system in which the ecology and evolution of the capture of prey can be studied based on first principals.
Collapse
Affiliation(s)
- Steven W Day
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium Steven.Day@RIT
| | - Timothy E Higham
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | - Roi Holzman
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | - Sam Van Wassenbergh
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| |
Collapse
|