1
|
Brenzinger B, Schrödl M, Kano Y. Origin and significance of two pairs of head tentacles in the radiation of euthyneuran sea slugs and land snails. Sci Rep 2021; 11:21016. [PMID: 34697382 PMCID: PMC8545979 DOI: 10.1038/s41598-021-99172-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
The gastropod infraclass Euthyneura comprises at least 30,000 species of snails and slugs, including nudibranch sea slugs, sea hares and garden snails, that flourish in various environments on earth. A unique morphological feature of Euthyneura is the presence of two pairs of sensory head tentacles with different shapes and functions: the anterior labial tentacles and the posterior rhinophores or eyestalks. Here we combine molecular phylogenetic and microanatomical evidence that suggests the two pairs of head tentacles have originated by splitting of the original single tentacle pair (with two parallel nerve cords in each tentacle) as seen in many other gastropods. Minute deep-sea snails of Tjaernoeia and Parvaplustrum, which in our phylogeny belonged to the euthyneurans’ sister group (new infraclass Mesoneura), have tentacles that are split along much of their lengths but associated nerves and epidermal sense organs are not as specialized as in Euthyneura. We suggest that further elaboration of cephalic sense organs in Euthyneura closely coincided with their ecological radiation and drastic modification of body plans. The monotypic family Parvaplustridae nov., superfamily Tjaernoeioidea nov. (Tjaernoeiidae + Parvaplustridae), and new major clade Tetratentaculata nov. (Mesoneura nov. + Euthyneura) are also proposed based on their phylogenetic relationships and shared morphological traits.
Collapse
Affiliation(s)
- Bastian Brenzinger
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, Munich, Germany. .,Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, Munich, Germany.,Department Biology II, BioZentrum, Ludwig-Maximilians-Universität, Großhadernerstr. 2, 82152, Planegg-Martinsried, Germany.,SNSB-Bavarian State Collection of Paleontology and Geology, GeoBioCenter LMU, Richard-Wagner-Str. 10, 80333, Munich, Germany
| | - Yasunori Kano
- Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
2
|
Yamanaka A, Kobayashi S, Matsuo Y, Matsuo R. FxRIamide regulates the oscillatory activity in the olfactory center of the terrestrial slug Limax. Peptides 2021; 141:170541. [PMID: 33775802 DOI: 10.1016/j.peptides.2021.170541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/13/2021] [Accepted: 03/20/2021] [Indexed: 11/17/2022]
Abstract
The terrestrial slug Limax acquires odor-aversion memory. The procerebrum is the secondary olfactory center in the brain of Limax, and functions as the locus of the memory formation and storage. The change in the local field potential oscillation in the procerebrum reflects the information processing of the learned odor. However, it is not fully understood what factors, intrinsic or extrinsic in the procerebrum, alter the oscillatory activity and how it is regulated. In the present study, we found that FxRIamide (Phe-x-Arg-Ile-NH2), which was previously identified as a myomodulatory peptide in the gastropod Fusinus ferrugineus, downregulates the oscillatory frequency of the local field potential oscillation in the procerebrum of Limax. FxRIamide peptides were encoded by two distinct transcripts, which exhibit partially overlapping expression patterns in the brain. Immunohistochemical staining revealed a scattered distribution of FxRIamide-expressing neurons in the cell mass layer of the procerebrum, in addition to the ramified innervation of FxRIamidergic neurons in the neuropile layers. Down-regulation of the oscillatory frequency of the local field potential was explained by the inhibitory effects of FxRIamide on the bursting neurons, which are the kernels of the local field potential oscillation in the procerebrum. Our study revealed the previously unidentified role of FxRIamide peptides in the network of interneurons of Limax, and these peptides may play a role in the mnemonic functions of the procerebrum.
Collapse
Affiliation(s)
- Amami Yamanaka
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529, Japan
| | - Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Yuko Matsuo
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529, Japan
| | - Ryota Matsuo
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529, Japan.
| |
Collapse
|
3
|
Fujisaki Y, Matsuo R. Context-Dependent Passive Avoidance Learning in the Terrestrial Slug Limax. Zoolog Sci 2019; 34:532-537. [PMID: 29219042 DOI: 10.2108/zs170071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The terrestrial slug Limax has been used as a model animal for studying the neural mechanisms underlying associative olfactory learning. The slug also innately exhibits negative phototactic behavior using its eyes. In the present study, we developed an experimental paradigm for quantification of slug's negative phototaxis behavior, and investigated whether the nature of the negative phototaxis can be modified by learning experience. The experimental set-up consists of light and dark compartments, between which the slug can move freely. During conditioning, the slug was placed in the light compartment, and an aversive stimulus (quinidine sulfate solution) was applied when it reached the dark compartment. After a single conditioning session, the time to reach the dark compartment significantly increased when it was tested following 24 hr or one week. Protein synthesis inhibition immediately following the conditioning impaired the memory retention at one week but not at 24 hr. The retrieval of the memory was context-dependent, as the time to reach the dark compartment did not significantly increase if the slug was placed on a floor with a different texture in the memory retention test. If the aversive stimulus was applied when the slug was in the light compartment, the time to reach the dark compartment did not increase after 24 hr. This is the first report demonstrating the capability of the slug to form context-dependent passive avoidance memory that can be established in a single conditioning session.
Collapse
Affiliation(s)
- Yuko Fujisaki
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| | - Ryota Matsuo
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| |
Collapse
|
4
|
Page LR, Hildebrand IM, Kempf SC. Siphonariid development: Quintessential euthyneuran larva with a mantle fold innovation (Gastropoda; Panpulmonata). J Morphol 2019; 280:634-653. [DOI: 10.1002/jmor.20971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Louise R. Page
- Department of BiologyUniversity of Victoria P.O. Box 3020 STN CSC, Victoria British Columbia Canada
| | - Ilsa M. Hildebrand
- Department of BiologyUniversity of Victoria P.O. Box 3020 STN CSC, Victoria British Columbia Canada
| | - Stephen C. Kempf
- Department of Biological Sciences 331 Funchess Hall, University of Auburn, Auburn Alabama
| |
Collapse
|
5
|
Matsuo Y, Yamanaka A, Matsuo R. RFamidergic neurons in the olfactory centers of the terrestrial slug Limax. ZOOLOGICAL LETTERS 2018; 4:22. [PMID: 30116553 PMCID: PMC6085721 DOI: 10.1186/s40851-018-0108-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The terrestrial slug Limax has long been used as a model for the study of olfactory information processing and odor learning. Olfactory inputs from the olfactory epithelium are processed in the tentacular ganglion and then in the procerebrum. Glutamate and acetylcholine are the major neurotransmitters used in the procerebrum. Phe-Met-Arg-Phe-NH2 (FMRFamide) has been shown to be involved in the regulation of the network activity of the procerebrum. Although there are thought to be various RFamide family peptides other than FMRFamide that are potentially recognized by anti-FMRFamide antibody in the central nervous system of mollusks, identifying the entire repertoire of RFamide peptides in Limax has yet to be achieved. METHODS In the present study, we made a comprehensive search for RFamide peptide-encoding genes from the transcriptome data of Limax, and identified 12 genes. The expression maps of these RFamide genes were constructed by in situ hybridization in the cerebral ganglia including the procerebrum, and in the superior/inferior tentacles. RESULTS Ten of 12 genes were expressed in the procerebrum, and nine of 12 genes were expressed in the tentacular ganglia. Gly-Ser-Leu-Phe-Arg-Phe-NH2 (GSLFRFamide), which is encoded by two different genes, LFRFamide1 (Leu-Phe-Arg-Phe-NH2-1) and LFRFamide2 (Leu-Phe-Arg-Phe-NH2-2), decreased the oscillatory frequency of the local field potential oscillation in the procerebrum when exogenously applied in vitro. We also found by immunohistochemistry that the neurons expressing pedal peptide send efferent projections from the procerebrum back to the tentacular ganglion. CONCLUSION Our findings suggest the involvement of a far wider variety of RFamide family peptides in the olfactory information processing in Limax than previously thought.
Collapse
Affiliation(s)
- Yuko Matsuo
- Laboratory of Neurobiology, International College of Arts and Sciences, Fukuoka Women’s University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529 Japan
| | - Amami Yamanaka
- Laboratory of Neurobiology, International College of Arts and Sciences, Fukuoka Women’s University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529 Japan
| | - Ryota Matsuo
- Laboratory of Neurobiology, International College of Arts and Sciences, Fukuoka Women’s University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529 Japan
| |
Collapse
|
6
|
Kiss T. Do terrestrial gastropods use olfactory cues to locate and select food actively? INVERTEBRATE NEUROSCIENCE 2017; 17:9. [PMID: 28688004 DOI: 10.1007/s10158-017-0202-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Abstract
Having been investigated for over 40 years, some aspects of the biology of terrestrial gastropod's olfactory system have been challenging and highly contentious, while others still remain unresolved. For example, a number of terrestrial gastropod species can track the odor of food, while others have no strong preferences toward food odor; rather they find it by random encounter. Here, while assessing the most recent findings and comparing them with earlier studies, the aspects of the food selection based on olfactory cues are examined critically to highlight the speculations and controversies that have arisen. We analyzed and compared the potential role of airborne odors in the feeding behavior of several terrestrial gastropod species. The available results indicate that in the foraging of most of the terrestrial gastropod species odor cues contribute substantially to food finding and selection. The results also suggest, however, that what they will actually consume largely depends on where they live and the species of gastropod that they are. Due to the voluminous literature relevant to this object, this review is not intended to be exhaustive. Instead, I selected what I consider to be the most important or critical in studies regarding the role of the olfaction in feeding of terrestrial gastropods.
Collapse
Affiliation(s)
- Tibor Kiss
- Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno Str. 2-3, Tihany, 8237, Hungary.
| |
Collapse
|
7
|
Matsuo R, Tanaka M, Fukata R, Kobayashi S, Aonuma H, Matsuo Y. Octopaminergic system in the central nervous system of the terrestrial slugLimax. J Comp Neurol 2016; 524:3849-3864. [DOI: 10.1002/cne.24039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/26/2016] [Accepted: 05/16/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ryota Matsuo
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| | - Marin Tanaka
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| | - Rena Fukata
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| | - Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Sanuki Kagawa 769-2193 Japan
| | - Hitoshi Aonuma
- Research Center of Mathematics for Social Creativity, Research Institute of Electronic Science; Hokkaido University; Sapporo Hokkaido 060-0812 Japan
- Japan Science and Technology Agency; CREST; Kawaguchi Saitama 332-0012 Japan
| | - Yuko Matsuo
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| |
Collapse
|
8
|
Koga Y, Matsuo Y, Matsuo R. Olfactory Memory Storage and/or Retrieval Requires the Presence of the Exact Tentacle Used During Memory Acquisition in the Terrestrial SlugLimax. Zoolog Sci 2016; 33:78-82. [DOI: 10.2108/zs150128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Matsuo R, Fukata R, Kumagai M, Kobayashi A, Kobayashi S, Matsuo Y. Distribution of histaminergic neurons and their modulatory effects on oscillatory activity in the olfactory center of the terrestrial slug Limax. J Comp Neurol 2015; 524:119-35. [DOI: 10.1002/cne.23829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Ryota Matsuo
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| | - Rena Fukata
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| | - Moeko Kumagai
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| | - Asuka Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University; Sanuki Kagawa 769-2193 Japan
| | - Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University; Sanuki Kagawa 769-2193 Japan
| | - Yuko Matsuo
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| |
Collapse
|
10
|
Matsuo Y, Uozumi N, Matsuo R. Photo-tropotaxis based on projection through the cerebral commissure in the terrestrial slug Limax. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:1023-32. [DOI: 10.1007/s00359-014-0954-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
|
11
|
Gelperin A. Comparative chemosensory cognition. Front Behav Neurosci 2014; 8:190. [PMID: 24904341 PMCID: PMC4033254 DOI: 10.3389/fnbeh.2014.00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 05/07/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Alan Gelperin
- Department of Molecular Biology, Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
| |
Collapse
|
12
|
Matsuo R, Kobayashi S, Wakiya K, Yamagishi M, Fukuoka M, Ito E. The cholinergic system in the olfactory center of the terrestrial slugLimax. J Comp Neurol 2014; 522:2951-66. [DOI: 10.1002/cne.23559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/10/2014] [Accepted: 02/04/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Ryota Matsuo
- International College of Arts and Sciences; Fukuoka Women's University; Fukuoka 813-8529 Japan
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Kagawa 769-2193 Japan
| | - Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Kagawa 769-2193 Japan
| | - Kyoko Wakiya
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Kagawa 769-2193 Japan
| | - Miki Yamagishi
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Kagawa 769-2193 Japan
| | - Masayuki Fukuoka
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Kagawa 769-2193 Japan
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Kagawa 769-2193 Japan
| |
Collapse
|
13
|
Ito E, Kojima S, Lukowiak K, Sakakibara M. From likes to dislikes: conditioned taste aversion in the great pond snail (Lymnaea stagnalis). CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0292] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neural circuitry comprising the central pattern generator (CPG) that drives feeding behavior in the great pond snail (Lymnaea stagnalis (L., 1758)) has been worked out. Because the feeding behavior undergoes associative learning and long-term memory (LTM) formation, it provides an excellent opportunity to study the causal neuronal mechanisms of these two processes. In this review, we explore some of the possible causal neuronal mechanisms of associative learning of conditioned taste aversion (CTA) and its subsequent consolidation processes into LTM in L. stagnalis. In the CTA training procedure, a sucrose solution, which evokes a feeding response, is used as the conditioned stimulus (CS) and a potassium chloride solution, which causes a withdrawal response, is used as the unconditioned stimulus (US). The pairing of the CS–US alters both the feeding response of the snail and the function of a pair of higher order interneurons in the cerebral ganglia. Following the acquisition of CTA, the polysynaptic inhibitory synaptic input from the higher order interneurons onto the feeding CPG neurons is enhanced, resulting in suppression of the feeding response. These changes in synaptic efficacy are thought to constitute a “memory trace” for CTA in L. stagnalis.
Collapse
Affiliation(s)
- E. Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan
| | - S. Kojima
- Sandler Neurosciences Center, University of California, San Francisco, 675 Nelson Rising Lane 518, San Francisco, CA 94143-0444, USA
| | - K. Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - M. Sakakibara
- School of High-Technology for Human Welfare, Tokai University, 317 Nishino, Numazu 410-0321, Japan
| |
Collapse
|
14
|
Kobayashi S, Matsuo R, Sadamoto H, Watanabe S, Ito E. Excitatory effects of GABA on procerebrum neurons in a slug. J Neurophysiol 2012; 108:989-98. [DOI: 10.1152/jn.01137.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Classical neurotransmitters, such as glutamate and γ-aminobutyric acid (GABA), often have different actions on invertebrate neurons from those reported for vertebrate neurons. In the terrestrial mollusk Limax, glutamate was found to function as an inhibitory transmitter in the procerebrum (PC), but it has not yet been clarified how GABA acts in the PC. We thus examined what effects GABA exerts on PC neurons in the present study. For this purpose, we first applied GABA to isolated PC preparations and recorded postsynaptic currents and potentials in PC neurons. The GABA application reduced the amplitude of inhibitory postsynaptic currents and depolarization-induced outward currents recorded in nonbursting neurons and increased the number of spontaneous spikes of nonbursting neurons. However, direct GABA-induced currents were not observed in either bursting or nonbursting neurons. These results suggest a potential direct effect of GABA on outward currents resulting in enhanced excitability of PC neurons. Next, we measured the change in [Ca2+]i in cultured PC neurons by application of GABA. The GABA application increased spontaneous Ca2+ events in cultured neurons. These Ca2+ events were ascribable to the influx of extracellular Ca2+. We then confirmed the presence of GABA and GABA receptors in the PC. The GABA-like immunoreactivity was observed in the neuropil layers of the PC, and the mRNAs for both GABAA and GABAB receptors were expressed in the PC. In particular, GABAB receptor mRNA, rather than GABAA, was found to be more abundantly expressed in the PC. These results suggest that GABA functions as an excitatory modulator for PC neurons via mainly GABAB receptors.
Collapse
Affiliation(s)
- Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan; and
| | - Ryota Matsuo
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan; and
| | - Hisayo Sadamoto
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan; and
| | - Satoshi Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan; and
| |
Collapse
|