1
|
Schwarz D, Heiss E, Pierson TW, Konow N, Schoch RR. Using salamanders as model taxa to understand vertebrate feeding constraints during the late Devonian water-to-land transition. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220541. [PMID: 37839447 PMCID: PMC10577038 DOI: 10.1098/rstb.2022.0541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/23/2023] [Indexed: 10/17/2023] Open
Abstract
The vertebrate water-to-land transition and the rise of tetrapods brought about fundamental changes for the groups undergoing these evolutionary changes (i.e. stem and early tetrapods). These groups were forced to adapt to new conditions, including the distinct physical properties of water and air, requiring fundamental changes in anatomy. Nutrition (or feeding) was one of the prime physiological processes these vertebrates had to successfully adjust to change from aquatic to terrestrial life. The basal gnathostome feeding mode involves either jaw prehension or using water flows to aid in ingestion, transportation and food orientation. Meanwhile, processing was limited primarily to simple chewing bites. However, given their comparatively massive and relatively inflexible hyobranchial system (compared to the more muscular tongue of many tetrapods), it remains fraught with speculation how stem and early tetrapods managed to feed in both media. Here, we explore ontogenetic water-to-land transitions of salamanders as functional analogues to model potential changes in the feeding behaviour of stem and early tetrapods. Our data suggest two scenarios for terrestrial feeding in stem and early tetrapods as well as the presence of complex chewing behaviours, including excursions of the jaw in more than one dimension during early developmental stages. Our results demonstrate that terrestrial feeding may have been possible before flexible tongues evolved. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Daniel Schwarz
- Department of Palaeontology, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstrasse 1, 07743 Jena, Germany
| | - Egon Heiss
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstrasse 1, 07743 Jena, Germany
| | - Todd W. Pierson
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA 01854, USA
| | - Rainer R. Schoch
- Department of Palaeontology, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
- Institute for Biology, Department of Palaeontology, University of Hohenheim, Wollgrasweg 23, 70599 Stuttgart, Germany
| |
Collapse
|
2
|
Gartner SM, Whitlow KR, Laurence-Chasen JD, Kaczmarek EB, Granatosky MC, Ross CF, Westneat MW. Suction feeding of West African lungfish (Protopterus annectens): An XROMM analysis of jaw mechanics, cranial kinesis, and hyoid mobility. Biol Open 2022; 11:276553. [PMID: 36066131 PMCID: PMC9493713 DOI: 10.1242/bio.059447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Suction feeding in fishes is characterized by rapid cranial movements, but extant lungfishes (Sarcopterygii: Dipnoi) exhibit a reduced number and mobility of cranial bones relative to actinopterygian fishes. Despite fusion of cranial elements, lungfishes are proficient at suction feeding, though the impacts of novel cranial morphology and reduced cranial kinesis on feeding remain poorly understood. We used X-ray Reconstruction of Moving Morphology (XROMM) to study the kinematics of seven mobile skeletal elements (neurocranium, upper jaw, lower jaw, tongue, ceratohyal, clavicle, and cranial rib) and two muscles (costoclavicular portion of the hypaxialis and rectus cervicis) during the feeding strikes of West African lungfish (Protopterus annectens). We found that feeding by P. annectens on non-evasive prey is relatively slow, with a mean time to peak gape of 273 ms. Lower jaw depression and clavicular rotation were hinge-like, with one degree of freedom, but the ceratohyals rotated in a complex motion involving depression and long-axis rotation. We quantified the relative contributions to oral cavity volume change (RCVC) and found that oral cavity expansion is created primarily by ceratohyal and clavicle motion. P. annectens suction feeds relatively slowly but successfully through muscle shortening of hypaxial and rectus cervicis muscles contributing to hyoid mobility.
Collapse
Affiliation(s)
- Samantha M Gartner
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th St, Chicago, IL 60637, USA
| | - Katrina R Whitlow
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th St, Chicago, IL 60637, USA
| | - J D Laurence-Chasen
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th St, Chicago, IL 60637, USA
| | - Elska B Kaczmarek
- Department of Ecology, Evolution, and Organismal Biology, Brown University, 80 Waterman St., Providence RI 02912, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, 100 Northern Blvd, Old Westbury, NY 11568, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th St, Chicago, IL 60637, USA
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th St, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Panessiti C, Rull-Garza M, Rickards G, Konow N. Thermal sensitivity of Axolotl feeding behaviors. Integr Comp Biol 2021; 61:1881-1891. [PMID: 34117757 DOI: 10.1093/icb/icab120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Musculoskeletal movement results from muscle contractions, recoil of elastic tendons, aponeuroses, and ligaments, or combinations thereof. Muscular and elastic contributions can vary both across behaviors and with changes in temperature. Skeletal muscles reach peak contraction speed at a temperature optimum with performance declining away from that optimum by approximately 50% per 10 °C, following the Q10 principle. Elastic recoil action, however, is less temperature sensitive. We subjected Axolotls (Ambystoma mexicanum) to changes from warm (23 °C), via medium (14 °C), to cold (6 °C) temperature across most of their thermal tolerance range, and recorded jaw kinematics during feeding on crickets. We sought to determine if suction feeding strikes and food processing chews involve elastic mechanisms and, specifically, if muscular versus elastic contribution vary with temperature for gape opening and closing. Measurements of peak and mean speed for gape opening and closing during strikes and chews across temperature treatments were compared to Q10-based predictions. We found that strike gape speed decreased significantly from warm and medium to cold treatments, indicating low thermal robustness, and no performance-enhancement due to elastic recoil. For chews, peak and mean gape closing speeds, as well as peak gape opening speed, also decreased significantly from warm to cold treatments. However, peak gape opening and closing speeds for chews showed performance-enhancement, consistent with a previously demonstrated presence of elastic action in the Axolotl jaw system. Our results add to a relatively small body of evidence suggesting that elastic recoil plays significant roles in aquatic vertebrate feeding systems, and in cyclic food processing mechanisms.
Collapse
|
4
|
Corn KA, Martinez CM, Burress ED, Wainwright PC. A Multifunction Trade-Off has Contrasting Effects on the Evolution of Form and Function. Syst Biol 2021; 70:681-693. [PMID: 33331913 DOI: 10.1093/sysbio/syaa091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023] Open
Abstract
Trade-offs caused by the use of an anatomical apparatus for more than one function are thought to be an important constraint on evolution. However, whether multifunctionality suppresses diversification of biomechanical systems is challenged by recent literature showing that traits more closely tied to trade-offs evolve more rapidly. We contrast the evolutionary dynamics of feeding mechanics and morphology between fishes that exclusively capture prey with suction and multifunctional species that augment this mechanism with biting behaviors to remove attached benthic prey. Diversification of feeding kinematic traits was, on average, over 13.5 times faster in suction feeders, consistent with constraint on biters due to mechanical trade-offs between biting and suction performance. Surprisingly, we found that the evolution of morphology contrasts directly with these differences in kinematic evolution, with significantly faster rates of evolution of head shape in biters. This system provides clear support for an often postulated, but rarely confirmed prediction that multifunctionality stifles functional diversification, while also illustrating the sometimes weak relationship between form and function. [Form-function evolution; geometric morphometrics; kinematic evolution; macroevolution; Ornstein-Uhlenbeck; RevBayes; suction feeding].
Collapse
Affiliation(s)
- Katherine A Corn
- Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA
| | - Christopher M Martinez
- Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA
| | - Edward D Burress
- Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA
| | - Peter C Wainwright
- Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA
| |
Collapse
|
5
|
Olsson KH, Martin CH, Holzman R. Hydrodynamic Simulations of the Performance Landscape for Suction-Feeding Fishes Reveal Multiple Peaks for Different Prey Types. Integr Comp Biol 2020; 60:1251-1267. [PMID: 32333778 PMCID: PMC7825097 DOI: 10.1093/icb/icaa021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The complex interplay between form and function forms the basis for generating and maintaining organismal diversity. Fishes that rely on suction-feeding for prey capture exhibit remarkable phenotypic and trophic diversity. Yet the relationships between fish phenotypes and feeding performance on different prey types are unclear, partly because the morphological, biomechanical, and hydrodynamic mechanisms that underlie suction-feeding are complex. Here we demonstrate a general framework to investigate the mapping of multiple phenotypic traits to performance by mapping kinematic variables to suction-feeding capacity. Using a mechanistic model of suction-feeding that is based on core physical principles, we predict prey capture performance across a broad range of phenotypic trait values, for three general prey types: mollusk-like prey, copepod-like prey, and fish-like prey. Mollusk-like prey attach to surfaces, copepod-like prey attempt to escape upon detecting the hydrodynamic disturbance produced by the predator, and fish-like prey attempt to escape when the predator comes within a threshold distance. This approach allowed us to evaluate suction-feeding performance for any combination of six key kinematic traits, irrespective of whether these trait combinations were observed in an extant species, and to generate a multivariate mapping of phenotype to performance. We used gradient ascent methods to explore the complex topography of the performance landscape for each prey type, and found evidence for multiple peaks. Characterization of phenotypes associated with performance peaks indicates that the optimal kinematic parameter range for suction-feeding on different prey types are narrow and distinct from each other, suggesting different functional constraints for the three prey types. These performance landscapes can be used to generate hypotheses regarding the distribution of extant species in trait space and their evolutionary trajectories toward adaptive peaks on macroevolutionary fitness landscapes.
Collapse
Affiliation(s)
- Karin H Olsson
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
- Inter-University Institute for Marine Sciences, Eilat 8810302, Israel
| | - Christopher H Martin
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Roi Holzman
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
- Inter-University Institute for Marine Sciences, Eilat 8810302, Israel
| |
Collapse
|
6
|
Lemberg JB, Shubin NH, Westneat MW. Feeding kinematics and morphology of the alligator gar (Atractosteus spatula, Lacépède, 1803). J Morphol 2019; 280:1548-1570. [PMID: 31385619 DOI: 10.1002/jmor.21048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 11/12/2022]
Abstract
Living gars are a small clade of seven species that occupy an important position on the actinopterygian phylogenetic tree as members of Holostei, sister-group to teleosts, and exhibit many plesiomorphic traits used to interpret and reconstruct early osteichthyan feeding mechanisms. Previous studies of gar feeding kinematics have focused on the ram-based, lateral-snapping mode of prey capture found in the narrow-snouted Lepisosteus genus, whereas this study focuses on a member of the broad-snouted Atractosteus sister-genus, the alligator gar (Atractosteus spatula, Lacépède, 1803). High-speed videography reveals that the feeding system of alligator gars is capable of rapid expansion from anterior to posterior, timed in a way to generate suction, counteract the effects of a bow-wave during ram-feeding, and direct a unidirectional flow of water through the feeding system. Reconstructed contrast-enhanced μCT-based cranial anatomy and three-dimensional modeling of linkage mechanics show that a lateral-sliding palatoquadrate, flexible intrasuspensorial joint, pivoting interhyal, and retractable pectoral girdle increase the range of motion and expansive capabilities of the alligator gar feeding mechanism. Reconstructions of muscular anatomy, inferences from in vivo kinematics, and in situ manipulations show that input from the hyoid constrictors and hypaxials play an important role in decoupling and modulating the dual roles of the sternohyoideus during feeding: hyoid retraction (jaw opening) and hyoid rotation (pharyngeal expansion). The alligator gar possesses an intricate feeding mechanism, capable of precise control with plesiomorphic muscles that represent one of the many ways the ancestral osteichthyan feeding mechanism has been modified for prey capture.
Collapse
Affiliation(s)
- Justin B Lemberg
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Neil H Shubin
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| |
Collapse
|
7
|
Brocklehurst R, Porro L, Herrel A, Adriaens D, Rayfield E. A digital dissection of two teleost fishes: comparative functional anatomy of the cranial musculoskeletal system in pike (Esox lucius) and eel (Anguilla anguilla). J Anat 2019; 235:189-204. [PMID: 31148160 DOI: 10.1111/joa.13007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Advances in X-ray computed tomography (CT) have led to a rise in the use of non-destructive imaging methods in comparative anatomy. Among these is contrast-enhanced CT scanning, which employs chemical stains to visualize soft tissues. Specimens may then be 'digitally dissected', producing detailed, three-dimensional digital reconstructions of the soft- and hard-tissue anatomy, allowing examination of anatomical structures in situ and making accurate measurements (lengths, volumes, etc.). Here, we apply this technique to two species of teleost fish, providing one of the first comprehensive three-dimensional (3D) descriptions of teleost cranial soft tissue and quantifying differences in muscle anatomy that may be related to differences in feeding ecology. Two species with different feeding ecologies were stained, scanned and imaged to create digital 3D musculoskeletal reconstructions: Esox lucius (Northern Pike), predominantly a suction feeder; and Anguilla anguilla (European eel), which captures prey predominantly by biting. Muscle cross-sectional areas were calculated and compared between taxa, focusing on muscles that serve important roles in feeding. The adductor mandibulae complex - used in biting - was larger in Esox than Anguilla relative to head size. However, the overall architecture of the adductor mandibulae was also very different between the two species, with that of Anguilla better optimized for delivering forceful bites. Levator arcus palatini and sternohyoideus - which are used in suction feeding - are larger in Esox, whereas the levator operculi is larger in Anguilla. Therefore, differences in the size of functionally important muscles do not necessarily correlate neatly with presumed differences in feeding mode.
Collapse
Affiliation(s)
- Robert Brocklehurst
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK.,School of Earth Sciences, University of Bristol, Bristol, UK
| | - Laura Porro
- School of Earth Sciences, University of Bristol, Bristol, UK.,Department of Cell and Developmental Biology, University College London, London, UK
| | - Anthony Herrel
- UMR 7179 (MNHN-CNRS) MECADEV, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | - Dominique Adriaens
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Gent, Belgium
| | - Emily Rayfield
- School of Earth Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
Camp AL. What Fish Can Teach Us about the Feeding Functions of Postcranial Muscles and Joints. Integr Comp Biol 2019; 59:383-393. [DOI: 10.1093/icb/icz005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Studies of vertebrate feeding have predominantly focused on the bones and muscles of the head, not the body. Yet, postcranial musculoskeletal structures like the spine and pectoral girdle are anatomically linked to the head, and may also have mechanical connections through which they can contribute to feeding. The feeding roles of postcranial structures have been best studied in ray-finned fishes, where the body muscles, vertebral column, and pectoral girdle attach directly to the head and help expand the mouth during suction feeding. Therefore, I use the anatomy and motion of the head–body interface in these fishes to develop a mechanical framework for studying postcranial functions during feeding. In fish the head and body are linked by the vertebral column, the pectoral girdle, and the body muscles that actuate these skeletal systems. The morphology of the joints and muscles of the cranio-vertebral and hyo-pectoral interfaces may determine the mobility of the head relative to the body, and ultimately the role of these interfaces during feeding. The postcranial interfaces can function as anchors during feeding: the body muscles and joints minimize motion between the head and body to stabilize the head or transmit forces from the body. Alternatively, the postcranial interfaces can be motors: body muscles actuate motion between the head and body to generate power for feeding motions. The motor function is likely important for many suction-feeding fishes, while the anchor function may be key for bite- or ram-feeding fishes. This framework can be used to examine the role of the postcranial interface in other vertebrate groups, and how that role changes (or not) with morphology and feeding behaviors. Such studies can expand our understanding of muscle function, as well as the evolution of vertebrate feeding behaviors across major transitions such as the invasion of land and the emergence of jaws.
Collapse
Affiliation(s)
- Ariel L Camp
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
9
|
Montuelle SJ, Kane EA. Food Capture in Vertebrates: A Complex Integrative Performance of the Cranial and Postcranial Systems. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Baumgart A, Anderson P. Finding the weakest link: mechanical sensitivity in a fish cranial linkage system. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181003. [PMID: 30473846 PMCID: PMC6227944 DOI: 10.1098/rsos.181003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/11/2018] [Indexed: 06/09/2023]
Abstract
Understanding the physical mechanics behind morphological systems can offer insights into their evolution. Recent work on linkage systems in fish and crustaceans has suggested that the evolution of such systems may depend on mechanical sensitivity, where geometrical changes to different parts of a biomechanical system have variable influence on mechanical outputs. While examined at the evolutionary level, no study has directly explored this idea at the level of the mechanism. We analyse the mechanical sensitivity of a fish cranial linkage to identify the influence of linkage geometry on the kinematic transmission (KT) of the suspensorium, hyoid and lower jaw. Specifically, we answer two questions about the sensitivity of this linkage system: (i) What changes in linkage geometry affect one KT while keeping the other KTs constant? (ii) Which geometry changes result in the largest and smallest changes to KT? Our results show that there are ways to alter the morphology that change each KT individually, and that there are multiple ways to alter a single link that have variable influence on KT. These results provide insight into the morphological evolution of the fish skull and highlight which structural features in the system may have more freedom to evolve than others.
Collapse
Affiliation(s)
- A. Baumgart
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA
| | - P. Anderson
- Department of Animal Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Provini P, Van Wassenbergh S. Hydrodynamic performance of suction feeding is virtually unaffected by variation in the shape of the posterior region of the pharynx in fish. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181249. [PMID: 30839768 PMCID: PMC6170587 DOI: 10.1098/rsos.181249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
To capture prey by suction, fish generate a flow of water that enters the mouth and exits at the back of the head. It was previously hypothesized that prey-capture performance is improved by a streamlined shape of the posterior region of the pharynx, which enables an unobstructed outflow with minimal hydrodynamic resistance. However, this hypothesis remained untested for several decades. Using computational fluid dynamics simulations, we now managed to quantify the effects of different shapes of the posterior pharynx on the dynamics of suction feeding, based on a feeding act of a sunfish (Lepomis gibbosus). In contrast to what was hypothesized, the effects of the imposed variation in shape were negligible: flow velocity patterns remained essentially identical, and the effects on feeding dynamics were negligibly small. This remarkable hydrodynamic insensitivity implies that, in the course of evolution, the observed wedge-like protrusions of the pectoral surfaces of the pharynx probably resulted from spatial constraints and/or mechanical demands on the musculoskeletal linkages, rather than constraints imposed by hydrodynamics. Our study, therefore, exceptionally shows that a streamlined biological shape subjected to fluid flows is not always the result of selection for hydrodynamic improvement.
Collapse
Affiliation(s)
- Pauline Provini
- Département Adaptations du Vivant, UMR Mécanismes adaptatifs et évolution (MECADEV), Muséum National d'Histoire Naturelle/CNRS, 57 rue Cuvier, Case Postale 55, 75231 Paris Cedex 05, France
| | - Sam Van Wassenbergh
- Département Adaptations du Vivant, UMR Mécanismes adaptatifs et évolution (MECADEV), Muséum National d'Histoire Naturelle/CNRS, 57 rue Cuvier, Case Postale 55, 75231 Paris Cedex 05, France
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
12
|
Stayton CT, O'Connor LF, Nisivoccia NM. The influence of multiple functional demands on morphological diversification: A test on turtle shells. Evolution 2018; 72:1933-1949. [DOI: 10.1111/evo.13561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 11/29/2022]
|
13
|
Jacobs C, Holzman R. Conserved spatio-temporal patterns of suction-feeding flows across aquatic vertebrates: a comparative flow visualization study. J Exp Biol 2018; 221:jeb.174912. [DOI: 10.1242/jeb.174912] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/28/2018] [Indexed: 11/20/2022]
Abstract
Suction feeding is a widespread prey capture strategy among aquatic vertebrates. It is almost omnipresent across fishes, and has repeatedly evolved in other aquatic vertebrates. By rapidly expanding the mouth cavity, suction-feeders generate a fluid flow outside of their mouth, drawing prey inside. Fish and other suction feeding organisms display remarkable trophic diversity, echoed in the diversity of their skull and mouth morphologies. Yet, it is unclear how variable suction flows are across species, and whether variation in suction flows supports trophic diversity. Using a high-speed flow visualization technique, we characterized the spatio-temporal patterns in the flow fields produced during feeding in 14 species of aquatic suction feeders. We found that suction-feeding hydrodynamics are highly conserved across species. Suction flows affected only a limited volume of ∼1 gape diameter away from the mouth, and peaked around the timing of maximal mouth opening. The magnitude of flow speed increased with increasing mouth diameter and, to a lesser extent, with decreasing time to peak gape opening. Other morphological, kinematic and behavioral variables played a minor role in shaping suction-feeding dynamics. We conclude that the trophic diversity within fishes, and likely other aquatic vertebrates, is not supported by a diversity of mechanisms that modify the characteristics of suction flow. Rather, we suggest that suction feeding supports such trophic diversity due to the general lack of strong trade-offs with other mechanisms that contribute to prey capture.
Collapse
Affiliation(s)
- Corrine Jacobs
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| | - Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| |
Collapse
|
14
|
De Meyer J, Christiaens J, Adriaens D. Diet-induced phenotypic plasticity in European eel (Anguilla anguilla). J Exp Biol 2016; 219:354-63. [DOI: 10.1242/jeb.131714] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Two phenotypes are present within the European eel population: broad-heads and narrow-heads. The expression of these phenotypes has been linked to several factors, such as diet and differential growth. The exact factors causing this dimorphism, however, are still unknown. In this study, we performed a feeding experiment on glass eels from the moment they start to feed. Eels were either fed a hard diet, which required biting and spinning behavior, or a soft diet, which required suction feeding. We found that the hard feeders develop a broader head and a larger adductor mandibulae region than eels that were fed a soft diet, implying that the hard feeders are capable of larger bite forces. Next to this, soft feeders develop a sharper and narrower head, which could reduce hydrodynamic drag, allowing more rapid strikes towards their prey. Both phenotypes were found in a control group, which were given a combination of both diets. These phenotypes were, however, not as extreme as the hard or the soft feeding group, indicating that some specimens are more likely to consume hard prey and others soft prey, but that they do not selectively eat one of both diets. In conclusion, we found that diet is a major factor influencing head shape in European eel and this ability to specialize in feeding on hard or soft prey could decrease intra-specific competition in European eel populations.
Collapse
Affiliation(s)
- Jens De Meyer
- Evolutionary Morphology of Vertebrates, Ghent University – UGent, K.L. Ledeganckstraat 35, Ghent B-9000, Belgium
| | - Joachim Christiaens
- Evolutionary Morphology of Vertebrates, Ghent University – UGent, K.L. Ledeganckstraat 35, Ghent B-9000, Belgium
| | - Dominique Adriaens
- Evolutionary Morphology of Vertebrates, Ghent University – UGent, K.L. Ledeganckstraat 35, Ghent B-9000, Belgium
| |
Collapse
|
15
|
Kane EA, Higham TE. Complex Systems Are More than the Sum of Their Parts: Using Integration to Understand Performance, Biomechanics, and Diversity. Integr Comp Biol 2015; 55:146-65. [DOI: 10.1093/icb/icv033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
16
|
Van Wassenbergh S. A Solution Strategy to Include the Opening of the Opercular Slits in Moving-Mesh CFD Models of Suction Feeding. Integr Comp Biol 2015; 55:62-73. [DOI: 10.1093/icb/icv031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Van Wassenbergh S, Day SW, Hernández LP, Higham TE, Skorczewski T. Suction power output and the inertial cost of rotating the neurocranium to generate suction in fish. J Theor Biol 2015; 372:159-67. [DOI: 10.1016/j.jtbi.2015.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/20/2015] [Accepted: 03/02/2015] [Indexed: 11/26/2022]
|
18
|
Lines GK, Blume A, Ferry LA. The Effect of Food Type on Prey Capture Kinematics in the Mudminnow,Umbra limi. ACTA ACUST UNITED AC 2015. [DOI: 10.2181/036.046.0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Mackey B, Vanderploeg K, Ferry LA. Variation in Prey Capture Mechanics in the Swordtail,Xiphophorus helleriin Response to Food Type. ACTA ACUST UNITED AC 2014. [DOI: 10.2181/036.045.0201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
O'Neill MW, Gibb AC. Does feeding behavior facilitate trophic niche partitioning in two sympatric sucker species from the American Southwest? Physiol Biochem Zool 2013; 87:65-76. [PMID: 24457922 DOI: 10.1086/671901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We examined two sympatric desert fishes, Sonora suckers (Catostomus insignis) and desert suckers (Pantosteus clarkii), and asked, does feeding behavior facilitate trophic niche partitioning? To answer this question, we conducted laboratory-based feeding trials to determine whether morphology alone facilitates the diet separation between the relatively unspecialized, omnivorous Sonora sucker and the more morphologically specialized, algivorous desert sucker or whether behavioral differences accompany morphological specialization. We predicted that (1) algivorous desert suckers would maximize contact between jaws and substrate and produce a large mouth-gape to facilitate scraping attached food-material; (2) omnivorous Sonora suckers would be more effective suction feeders when consuming unattached food items from the benthos; and (3) because they are anatomically specialized for scraping, desert suckers could not alter their feeding behavior when presented with different prey types, whereas relatively unspecialized Sonora suckers could vary behavior with prey type. We found that both species maximized jaw contact when feeding on benthic-attached food, although desert suckers produced a greater gape area. We also found that Sonora suckers were more effective suction feeders when feeding on benthic-unattached prey. Counter to our initial predictions, both species altered key aspects of feeding behavior in response to different prey types/locations. It appears that both sucker species can function as generalist feeders to exploit a variety of prey types within their natural habitat; indeed, this behavioral versatility may allow desert and Sonora suckers to respond to the cyclic environmental changes that are characteristic of the aquatic habitats of the American Southwest.
Collapse
Affiliation(s)
- Matthew W O'Neill
- Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, Flagstaff, Arizona 86011-5640
| | | |
Collapse
|
21
|
Van Wassenbergh S. Kinematics of Terrestrial Capture of Prey by the Eel-Catfish Channallabes apus. Integr Comp Biol 2013; 53:258-68. [DOI: 10.1093/icb/ict036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Heiss E, Natchev N, Gumpenberger M, Weissenbacher A, Van Wassenbergh S. Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism. J R Soc Interface 2013; 10:20121028. [PMID: 23466557 PMCID: PMC3627076 DOI: 10.1098/rsif.2012.1028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the evolutionary transition from fish to tetrapods, a shift from uni- to bidirectional suction feeding systems followed a reduction in the gill apparatus. Such a shift can still be observed during metamorphosis of salamanders, although many adult salamanders retain their aquatic lifestyle and feed by high-performance suction. Unfortunately, little is known about the interplay between jaws and hyobranchial motions to generate bidirectional suction flows. Here, we study the cranial morphology, as well as kinematic and hydrodynamic aspects related to prey capture in the Chinese giant salamander (Andrias davidianus). Compared with fish and previously studied amphibians, A. davidianus uses an alternative suction mechanism that mainly relies on accelerating water by separating the 'plates' formed by the long and broad upper and lower jaw surfaces. Computational fluid dynamics simulations, based on three-dimensional morphology and kinematical data from high-speed videos, indicate that the viscerocranial elements mainly serve to accommodate the water that was given a sufficient anterior-to-posterior impulse beforehand by powerful jaw separation. We hypothesize that this modified way of generating suction is primitive for salamanders, and that this behaviour could have played an important role in the evolution of terrestrial life in vertebrates by releasing mechanical constraints on the hyobranchial system.
Collapse
Affiliation(s)
- Egon Heiss
- Department of Biology, University of Antwerp, , Antwerp 2610, Belgium
| | | | | | | | | |
Collapse
|
23
|
Ferry LA, Konow N, Gibb AC. Are Kissing Gourami Specialized for Substrate-Feeding? Prey Capture Kinematics ofHelostoma temminckiiand Other Anabantoid Fishes. ACTA ACUST UNITED AC 2012; 317:571-9. [DOI: 10.1002/jez.1749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 06/20/2012] [Accepted: 07/01/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Lara A. Ferry
- Mathematical & Natural Sciences; Arizona State University; Phoenix; Arizona
| | - Nicolai Konow
- Ecology and Evolutionary Biology; Brown University; Providence; Rhode Island
| | - Alice C. Gibb
- Biological Sciences; Northern Arizona University; Flagstaff; Arizona
| |
Collapse
|
24
|
Tkint T, Verheyen E, De Kegel B, Helsen P, Adriaens D. Dealing with food and eggs in mouthbrooding cichlids: structural and functional trade-offs in fitness related traits. PLoS One 2012; 7:e31117. [PMID: 22348043 PMCID: PMC3279513 DOI: 10.1371/journal.pone.0031117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 01/03/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND As in any vertebrate, heads of fishes are densely packed with functions. These functions often impose conflicting mechanical demands resulting in trade-offs in the species-specific phenotype. When phenotypical traits are linked to gender-specific parental behavior, we expect sexual differences in these trade-offs. This study aims to use mouthbrooding cichlids as an example to test hypotheses on evolutionary trade-offs between intricately linked traits that affect different aspects of fitness. We focused on the oral apparatus, which is not only equipped with features used to feed and breathe, but is also used for the incubation of eggs. We used this approach to study mouthbrooding as part of an integrated functional system with diverging performance requirements and to explore gender-specific selective environments within a species. METHODOLOGY/PRINCIPAL FINDINGS Because cichlids are morphologically very diverse, we hypothesize that the implications of the added constraint of mouthbrooding will primarily depend on the dominant mode of feeding of the studied species. To test this, we compared the trade-off for two maternal mouthbrooding cichlid species: a "suction feeder" (Haplochromis piceatus) and a "biter" (H. fischeri). The comparison of morphology and performance of both species revealed clear interspecific and intersex differences. Our observation that females have larger heads was interpreted as a possible consequence of the fact that in both the studied species mouthbrooding is done by females only. As hypothesized, the observed sexual dimorphism in head shape is inferred as being suboptimal for some aspects of the feeding performance in each of the studied species. Our comparison also demonstrated that the suction feeding species had smaller egg clutches and more elongated eggs. CONCLUSIONS/SIGNIFICANCE Our findings support the hypothesis that there is a trade-off between mouthbrooding and feeding performance in the two studied haplochromine cichlids, stressing the importance of including species-specific information at the gender level when addressing interspecific functional/morphological differences.
Collapse
Affiliation(s)
- Tim Tkint
- Department of Biology, Research Group Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
25
|
Holzman R, Collar DC, Mehta RS, Wainwright PC. An integrative modeling approach to elucidate suction-feeding performance. J Exp Biol 2012; 215:1-13. [DOI: 10.1242/jeb.057851] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Research on suction-feeding performance has mostly focused on measuring individual underlying components such as suction pressure, flow velocity, ram or the effects of suction-induced forces on prey movement during feeding. Although this body of work has advanced our understanding of aquatic feeding, no consensus has yet emerged on how to combine all of these variables to predict prey-capture performance. Here, we treated the aquatic predator–prey encounter as a hydrodynamic interaction between a solid particle (representing the prey) and the unsteady suction flows around it, to integrate the effects of morphology, physiology, skull kinematics, ram and fluid mechanics on suction-feeding performance. We developed the suction-induced force-field (SIFF) model to study suction-feeding performance in 18 species of centrarchid fishes, and asked what morphological and functional traits underlie the evolution of feeding performance on three types of prey. Performance gradients obtained using SIFF revealed that different trait combinations contribute to the ability to feed on attached, evasive and (strain-sensitive) zooplanktonic prey because these prey types impose different challenges on the predator. The low overlap in the importance of different traits in determining performance also indicated that the evolution of suction-feeding ability along different ecological axes is largely unconstrained. SIFF also yielded estimates of feeding ability that performed better than kinematic traits in explaining natural patterns of prey use. When compared with principal components describing variation in the kinematics of suction-feeding events, SIFF output explained significantly more variation in centrarchid diets, suggesting that the inclusion of more mechanistic hydrodynamic models holds promise for gaining insight into the evolution of aquatic feeding performance.
Collapse
Affiliation(s)
- Roi Holzman
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - David C. Collar
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Rita S. Mehta
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Peter C. Wainwright
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
26
|
Oufiero CE, Holzman RA, Young FA, Wainwright PC. New insights from serranid fishes on the role of trade-offs in suction feeding diversification. J Exp Biol 2012; 215:3845-55. [DOI: 10.1242/jeb.074849] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Suction feeding is central to prey capture in the vast majority of ray-finned fishes and has been well-studied from a detailed, mechanistic perspective. Several major trade-offs are thought to have shaped the diversification of suction feeding morphology and behavior, and have become well established in the literature. We revisited several of these expectations in a study of prey capture morphology and kinematics in 30 species of serranid fishes, a large ecologically variable group that exhibits diverse combinations of suction and forward locomotion. We find: 1) diversity among species in the morphological potential to generate suction changes drastically across the range of attack speeds that species use, with all species that use high-speed attacks having low capacity to generate suction, while slow-speed attackers exhibit the full range of suction abilities. This pattern indicates a more complex 'ram-suction continuum' than previously recognized; 2) there is no trade-off between mechanical advantage of the lower jaw opening lever and the speed of jaw depression, revealing that this simple interpretation of lever mechanics fails to predict kinematic diversity; 3) high-speed attackers show increased cranial excursions, potentially to compensate for a decrease in accuracy; 4) the amount of jaw protrusion is positively related to attack speed, but not suction capacity; and 5) a principal components analysis revealed three significant multivariate axes of kinematic variation among species. Two of the three axes were correlated with the morphological potential to generate suction, indicating important but complex relationships between kinematics and suction potential. These results are consistent with other recent studies that show that trade-offs derived from simple biomechanical models may be less of a constraint on the evolutionary diversification of fish feeding systems than previously thought.
Collapse
|
27
|
Van Wassenbergh S, Leysen H, Adriaens D, Aerts P. Mechanics of snout expansion in suction feeding seahorses: musculoskeletal force transmission. J Exp Biol 2012; 216:407-17. [DOI: 10.1242/jeb.074658] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Seahorses and other sygnathid fishes rely on a widening of the snout to create the buccal volume increase needed to suck prey into the mouth. This snout widening is caused by abduction of the suspensoria, the long and flat bones outlining the lateral sides of the mouth cavity. However, it remains unknown how seahorses can generate a forceful abduction of the suspensoria. To understand how force is transmitted to the suspensoria via the hyoid and the lower jaw, we performed mathematical simulations with models based on CT-scans of Hippocampus reidi. Our results show that the hinge joint between the left and right hyoid bars, as observed in H. reidi, allows for an efficient force transmission to the suspensorium from a wide range of hyoid angles, including the extremely retracted hyoid orientations observed in-vivo for syngnathids. Apart from the hyoid retraction force by the sternohyoideus-hypaxial muscles, force generated in the opposite direction on the hyoid by the mandibulohyoid ligament also has an important contribution to suspensorium abduction torque. Forces on the lower jaw contribute only for about 10% of the total suspensorium torque. In particular when dynamical aspects of hyoid retraction are included in the model, a steep increase is shown in suspensorium abduction torque at highly retracted hyoid positions, when the linkages to the lower jaw counteract further hyoid rotation in the sagittal plane. A delayed strain in these linkages allows syngnathids to postpone suction generation until the end of cranial rotation, a fundamental difference from non-syngnathiform fishes.
Collapse
Affiliation(s)
| | | | | | - Peter Aerts
- Ghent University; Universiteit Antwerpen, Belgium
| |
Collapse
|
28
|
Vervust B, Brecko J, Herrel A. Temperature effects on snapping performance in the common snapper Chelydra serpentina (Reptilia, Testudines). ACTA ACUST UNITED AC 2010; 315:41-7. [PMID: 21137093 DOI: 10.1002/jez.650] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 08/24/2010] [Accepted: 09/28/2010] [Indexed: 11/08/2022]
Abstract
Studies on the effect of temperature on whole-animal performance traits other than locomotion are rare. Here we investigate the effects of temperature on the performance of the turtle feeding apparatus in a defensive context. We measured bite force and the kinematics of snapping in the Common Snapping Turtle (Chelydra serpentina) over a wide range of body temperatures. Bite force performance was thermally insensitive over the broad range of temperatures typically experienced by these turtles in nature. In contrast, neck extension (velocity, acceleration, and deceleration) and jaw movements (velocity, acceleration, and deceleration) showed clear temperature dependence with peak acceleration and deceleration capacity increasing with increasing temperatures. Our results regarding the temperature dependence of defensive behavior are reflected by the ecology and overall behavior of this species. These data illustrate the necessity for carefully controlling T(b) when carrying out behavioral and functional studies on turtles as temperature affects the velocity, acceleration, and deceleration of jaw and neck extension movements. More generally, these data add to the limited but increasing number of studies showing that temperature may have important effects on feeding and defensive performance in ectotherms.
Collapse
Affiliation(s)
- Bart Vervust
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| | | | | |
Collapse
|
29
|
Binning SA, Chapman LJ, Cosandey-Godin A. Specialized morphology for a generalist diet: evidence for Liem's Paradox in a cichlid fish. JOURNAL OF FISH BIOLOGY 2009; 75:1683-1699. [PMID: 20738642 DOI: 10.1111/j.1095-8649.2009.02421.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The stable isotope ratio and seasonal changes in diet of Alluaud's haplo Astatoreochromis alluaudi, a cichlid fish with massive pharyngeal jaws well known for its ability to process hard-bodied prey, are described. The diet of A. alluaudi was quantified in Lake Saka, Uganda, over a period of 30 months. Variation in physico-chemical variables (mean monthly rainfall, water temperature, turbidity and dissolved oxygen), as well as potential competitor density and food abundance, was measured throughout the second half of the study (14 months). Stomach contents and isotope analysis revealed a diet comprised mainly of fishes and insects, with a low contribution of molluscs (0-33%) in any given month. No correlation was detected between diet and either macroinvertebrate abundance or competitor abundance. The running average rainfall was positively related to the percentage of fish consumed per month. Although A. alluaudi exhibits an apparent molluscivorous trophic morphology in Lake Saka, molluscs did not appear to compose a major portion of its diet. Gradients of rainfall seemed to be the most important environmental predictor of diet choice in Lake Saka. These results are discussed with reference to Liem's Paradox that apparently morphologically specialized fishes often function as generalist feeders in the wild.
Collapse
Affiliation(s)
- S A Binning
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, QC, H3A 1B1 Canada.
| | | | | |
Collapse
|
30
|
Van Wassenbergh S, Aerts P. Aquatic suction feeding dynamics: insights from computational modelling. J R Soc Interface 2009; 6:149-58. [PMID: 18782720 DOI: 10.1098/rsif.2008.0311] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aquatic suction feeding in vertebrates involves extremely unsteady flow, externally as well as internally of the expanding mouth cavity. Consequently, studying the hydrodynamics involved in this process is a challenging research area, where experimental studies and mathematical models gradually aid our understanding of how suction feeding works mechanically. Especially for flow patterns inside the mouth cavity, our current knowledge is almost entirely based on modelling studies. In the present paper, we critically discuss some of the assumptions and limitations of previous analytical models of suction feeding using computational fluid dynamics.
Collapse
Affiliation(s)
- Sam Van Wassenbergh
- Department of Biology, Universiteit Antwerpen, Universiteitsplein 1, 2610 Antwerpen, Belgium.
| | | |
Collapse
|
31
|
Van Wassenbergh S, Lieben T, Herrel A, Huysentruyt F, Geerinckx T, Adriaens D, Aerts P. Kinematics of benthic suction feeding in Callichthyidae and Mochokidae,with functional implications for the evolution of food scraping in catfishes. J Exp Biol 2009; 212:116-25. [DOI: 10.1242/jeb.023929] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Food scraping has independently evolved twice from suction feeding in the evolution of catfishes: within neotropical Loricarioidea and paleotropical Mochokidae. To gain insight in the evolutionary transitions associated with the evolution towards scraping, we analyzed prey capture kinematics in two species of benthic suction feeders which belong to taxa that are closely related to the scraper lineages (respectively, Corydoras splendensand Synodontis multipunctatus), and compared it to prey capture in a more distantly related, generalist suction feeder (Clarias gariepinus). Simultaneous ventral and lateral view high-speed videos were recorded to quantify the movements of the lower jaw, hyoid, pectoral girdle and neurocranium. Additionally, ellipse modeling was applied to relate head shape differences to buccal expansion kinematics. Similarly to what has been observed in scrapers, rotations of the neurocranium are minimal in the benthic suction feeders, and may consequently have facilitated the evolution of a scraping feeding mechanism. The hypothesis that fish with a more laterally compressed head rely more heavily on lateral expansion of the buccal cavity to generate suction, was confirmed in our sample of catfish species. Since an important contribution of lateral expansion of the head to suction may avoid the need for a strong, ventral depression of the mouth floor during feeding,we hypothesized that this may have allowed a closer association with the substrate in the ancestors of scrapers. However, our hypothesis was not supported by an ancestral state reconstruction, which suggests that scraping probably evolved from sub-terminal mouthed ancestors with dorsoventrally flattened heads.
Collapse
Affiliation(s)
- Sam Van Wassenbergh
- Department of Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | - Tim Lieben
- Department of Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | - Anthony Herrel
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Frank Huysentruyt
- Evolutionary Morphology of Vertebrates, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Tom Geerinckx
- Evolutionary Morphology of Vertebrates, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Dominique Adriaens
- Evolutionary Morphology of Vertebrates, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Peter Aerts
- Department of Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, B-9000 Gent, Belgium
| |
Collapse
|
32
|
Konow N, Sanford CPJ. Is a convergently derived muscle-activity pattern driving novel raking behaviours in teleost fishes? J Exp Biol 2008; 211:989-99. [DOI: 10.1242/jeb.013078] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYBehavioural differences across prey-capture and processing mechanisms may be governed by coupled or uncoupled feeding systems. Osteoglossomorph and salmonid fishes process prey in a convergently evolved tongue-bite apparatus(TBA), which is musculoskeletally coupled with the primary oral jaws. Altered muscle-activity patterns (MAPs) in these coupled jaw systems could be associated with the independent origin of a novel raking behaviour in these unrelated lineages. Substantial MAP changes in the evolution of novel behaviours have rarely been quantified so we examined MAP differences across strikes, chewing and rakes in a derived raking salmonid, the rainbow trout, Oncorhynchus mykiss. Electromyography, including activity onset timing, duration, mean amplitude and integrated area from five feeding muscles revealed significant differences between behaviour-specific MAPs. Specifically, early activity onset in the protractor hyoideus and adductor mandibularis muscles characterised raking, congruent with a recent biomechanical model of the component-mechanisms driving the raking preparatory and power-stroke phases. Oncorhynchus raking MAPs were then compared with a phylogenetically derived osteoglossomorph representative, the Australian arowana, Scleropages jardinii. In both taxa, early onset of protractor hyoideus and adductor mandibularis activity characterised the raking preparatory phase, indicating a convergently derived MAP, while more subtle inter-lineage divergence in raking MAPs resulted from onset-timing and duration differences in sternohyoideus and hypaxialis activity. Convergent TBA morphologies are thus powered by convergently derived MAPs, a phenomenon not previously demonstrated in feeding mechanisms. Between lineages, differences in TBA morphology and associated differences in the functional coupling of jaw systems appear to be important factors in shaping the diversification of raking behaviours.
Collapse
Affiliation(s)
- Nicolai Konow
- Department of Biology, 114 Hofstra University, Hempstead, NY 11549,USA
| | | |
Collapse
|
33
|
Mehta RS, Wainwright PC. Functional morphology of the pharyngeal jaw apparatus in moray eels. J Morphol 2008; 269:604-19. [DOI: 10.1002/jmor.10612] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Van Wassenbergh S, Herrel A, Adriaens D, Aerts P. Interspecific variation in sternohyoideus muscle morphology in clariid catfishes: Functional implications for suction feeding. J Morphol 2007; 268:232-42. [PMID: 17265443 DOI: 10.1002/jmor.10510] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Depression of the hyoid apparatus plays a crucial role in generating suction, especially in fishes with a dorso-ventrally flattened head shape. It is generally assumed that shortening of the sternohyoideus muscle, which connects the hyoid to the pectoral girdle, contributes to hyoid depression. However, a recent study on the clariid catfish Clarias gariepinus has shown that this muscle does not shorten but elongates during this phase through retraction of the pectoral girdle. Here, we test whether this pattern is general among clariid catfish, or if variation in the morphology of the sternohyoideus may result in a different sternohyoideus behavior during hyoid depression. First, sternohyoideus mass, effective cross-sectional area, fiber length and fiber diameter were measured and compared for four clariid species. Next, velocity and magnitude of hyoid depression during prey capture (from high-speed videos), as well as patterns of sternohyoideus strain were analyzed (from high-speed X-ray videos) in these species. While morphology and hyoid depression performance varied considerably among these species, only the species with the most massive sternohyoideus, Gymnallabes typus, showed shortening of the sternohyoideus muscle during the initial part of the expansive phase. The data for Channallabes apus demonstrate that increasing the magnitude of hyoid depression does not necessarily require a shortening of the m. sternohyoideus, as it shows elongation of this muscle during hyoid depression.
Collapse
Affiliation(s)
- Sam Van Wassenbergh
- Department of Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium.
| | | | | | | |
Collapse
|