1
|
Wacker CB, Geiser F. The Rate of Cooling during Torpor Entry Drives Torpor Patterns in a Small Marsupial. Physiol Biochem Zool 2023; 96:393-404. [PMID: 38237188 DOI: 10.1086/727975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
AbstractTo maximize energy savings, entry into torpor should involve a fast reduction of metabolic rate and body temperature (Tb); that is, animals should thermoconform. However, animals often defend against the decrease in Tb via a temporary increase in thermoregulatory heat production, slowing the cooling process. We investigated how thermoregulating or thermoconforming during torpor entry affects temporal and thermoenergetic aspects in relation to body mass and age in juvenile and adult fat-tailed dunnarts (Sminthopsis crassicaudata; Marsupialia: Dasyuridae). During torpor entry, juvenile thermoconformers cooled twice as fast as and used less energy during cooling than juvenile thermoregulators. While both juvenile and adult thermoconformers had a lower minimum Tb, a lower torpor metabolic rate, and longer torpor bouts than thermoregulators, these differences were more pronounced in the juveniles. Rewarming from torpor took approximately twice as long for juvenile thermoconformers, and the costs of rewarming were greater. To determine the difference in average daily metabolic rate between thermoconformers and thermoregulators independent of body mass, we compared juveniles of a similar size (∼13 g) and similarly sized adults (∼17 g). The average daily metabolic rate was 7% (juveniles) and 17% (adults) less in thermoconformers than in thermoregulators, even though thermoconformers were active for longer. Our data suggest that thermoconforming during torpor entry provides an energetic advantage for both juvenile and adult dunnarts and may aid growth for juveniles. While thermoregulation during torpor entry is more costly, it still saves energy, and the higher Tb permits greater alertness and mobility and reduces the energetic cost of endogenous rewarming.
Collapse
|
2
|
Navarrete L, Lübcker N, Alvarez F, Nespolo R, Sanchez-Hernandez JC, Maldonado K, Sharp ZD, Whiteman JP, Newsome SD, Sabat P. A multi-isotope approach reveals seasonal variation in the reliance on marine resources, production of metabolic water, and ingestion of seawater by two species of coastal passerine to maintain water balance. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1120271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Tracing how free-ranging organisms interact with their environment to maintain water balance is a difficult topic to study for logistical and methodological reasons. We use a novel combination of triple-oxygen stable isotope analyses of water extracted from plasma (δ16O, δ17O, δ18O) and bulk tissue carbon (δ13C) and nitrogen (δ15N) isotopes of feathers and blood to estimate the proportional contribution of marine resources, seawater, and metabolic water used by two species of unique songbirds (genus Cinclodes) to maintain their water balance in a seasonal coastal environment. We also assessed the physiological adjustments that these birds use to maintain their water balance. In agreement with previous work on these species, δ13C and δ15N data show that the coastal resident and invertivore C. nigrofumosus consumes a diet rich in marine resources, while the diet of migratory C. oustaleti shifts seasonally between marine (winter) to freshwater aquatic resources (summer). Triple-oxygen isotope analysis (Δ17O) of blood plasma, basal metabolic rate (BMR), and total evaporative water loss (TEWL) revealed that ~25% of the body water pool of both species originated from metabolic water, while the rest originated from a mix of seawater and fresh water. Δ17O measurements suggest that the contribution of metabolic water tends to increase in summer in C. nigrofumosus, which is coupled with a significant increase in BMR and TEWL. The two species had similar BMR and TEWL during the austral winter when they occur sympatrically in coastal environments. We also found a positive and significant association between the use of marine resources as measured by δ13C and δ15N values and the estimated δ18O values of ingested (pre-formed) water in both species, which indicates that Cinclodes do not directly drink seawater but rather passively ingest when consuming marine invertebrates. Finally, results obtained from physiological parameters and the isotope-based estimates of marine (food and water) resource use are consistent, supporting the use of the triple-oxygen isotopes to quantify the contribution of water sources to the total water balance of free-ranging birds.
Collapse
|
3
|
Nespolo RF, Peña I, Mejías C, Ñunque A, Altamirano T, Bozinovic FF. Communal nesting is the optimal strategy for heat conservation in a social marsupial: lessons from biophysical models. J Exp Biol 2022; 225:284634. [PMID: 36420835 PMCID: PMC9720746 DOI: 10.1242/jeb.244606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
Abstract
Endothermy, understood as the maintenance of continuous and high body temperatures owing to the combination of metabolic heat production and an insulative cover, is severely challenged in small endotherms inhabiting cold environments. As a response, social clustering combined with nest use (=communal nesting) is a common strategy for heat conservation. To quantify the actual amount of energy that is saved by this strategy, we studied the social marsupial Dromiciops gliroides (monito del monte), an endemic species of the cold forests of southern South America. It is hypothesized that sociability in this marsupial was driven by cold conditions, but evidence supporting this hypothesis is unclear. Here, we used taxidermic models ('mannequins') to experimentally test the energetic benefits of clustering combined with nest use. To do this, we fitted and compared cooling curves of solitary and grouped mannequins, within and outside of a nest, at the typical winter ambient temperatures of their habitat (5°C). We found that the strategy that minimized euthermic cost of maintenance was the combination of nest use and clustering, thus supporting communal nesting as a social adaptation to cope with the cold. Considering the basal metabolic rate of monitos, our estimates suggest that the savings represents almost half of energy consumption per day (in resting conditions). This study shows how simple biophysical models could help to evaluate bioenergetic hypotheses for social behavior in cold-adapted endotherms.
Collapse
Affiliation(s)
- Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile,Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile,Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile,Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile,Author for correspondence ()
| | - Isabella Peña
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Mejías
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile,Magister en Ecología Aplicada, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Abel Ñunque
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile,Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Tomás Altamirano
- ECOS (Ecology-Complexity-Society) Laboratory, Center for Local Development (CEDEL), Pontificia Universidad Católica de Chile, Villarrica Campus, La Araucanía Region, Chile,National Audubon Society and Cape Horn International Center for Global Change Studies and Biocultural Conservation, Universidad de Magallanes, Punta Arenas, Chile,Millennium Nucleus Center for the Socioeconomic Impact of Environmental Policies (CESIEP), Chile
| | - Francisco F. Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile,Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Mejías C, Navedo J, Sabat P, Franco LM, Bozinovic F, Nespolo RF. Body Composition and Energy Savings by Hibernation: Lessons from the South American Marsupial Dromiciops gliroides. Physiol Biochem Zool 2022; 95:239-250. [DOI: 10.1086/719932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Lunn TJ, Nicol SC, Buettel JC, Brook BW. Population demography of the Tasmanian short-beaked echidna (Tachyglossus aculeatus). AUST J ZOOL 2022. [DOI: 10.1071/zo21037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Nespolo RF, Mejías C, Espinoza A, Quintero-Galvis J, Rezende EL, Fontúrbel FE, Bozinovic F. Heterothermy as the Norm, Homeothermy as the Exception: Variable Torpor Patterns in the South American Marsupial Monito del Monte ( Dromiciops gliroides). Front Physiol 2021; 12:682394. [PMID: 34322034 PMCID: PMC8311349 DOI: 10.3389/fphys.2021.682394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Hibernation (i.e., multiday torpor) is considered an adaptive strategy of mammals to face seasonal environmental challenges such as food, cold, and/or water shortage. It has been considered functionally different from daily torpor, a physiological strategy to cope with unpredictable environments. However, recent studies have shown large variability in patterns of hibernation and daily torpor ("heterothermic responses"), especially in species from tropical and subtropical regions. The arboreal marsupial "monito del monte" (Dromiciops gliroides) is the last living representative of the order Microbiotheria and is known to express both short torpor episodes and also multiday torpor depending on environmental conditions. However, only limited laboratory experiments have documented these patterns in D. gliroides. Here, we combined laboratory and field experiments to characterize the heterothermic responses in this marsupial at extreme temperatures. We used intraperitoneal data loggers and simultaneous measurement of ambient and body temperatures (T A and T B, respectively) for analyzing variations in the thermal differential, in active and torpid animals. We also explored how this differential was affected by environmental variables (T A, natural photoperiod changes, food availability, and body mass changes), using mixed-effects generalized linear models. Our results suggest that: (1) individuals express short bouts of torpor, independently of T A and even during the reproductive period; (2) seasonal torpor also occurs in D. gliroides, with a maximum bout duration of 5 days and a mean defended T B of 3.6 ± 0.9°C (one individual controlled T B at 0.09°C, at sub-freezing T A); (3) the best model explaining torpor occurrence (Akaike information criteria weight = 0.59) discarded all predictor variables except for photoperiod and a photoperiod by food interaction. Altogether, these results confirm that this marsupial expresses a dynamic form of torpor that progresses from short torpor to hibernation as daylength shortens. These data add to a growing body of evidence characterizing tropical and sub-tropical heterothermy as a form of opportunistic torpor, expressed as daily or seasonal torpor depending on environmental conditions.
Collapse
Affiliation(s)
- Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Carlos Mejías
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Angelo Espinoza
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Julián Quintero-Galvis
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Enrico L. Rezende
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Turner JM. The interrelationship between torpor expression and nest site use of western and eastern pygmy-possums (Cercartetus spp.). AUSTRALIAN MAMMALOGY 2020. [DOI: 10.1071/am19005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Physiology and behaviour are closely linked, making knowledge of the interaction between species’ energetics and activities important when attempting to understand how animals function in the wild. I examined torpor use by western pygmy-possums (Cercartetus concinnus) and eastern pygmy-possums (C. nanus) in relation to nest site characteristics and movement patterns. In coastal mallee heath in winter, C. concinnus nested beneath leaf litter at the base of dead Banksia ornata, where they employed torpor on 69% of observed days. In warm temperate sclerophyll forest, C. nanus nested in tree hollows of Eucalyptus spp. and used torpor on 64% of days in winter and 10% in summer. Torpor was used in nest sites that were buffered from outside temperature extremes. Both species frequently reused nest sites and while C. nanus was more likely to employ torpor in a previously used site, site familiarity did not influence torpor use for C. concinnus. Additionally, C. nanus was more likely to use torpor in hollows with a higher relative thickness in both seasons. No relationship was found between range size and the number of tracking days or capture body mass, though sample sizes were small. I suggest that the thermal attributes of nest sites influence torpor use for both species and this is likely vital for maintaining a positive energy balance, stressing the importance of preserving habitat with ample potential nest sites for conservation management.
Collapse
|
8
|
Nicol SC, Morrow GE, Harris RL. Energetics meets sexual conflict: The phenology of hibernation in Tasmanian echidnas. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stewart C. Nicol
- School of Natural Sciences University of Tasmania Hobart TAS Australia
| | - Gemma E. Morrow
- School of Natural Sciences University of Tasmania Hobart TAS Australia
- School of Environmental and Rural Sciences University of New England Armidale NSW Australia
| | - Rachel L. Harris
- School of Natural Sciences University of Tasmania Hobart TAS Australia
- Department of Evolutionary Anthropology Duke University Durham NC USA
| |
Collapse
|
9
|
Haase CG, Fuller NW, Hranac CR, Hayman DTS, Olson SH, Plowright RK, McGuire LP. Bats are not squirrels: Revisiting the cost of cooling in hibernating mammals. J Therm Biol 2019; 81:185-193. [PMID: 30975417 DOI: 10.1016/j.jtherbio.2019.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/18/2018] [Accepted: 01/21/2019] [Indexed: 01/23/2023]
Abstract
Many species use stored energy to hibernate through periods of resource limitation. Hibernation, a physiological state characterized by depressed metabolism and body temperature, is critical to winter survival and reproduction, and therefore has been extensively quantified and modeled. Hibernation consists of alternating phases of extended periods of torpor (low body temperature, low metabolic rate), and energetically costly periodic arousals to normal body temperature. Arousals consist of multiple phases: warming, euthermia, and cooling. Warming and euthermic costs are regularly included in energetic models, but although cooling to torpid body temperature is an important phase of the torpor-arousal cycle, it is often overlooked in energetic models. When included, cooling cost is assumed to be 67% of warming cost, an assumption originally derived from a single study that measured cooling cost in ground squirrels. Since this study, the same proportional value has been assumed across a variety of hibernating species. However, no additional values have been derived. We derived a model of cooling cost from first principles and validated the model with empirical energetic measurements. We compared the assumed 67% proportional cooling cost with our model-predicted cooling cost for 53 hibernating mammals. Our results indicate that using 67% of warming cost only adequately represents cooling cost in ground squirrel-sized mammals. In smaller species, this value overestimates cooling cost and in larger species, the value underestimates cooling cost. Our model allows for the generalization of energetic costs for multiple species using species-specific physiological and morphometric parameters, and for predictions over variable environmental conditions.
Collapse
Affiliation(s)
- Catherine G Haase
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, PO Box 173520, Bozeman, MT 59717, USA.
| | - Nathan W Fuller
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX 79409, USA
| | - C Reed Hranac
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Private Bag, 11 222, Palmerston North 4442, New Zealand
| | - David T S Hayman
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Private Bag, 11 222, Palmerston North 4442, New Zealand
| | - Sarah H Olson
- Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, PO Box 173520, Bozeman, MT 59717, USA
| | - Liam P McGuire
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX 79409, USA
| |
Collapse
|
10
|
Polymeropoulos ET, Oelkrug R, Jastroch M. Mitochondrial Proton Leak Compensates for Reduced Oxidative Power during Frequent Hypothermic Events in a Protoendothermic Mammal, Echinops telfairi. Front Physiol 2017; 8:909. [PMID: 29176953 PMCID: PMC5686090 DOI: 10.3389/fphys.2017.00909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
The lesser hedgehog tenrec (Echinops telfairi) displays reptile-like thermoregulatory behavior with markedly high variability in body temperature and metabolic rate. To understand how energy metabolism copes with this flexibility, we studied the bioenergetics of isolated liver mitochondria from cold (20°C) and warm (27°C) acclimated tenrecs. Different acclimation temperatures had no impact on mitochondrial respiration using succinate as the substrate. Mimicking the variation of body temperature by changing assay temperatures from 22 to 32°C highlighted temperature-sensitivity of respiration. The 40% reduction of respiratory control ratio (RCR) at 22°C compared to 32°C, a common estimate for mitochondrial efficiency, was caused by reduced substrate oxidation capacity. The simultaneous measurement of mitochondrial membrane potential enabled the precise assessment of efficiency with corrected respiration rates. Using this method, we show that proton leak respiration at the highest common membrane potential was not affected by acclimation temperature but was markedly decreased by assay temperature. Using membrane potential corrected respiration values, we show that the fraction of ATP-linked respiration (coupling efficiency) was maintained (70–85%) at lower temperatures. Collectively, we demonstrate that compromised substrate oxidation was temperature-compensated by the reduction of proton leak, thus maintaining the efficiency of mitochondrial energy conversion. Therefore, membrane potential data suggest that adjustments of mitochondrial proton leak contribute to energy homeostasis during thermoregulatory flexibility of tenrecs.
Collapse
Affiliation(s)
- Elias T Polymeropoulos
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - R Oelkrug
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - M Jastroch
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich, Germany.,Helmholtz Diabetes Center, German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
11
|
Abstract
In 1803, the French anatomist Étienne Geoffroy Saint-Hilaire decided that the newly described echidna and platypus should be placed in a separate order, the monotremes, intermediate between reptiles and mammals. The first physiological observations showed monotremes had low body temperatures and metabolic rates, and the consensus was that they were at a stage of physiological development intermediate between "higher mammals" and "lower vertebrates." Subsequent studies demonstrated that platypuses and echidnas are capable of close thermoregulation in the cold although less so under hot conditions. Because the short-beaked echidna Tachyglossus aculeatus, may show very large daily variations in body temperature, as well as seasonal hibernation, it has been suggested that it may provide a useful model of protoendotherm physiology. Such analysis is complicated by the very significant differences in thermal relations between echidnas from different climates. In all areas female echidnas regulate Tb within 1°C during egg incubation. The lactation period is considered to be the most energetically expensive time for most female mammals but lactating echidnas showed no measurable difference in field metabolic rate from non-lactating females, while the lactation period is more than 200 days for Kangaroo Island echidnas but only 150 days in Tasmania. In areas with mild winters echidnas show reduced activity and shallow torpor in autumn and early winter, but in areas with cold winters echidnas enter true hibernation with Tb falling as low as 4.5°C. Monotremes do not possess brown adipose tissue and maximum rates of rewarming from hibernation in echidnas were only half those of marmots of the same mass. Although echidnas show very large seasonal variations in fat stores associated with hibernation there is no relationship between plasma leptin and adiposity. Leptin levels are lowest during post-reproductive fattening, supporting suggestions that in evolutionary terms the anorectic effects of leptin preceded the adiposity signal. BMR of platypuses is twice that of echidnas although maximum metabolism is similar. High levels of thyroid hormones in platypuses may be driving metabolism limited by low body temperature. Monotremes show a mosaic of plesiomorphic and derived features but can still inform our understanding of the evolution of endothermy.
Collapse
Affiliation(s)
- Stewart C. Nicol
- Biological Sciences, University of TasmaniaHobart, TAS, Australia
| |
Collapse
|
12
|
Morrow GE, Jones SM, Nicol SC. Frozen embryos? Torpor during pregnancy in the Tasmanian short-beaked echidna Tachyglossus aculeatus setosus. Gen Comp Endocrinol 2017; 244:139-145. [PMID: 26562301 DOI: 10.1016/j.ygcen.2015.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 11/25/2022]
Abstract
We studied the interaction between torpor and reproduction in free-ranging female Tasmanian echidnas using a combination of techniques including urogenital smears, hormone analysis, ultrasonography, external temperature loggers and camera traps. Male echidnas initiated mating activity by locating hibernating females. All females that mated or were disturbed by males prior to July 27 re-entered hibernation, including many that were pregnant. Pregnant females only entered hibernation in early pregnancy when plasma progesterone concentrations were about twice basal and progesterone then remained constant during torpor. By re-entering hibernation pregnant females extended their gestation period and delayed egg-laying. Progesterone peaked 4-6days before egg-laying, then dropped rapidly.
Collapse
Affiliation(s)
- Gemma E Morrow
- School of Biological Sciences, University of Tasmania, Australia
| | - Sue M Jones
- School of Biological Sciences, University of Tasmania, Australia
| | - Stewart C Nicol
- School of Biological Sciences, University of Tasmania, Australia.
| |
Collapse
|
13
|
Morrow GE, Jones SM, Nicol SC. Interaction of hibernation and male reproductive function in wild Tasmanian echidnasTachyglossus aculeatus setosus. J Mammal 2016. [DOI: 10.1093/jmammal/gyw013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
14
|
The effects of poly-unsaturated fatty acids on the physiology of hibernation in a South American marsupial, Dromiciops gliroides. Comp Biochem Physiol A Mol Integr Physiol 2014; 177:62-9. [PMID: 25047800 DOI: 10.1016/j.cbpa.2014.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/24/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Many mammals hibernate, which is a profound lethargic state of several weeks or months during winter, that represents a transitory episode of hetherothermy. As with other cases of dormancy, the main benefit of hibernation seems to be energy saving. However, the depth and duration of torpor can be experimentally modified by the composition of food, especially by fattyacid composition. In eutherians, diets rich in unsaturated fatty acids (i.e., fatty acids with at least one double bond) lengthen torpor, reduce metabolism and permit hibernation at lower temperatures. Here we studied whether diets varying in fatty acid composition have an effect on the physiology of hibernation in a South American marsupial, Dromiciops gliroides. We designed a factorial experiment where thermal acclimation (two levels: natural versus constant temperature) was combined with diet acclimation: saturated (i.e., diets with high concentration of saturated fatty acids) versus unsaturated (i.e., diets with high concentration of unsaturated fatty acids). We measured energy metabolism in active and torpid individuals, as well as torpor duration, and a suite of 12 blood biochemical parameters. After a cafeteria test, we found that D. gliroides did not show any preference for a given diet. Also, we did not find effects of diet on body temperature during torpor, or its duration. However, saturated diets, combined with high temperatures provoked a disproportionate increase in fat utilization, leading to body mass reduction. Those animals were more active, and metabolized more fats than those fed with a high proportion of unsaturated fatty acids (="unsaturated diets"). These results contrast with previous studies, which showed a significant effect of fatty acid composition of diets on food preferences and torpor patterns in mammals.
Collapse
|
15
|
Sprent J, Jones SM, Nicol SC. Does leptin signal adiposity in the egg-laying mammal, Tachyglossus aculeatus? Gen Comp Endocrinol 2012; 178:372-9. [PMID: 22750512 DOI: 10.1016/j.ygcen.2012.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 06/17/2012] [Accepted: 06/20/2012] [Indexed: 11/15/2022]
Abstract
Leptin is a peptide hormone best known for its role in feedback regulation of adiposity in eutherian mammals. Normally an increase in adipose tissue mass leads to an increase in circulating leptin which increases energy expenditure and limits food intake, but in hibernating eutherian mammals this relationship may change to allow prehibernatory fattening. The echidna (Tachyglossus aculeatus) is a monotreme mammal which accumulates significant fat reserves before entering hibernation, and mates immediately at the end of hibernation. We hypothesised that echidnas would show a strong relationship between body mass and plasma leptin for most of the year which would change during the pre-hibernatory period. We measured plasma leptin and body mass in free-ranging echidnas over several reproductive and hibernation cycles. There were significant seasonal variations in plasma leptin in both sexes, with the highest levels occurring in hibernation and in mating females. The lowest levels were found in males when they were foraging maximally after the reproductive period. We used mass%, body mass at the time of sampling as a percentage of long term mean mass, as a proxy for adiposity. There was a weak negative relationship between mass% and plasma leptin, from which we infer a weak negative relationship between adiposity and plasma leptin as has been found in reptiles and birds, rather than the strong positive relationship found in other mammals.
Collapse
Affiliation(s)
- Jenny Sprent
- School of Zoology, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | |
Collapse
|
16
|
Morrow GE, Nicol SC. Maternal care in the Tasmanian echidna (Tachyglossus aculeatus setosus). AUST J ZOOL 2012. [DOI: 10.1071/zo12066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Parental care is central to the differences in reproductive behaviour and energy expenditure between males and females, and it is therefore crucial for understanding animal mating systems. We investigated post-gestation maternal care in a wild population of short-beaked echidnas (Tachyglossus aculeatus) in the Tasmanian midlands using a combination of external temperature loggers and motion-triggered infrared cameras. For the first few weeks of early lactation mothers do not leave their nursery burrow, which they keep at a stable and warm temperature, resulting in a greater rate of maternal mass loss during the period of maternal burrow confinement than during hibernation. However, after lactating mothers recommence feeding, they raise a young to ~1.5 kg on a diet of their milk while increasing their own body mass by a similar amount. Weaning in our population appears not to be abrupt as there is a period where young echidnas begin exploratory foraging while their mother is still lactating. After young are weaned and abandon the nursery burrow, there appear to be no further associations between mothers and young despite young echidnas remaining within their mother’s home range for the first 12 months of their life. Female echidnas time reproductive events with increases in ecosystem productivity, so that young are weaned at a time of maximum food abundance.
Collapse
|
17
|
Sprent J, Nicol SC. Influence of habitat on home-range size in the short-beaked echidna. AUST J ZOOL 2012. [DOI: 10.1071/zo11098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The size of an animal’s home range is strongly influenced by the resources available within it. In productive, resource-rich habitats sufficient resources are obtainable within a smaller area, and for many species, home ranges are smaller in resource-rich habitats than in habitats with lower resource abundance. Location data on 14 male and 27 female echidnas (Tachyglossus aculeatus) fitted with tracking transmitters, in the southern midlands of Tasmania, were used to test the influence of habitat type on home-range size. We hypothesised that as woodland should offer more shelter, food resources and refuges than pasture, echidnas living in woodland would have smaller home ranges than those living in pasture areas. We found significant differences between the sexes. Male echidnas had a significantly larger mean home range than females and a quite different relationship between home-range size and habitat type from females. There was no relationship between the proportion of woodland within male home ranges and home-range size whereas female echidnas had a highly significant negative relationship. This suggests that home-range size of female echidnas is highly influenced by the amount of woodland within it, but the home-range size of male echidnas is controlled by factors other than habitat. This pattern is consistent with the spatial ecology of many other solitary species with a promiscuous mating system. The home ranges of females are scaled to encompass all necessary resources for successfully raising their young within a minimal area, whilst the large home ranges of males are scaled to maximise access to females.
Collapse
|
18
|
Nicol SC, Vanpé C, Sprent J, Morrow G, Andersen NA. Spatial ecology of a ubiquitous Australian anteater, the short-beaked echidna (Tachyglossus aculeatus). J Mammal 2011. [DOI: 10.1644/09-mamm-a-398.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Gedeon CI, Markó G, Németh I, Nyitrai V, Altbäcker V. Nest material selection affects nest insulation quality for the European ground squirrel (Spermophilus citellus). J Mammal 2010. [DOI: 10.1644/09-mamm-a-089.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Körtner G, Rojas AD, Geiser F. Thermal biology, torpor use and activity patterns of a small diurnal marsupial from a tropical desert: sexual differences. J Comp Physiol B 2010; 180:869-76. [PMID: 20217093 DOI: 10.1007/s00360-010-0459-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/13/2010] [Accepted: 02/16/2010] [Indexed: 11/29/2022]
Abstract
Many small desert dasyurids employ torpor almost daily during winter, because cold nights and low food availability impose high energetic costs. However, in Western Australia the arid zone extends into tropical, coastal regions, where winter temperature conditions are far less severe. We studied the thermal biology and activity patterns of free-ranging kaluta (approximately 27 g), a dasyurid restricted to these tropical spinifex deserts, during the Austral winter (June-July) and in addition quantified activity patterns in captivity. Unlike most dasyurids, wild and captive kalutas were almost exclusively diurnal and retreated into underground burrows during the night. Despite being active during the warmer part of the day, kalutas entered torpor daily. However, torpor patterns differed remarkably between males and females. While females spent most of the night torpid at body temperatures (T (b)) as low as 21 degrees C, close to soil temperature, males entered multiple short and shallow bouts (T (b) > 25 degrees C) during the night. Males also maintained higher T (b)s during the early morning when active, occupied larger home ranges and covered greater distances while foraging than females. Hence, males appear to expend more energy than the similar-sized females both while foraging and during the rest phase. We propose that physiological as well as behavioural preparations for the September mating season that culminate in a complete male die-off might already impose energetic costs on males during winter.
Collapse
Affiliation(s)
- Gerhard Körtner
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia.
| | | | | |
Collapse
|
21
|
Bioenergetics of torpor in the microbiotherid marsupial, monito del monte (Dromiciops gliroides): the role of temperature and food availability. J Comp Physiol B 2010; 180:767-73. [PMID: 20165853 DOI: 10.1007/s00360-010-0449-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 01/21/2010] [Accepted: 01/23/2010] [Indexed: 10/19/2022]
Abstract
Torpor is the physiologically controlled reduction of metabolic rate and body temperature experienced by small birds and mammals when facing periods of low temperature and/or food shortage. In this study, we provide a first quantitative description of torpor in the relict marsupial Dromiciops gliroides by: (1) characterizing body temperature (T (B)) and torpor patterns, (2) evaluating the combined effects of ambient temperature and different levels of food restriction on torpor incidence and (3) exploring the metabolic depression during torpor. D. gliroides exhibited short bouts of torpor on a daily basis, during which T (B) decreased close to ambient temperature. During the active phase, T (B) also exhibited pronounced variation (range 34-38 degrees C). In order to evaluate the consistency of torpor, we computed the repeatability of T (B). Using the whole dataset, repeatability was significant (tau = 0.28). However, when torpid individuals were excluded from the analysis, repeatability was non-significant: some individuals were more prone to experience torpor than others. Our results indicate that this species also exhibits short bouts of daily torpor, whose depth and duration depends on the joint effects of T (A) and food availability. At T (A) = 20 degrees C, the maximum torpor incidence was found at 70-80% food reduction, while at both extremes of the food continuum (100 and 0-10% food reduction) individuals were completely active, although considerable variation in T (B) was recorded. At T (A) = 10 degrees C, individuals developed a deep form of torpor that was independent of the amount of food provided. On average, torpid D. gliroides reduced their metabolic rate up to 92% of their active values. In general, our results suggest that T (A) was the most immediate determinant of torpor, followed by energy availability.
Collapse
|
22
|
|
23
|
Nicol SC, Andersen NA, Arnold W, Ruf T. Rewarming rates of two large hibernators: Comparison of a monotreme and a eutherian. J Therm Biol 2009. [DOI: 10.1016/j.jtherbio.2009.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Fick LG, Kucio TA, Fuller A, Matthee A, Mitchell D. The relative roles of the parasol-like tail and burrow shuttling in thermoregulation of free-ranging Cape ground squirrels, Xerus inauris. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:334-40. [DOI: 10.1016/j.cbpa.2008.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/07/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
|
25
|
Morrow G, Andersen NA, Nicol SC. Reproductive strategies of the short-beaked echidna - a review with new data from a long-term study on the Tasmanian subspecies (Tachyglossus aculeatus setosus). AUST J ZOOL 2009. [DOI: 10.1071/zo09037] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The short-beaked echidna is the most widely distributed endemic Australian mammal, and echidnas from different geographic areas differ so much in appearance that they have been assigned to several subspecies. In this paper, we present data obtained from free-ranging echidnas in southern Tasmania, and compare this with studies from other parts of Australia. In Tasmania mating occurs between early June and mid-September, and throughout Australia the normal breeding season lies within these limits. In echidnas from the more easterly parts of Australia reproduction closely follows hibernation, with Tasmanian echidnas showing a significant overlap between hibernation and reproduction. There is intense competition between males, and female echidnas from Tasmania show multiple matings. There are significant differences between echidnas from different areas of Australia in the use of nursery burrows and maternal care. One of the most dramatic differences is in duration of lactation: echidnas from Kangaroo Island wean the young at 204–210 days, but in Tasmania weaning occurs at 139–152 days, even though the masses of the young at weaning are comparable.
Collapse
|
26
|
Geiser F, Pavey CR. Basking and torpor in a rock-dwelling desert marsupial: survival strategies in a resource-poor environment. J Comp Physiol B 2007; 177:885-92. [PMID: 17674010 DOI: 10.1007/s00360-007-0186-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 06/24/2007] [Accepted: 06/27/2007] [Indexed: 10/23/2022]
Abstract
Australian deserts are characterized by unpredictability, low primary productivity, and high temperature fluctuations. Despite these adverse conditions the diversity of small insectivorous marsupials of the family Dasyuridae is surprisingly high. We quantified the thermal biology of the dasyurid Pseudantechinus madonnellensis (body mass approximately 30 g) in the wild to gain some understanding of whether the success of dasyurids in the arid zone may be related to some extent to their use of energy conservation strategies. In winter, most free-ranging Pseudantechinus frequently (58.3% of 131 animal days) entered daily torpor after midnight (mean 0157 hours) in rock crevices when outside ambient temperatures (T (a)) were low. Most animals remained torpid until the next morning when they moved while still torpid from rock crevices to sun-exposed basking sites. We visually observed basking during rewarming from torpor (mean commencement at 0943 hours) at body temperatures (T (b)) as low as 19.3 degrees C when radiant heat was high and T (a) was rising. Basking continued for the rest of the day. Torpor use was not strongly correlated with T (a), but the temporal organization of daily torpor and activity were apparently linked to the thermal characteristics of basking sites. Our study suggests that by frequently employing daily torpor and basking and by appropriately coordinating their thermal biology with that of specific locations in their environment, Pseudantechinus can reduce daily energy expenditure and thus can live and reproduce in a challenging environment. It is likely that the success of other small dasyurids and perhaps many other small mammals living in deserts is linked to employment of torpor and basking for energy conservation.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia.
| | | |
Collapse
|