1
|
Cao Q, Chu P, Gu J, Zhang H, Feng R, Wen X, Wang D, Xiong W, Wang T, Yin S. The influence of Ca 2+ concentration on voltage-dependent L-type calcium channels' expression in the marbled eel (Anguilla marmorata). Gene 2019; 722:144101. [PMID: 31479714 DOI: 10.1016/j.gene.2019.144101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
The catadromous species, eels, invariably exposed to variable Ca2+ concentrations circumstance i.e., lagoon or ocean. They need to maintain Ca2+ homeostasis by exchanging Ca2+ under different culture conditions. To understand the effects of environmental Ca2+ to fish, three types of genes coding for voltage-dependent L-type calcium channels (cacnb1, 2, 3) were cloned by screening an A. marmorata cDNA library. Tissue distribution analysis of Western blot showed that Cacnb1, 2, 3 had a significantly high expression in gill; while mRNA results showed the expressions of cacnb1 and cacnb3 were predominated in skin tissue but only cacnb2 was expressed in intestine. Serum osmolality and Ca2+ concentrations of A.marmorata were increased in a high calcium environment while reduced in a low calcium environment within 7 days; however, they were not significantly different among Ca2+ treatments after the eels were acclimated for 7 days. We also examined the influence of ambient Ca2+ levels on cacnbs expression of eels. With the increasing of exposure time, mRNA and protein expressions of cacnb1 were up-regulated in high level of Ca2+ (10 mM) and down-regulated in deficient Ca2+ (0 mM) compared to the control Ca2+ (2 mM). However, the opposite results were observed in cacnb2 and cacnb3. Notably, the cacnb2 expression was not significant different among Ca2+ treatments on day 7. Our study provided the insightful evidence that cacnbs play important roles in maintaining Ca2+ homeostasis of fish.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Peng Chu
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Hongyan Zhang
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Runhua Feng
- School of WASM, Curtin University, WA 6151, Australia
| | - Xin Wen
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Dan Wang
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tao Wang
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| | - Shaowu Yin
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
3
|
Gao Y, Gillen CM, Wheatly MG. Cloning and characterization of a calmodulin gene (CaM) in crayfish Procambarus clarkii and expression during molting. Comp Biochem Physiol B Biochem Mol Biol 2008; 152:216-25. [PMID: 19095075 DOI: 10.1016/j.cbpb.2008.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/21/2008] [Accepted: 11/27/2008] [Indexed: 10/21/2022]
Abstract
Calmodulin (CaM) is a highly conserved calcium (Ca(2+)) binding protein that transduces Ca(2+) signals into downstream effects influencing a range of cellular processes, including Ca(2+) homeostasis. The present study explores CaM expression when Ca(2+) homeostasis is challenged during the mineralization cycle of the freshwater crayfish (Procambarus clarkii). In this paper we report the cloning of a CaM gene from axial abdominal crayfish muscle (referred to as pcCaM). The pcCaM mRNA is ubiquitously expressed but is far more abundant in excitable tissue (muscle, nerve) than in any epithelia (gill, antennal gland, digestive) suggesting that it plays a greater role in the biology of excitation than in epithelial ion transport. In muscle cells the pcCaM was colocalized on the plasma membrane with the Ca(2+) ATPase (PMCA) known to regulate intracellular Ca(2+) through basolateral efflux. While PMCA exhibits a greater upregulation in epithelia (than in non-epithelial tissues) during molting stages requiring transcellular Ca(2+) flux (pre- and postmolt compared with intermolt), expression of pcCaM exhibited a uniform increase in epithelial and non-epithelial tissues alike. The common increase in expression of CaM in all tissues during pre- and postmolt stages (compared with intermolt) suggests that the upregulation is systemically (hormonally) mediated. Colocalization of CaM with PMCA confirms physiological findings that their regulation is linked.
Collapse
Affiliation(s)
- Yongping Gao
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | | | | |
Collapse
|
4
|
Gillen CM, Gao Y, Niehaus-Sauter MM, Wylde MR, Wheatly MG. Elongation factor 1Bgamma (eEF1Bgamma) expression during the molting cycle and cold acclimation in the crayfish Procambarus clarkii. Comp Biochem Physiol B Biochem Mol Biol 2008; 150:170-6. [PMID: 18407536 DOI: 10.1016/j.cbpb.2008.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 02/04/2023]
Abstract
Eukaryotic elongation factor 1Bgamma (eEF1Bgamma) is a subunit of elongation factor 1 (EF1), which regulates the recruitment of amino acyl-tRNAs to the ribosome during protein synthesis in eukaryotes. In addition to structural roles within eEF1, eEF1Bgamma has properties which suggest sensory or regulatory activities. We have cloned eEF1Bgamma from axial abdominal muscle of freshwater crayfish, Procambarus clarkii. The predicted amino acid sequence has 66% identity to Locusta migratoria eEF1Bgamma and 65% identity to Artemia salina eEF1Bgamma. We measured eEF1Bgamma expression by real-time PCR, using the relative quantification method with 18s ribosomal RNA as an internal calibrator. eEF1Bgamma expression was lowest in gill, axial abdominal muscle, and hepatopancreas, and was highest in the antennal gland (5.7-fold above hepatopancreas) and cardiac muscle (7.8-fold above hepatopancreas). In axial abdominal muscle, eEF1Bgamma expression was 4.4-fold higher in premolt and 11.9 higher in postmolt compared to intermolt. In contrast, eEF1Bgamma was decreased or unchanged in epithelial tissues during pre- and postmolt. eEF1Bgamma expression in the hepatopancreas was 3.5-fold higher during intermolt compared to premolt and was unchanged in gill and antennal gland. No significant differences in eEF1Bgamma were found after 1 week of acclimation to 4 degrees C. These results show that eEF1Bgamma is regulated at the mRNA level with tissue-specific differences in expression patterns.
Collapse
|