1
|
Jessop AL, Bagheri ZM, Partridge JC, Osborn KJ, Hemmi JM. Functional differences between the extraordinary eyes of deep-sea hyperiid amphipods. Proc Biol Sci 2024; 291:20240239. [PMID: 38808445 DOI: 10.1098/rspb.2024.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
The ocean's midwater is a uniquely challenging yet predictable and simple visual environment. The need to see without being seen in this dim, open habitat has led to extraordinary visual adaptations. To understand these adaptations, we compared the morphological and functional differences between the eyes of three hyperiid amphipods-Hyperia galba, Streetsia challengeri and Phronima sedentaria. Combining micro-CT data with computational modelling, we mapped visual field topography and predicted detection distances for visual targets viewed in different directions through mesopelagic depths. Hyperia's eyes provide a wide visual field optimized for spatial vision over short distances, while Phronima's and Streetsia's eyes have the potential to achieve greater sensitivity and longer detection distances using spatial summation. These improvements come at the cost of smaller visual fields, but this loss is compensated for by a second pair of eyes in Phronima and by behaviour in Streetsia. The need to improve sensitivity while minimizing visible eye size to maintain crypsis has likely driven the evolution of hyperiid eye diversity. Our results provide an integrative look at how these elusive animals have adapted to the unique visual challenges of the mesopelagic.
Collapse
Affiliation(s)
- Anna-Lee Jessop
- School of Biological Sciences & Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia
| | - Zahra M Bagheri
- School of Biological Sciences & Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia
| | - Julian C Partridge
- School of Biological Sciences & Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia
| | - Karen J Osborn
- Smithsonian National Museum of Natural History, Washington, DC 20560, USA
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Jan M Hemmi
- School of Biological Sciences & Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia
- Smithsonian National Museum of Natural History, Washington, DC 20560, USA
| |
Collapse
|
2
|
Zeil J. Views from 'crabworld': the spatial distribution of light in a tropical mudflat. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:859-876. [PMID: 37460846 PMCID: PMC10643439 DOI: 10.1007/s00359-023-01653-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 11/14/2023]
Abstract
Natural scene analysis has been extensively used to understand how the invariant structure of the visual environment may have shaped biological image processing strategies. This paper deals with four crucial, but hitherto largely neglected aspects of natural scenes: (1) the viewpoint of specific animals; (2) the fact that image statistics are not independent of the position within the visual field; (3) the influence of the direction of illumination on luminance, spectral and polarization contrast in a scene; and (4) the biologically relevant information content of natural scenes. To address these issues, I recorded the spatial distribution of light in a tropical mudflat with a spectrographic imager equipped with a polarizing filter in an attempt to describe quantitatively the visual environment of fiddler crabs. The environment viewed by the crabs has a distinct structure. Depending on the position of the sun, the luminance, the spectral composition, and the polarization characteristics of horizontal light distribution are not uniform. This is true for both skylight and for reflections from the mudflat surface. The high-contrast feature of the line of horizon dominates the vertical distribution of light and is a discontinuity in terms of luminance, spectral distribution and of image statistics. On a clear day, skylight intensity increases towards the horizon due to multiple scattering, and its spectral composition increasingly resembles that of sunlight. Sky-substratum contrast is highest at short wavelengths. I discuss the consequences of this extreme example of the topography of vision for extracting biologically relevant information from natural scenes.
Collapse
Affiliation(s)
- Jochen Zeil
- Research School of Biology, Australian National University, P.O. Box 475, Canberra, ACT, 2601, Australia.
| |
Collapse
|
3
|
Perez M, Bagheri ZM, Brown C, Ogawa Y, Partridge JC, Hemmi JM. Contrast sensitivity, visual acuity and the effect of behavioural state on optokinetic gain in fiddler crabs. J Exp Biol 2023; 226:jeb245799. [PMID: 37732387 DOI: 10.1242/jeb.245799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Most animals rely on visual information for a variety of everyday tasks. The information available to a visual system depends in part on its spatial resolving power and contrast sensitivity. Because of their competing demands for physical space within an eye, these traits cannot simultaneously be improved without increasing overall eye size. The contrast sensitivity function is an integrated measure of visual performance that measures both resolution and contrast sensitivity. Its measurement helps us identify how different species have made a trade-off between contrast sensitivity and spatial resolution. It further allows us to identify the evolutionary drivers of sensory processing and visually mediated behaviour. Here, we measured the contrast sensitivity function of the fiddler crab Gelasimus dampieri using its optokinetic responses to wide-field moving sinusoidal intensity gratings of different orientations, spatial frequencies, contrasts and speeds. We further tested whether the behavioural state of the crabs (i.e. whether crabs are actively walking or not) affects their optokinetic gain and contrast sensitivity. Our results from a group of five crabs suggest a minimum perceived contrast of 6% and a horizontal and vertical visual acuity of 0.4 cyc deg-1 and 0.28 cyc deg-1, respectively, in the crabs' region of maximum optomotor sensitivity. Optokinetic gain increased in moving crabs compared with restrained crabs, adding another example of the importance of naturalistic approaches when studying the performance of animals.
Collapse
Affiliation(s)
- Monika Perez
- School of Biological Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Zahra M Bagheri
- School of Biological Sciences, the University of Western Australia, Perth, WA 6009, Australia
- The UWA Oceans Institute, the University of Western Australia, Perth, WA 6009, Australia
| | - Courtney Brown
- School of Biological Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Yuri Ogawa
- School of Biological Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Julian C Partridge
- The UWA Oceans Institute, the University of Western Australia, Perth, WA 6009, Australia
| | - Jan M Hemmi
- School of Biological Sciences, the University of Western Australia, Perth, WA 6009, Australia
- The UWA Oceans Institute, the University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Donohue CG, Bagheri ZM, Partridge JC, Hemmi JM. Fiddler crabs are unique in timing their escape responses based on speed-dependent visual cues. Curr Biol 2022; 32:5159-5164.e4. [PMID: 36306788 DOI: 10.1016/j.cub.2022.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022]
Abstract
Predation risk imposes strong selection pressures on visual systems to quickly and accurately identify the position and movement of potential predators.1,2 Many invertebrates and other small animals, however, have limited capacity for distance perception due to their low spatial resolution and closely situated eyes.3,4 Consequently, they often rely on simplified decision criteria, essentially heuristics or "rules of thumb", to make decisions. The visual cues animals use to make escape decisions are surprisingly consistent, especially among arthropods, with the timing of escape commonly triggered by size-dependent visual cues such as angular size or angular size increment.5,6,7,8,9,10 Angular size, however, confuses predator size and distance and provides no information about the speed of the attack. Here, we show that fiddler crabs (Gelasimus dampieri) are unique among the arthropods studied to date as they timed their escape response based on the speed of an object's angular expansion. The crabs responded reliably by running away from visual stimuli that expanded at approximately 1.7 degrees/s, irrespective of stimulus size, speed, or its initial distance from the crabs. Though the threshold expansion speed was consistent across different stimulus conditions, we found that the escape timing was modulated by the elevation at which the stimulus approached, suggesting that other risk factors can bias the expansion speed threshold. The results suggest that the visual escape cues used by arthropods are less conserved than previously thought and that lifestyle and environment are significant drivers determining the escape cues used by different species.
Collapse
Affiliation(s)
- Callum G Donohue
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia; Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia.
| | - Zahra M Bagheri
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia; Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia
| | - Julian C Partridge
- Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia; Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
5
|
Irwin AR, Williams ST, Speiser DI, Roberts NW. The marine gastropod Conomurex luhuanus (Strombidae) has high-resolution spatial vision and eyes with complex retinas. J Exp Biol 2022; 225:275933. [PMID: 35796292 PMCID: PMC9482149 DOI: 10.1242/jeb.243927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
All species within the conch snail family Strombidae possess large camera-type eyes that are surprisingly well-developed compared with those found in most other gastropods. Although these eyes are known to be structurally complex, very little research on their visual function has been conducted. Here, we use isoluminant expanding visual stimuli to measure the spatial resolution and contrast sensitivity of a strombid, Conomurex luhuanus. Using these stimuli, we show that this species responds to objects as small as 1.06 deg in its visual field. We also show that C. luhuanus responds to Michelson contrasts of 0.07, a low contrast sensitivity between object and background. The defensive withdrawal response elicited by visual stimuli of such small angular size and low contrast suggests that conch snails may use spatial vision for the early detection of potential predators. We support these findings with morphological estimations of spatial resolution of 1.04 deg. These anatomical data therefore agree with the behavioural measures and highlight the benefits of integrating behavioural and morphological approaches in animal vision studies. Using contemporary imaging techniques [serial block-face scanning electron microscopy (SBF-SEM), in conjunction with transmission electron microscopy (TEM)], we found that C. luhuanus have more complex retinas, in terms of cell type diversity, than expected based on previous studies of the group using TEM alone. We find the C. luhuanus retina comprises six cell types, including a newly identified ganglion cell and accessory photoreceptor, rather than the previously described four cell types. Summary: Behavioural trials indicate the eyes of conch snail Conomurex luhuanus provide high-resolution spatial vision, and morphological examination reveals the retina contains more cell types than those of other gastropods.
Collapse
Affiliation(s)
- Alison R Irwin
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London, SW7 5BD, UK.,School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - Suzanne T Williams
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London, SW7 5BD, UK
| | - Daniel I Speiser
- Department of Biological Sciences, University of South Carolina, 715 Sumter St, Columbia, SC 29208, USA
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| |
Collapse
|
6
|
Martin E, Steinmetz HL, Baek SY, Gilbert FR, Brandley NC. Rapid Shifts in Visible Carolina Grasshopper (Dissosteira carolina) Coloration During Flights. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.900544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Some brightly colored structures are only visible when organisms are moving, such as parts of wings that are only visible in flight. For example, the primarily brown Carolina grasshopper (Dissosteira carolina) has contrasting black-and-cream hindwings that appear suddenly when it takes off, then oscillate unpredictably throughout the main flight before disappearing rapidly upon landing. However, the temporal dynamics of hindwing coloration in motion have not previously been investigated, particularly for animals that differ from humans in their temporal vision. To examine how quickly this coloration appears to a variety of non-human observers, we took high-speed videos of D. carolina flights in the field. For each of the best-quality takeoffs and landings, we performed a frame-by-frame analysis on how the relative sizes of the different-colored body parts changed over time. We found that in the first 7.6 ± 1.5 ms of takeoff, the hindwings unfurled to encompass 50% of the visible grasshopper, causing it to roughly double in size. During the main flight, the hindwings transitioned 6.4 ± 0.4 times per second between pauses and periods of active wing-beating (31.4 ± 0.5 Hz), creating an unstable, confusing image. Finally, during landings, the hindwings disappeared in 11.3 ± 3.0 ms, shrinking the grasshopper to 69 ± 9% of its main flight size. Notably, these takeoffs and landings occurred faster than most recorded species are able to sample images, which suggests that they would be near-instantaneous to a variety of different viewers. We therefore suggest that D. carolina uses its hindwings to initially startle predators (deimatic defense) and then confuse them and disrupt their search images (protean defense) before rapidly returning to crypsis.
Collapse
|
7
|
Bagheri ZM, Donohue CG, Partridge JC, Hemmi JM. Behavioural and neural responses of crabs show evidence for selective attention in predator avoidance. Sci Rep 2022; 12:10022. [PMID: 35705656 PMCID: PMC9200765 DOI: 10.1038/s41598-022-14113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Selective attention, the ability to focus on a specific stimulus and suppress distractions, plays a fundamental role for animals in many contexts, such as mating, feeding, and predation. Within natural environments, animals are often confronted with multiple stimuli of potential importance. Such a situation significantly complicates the decision-making process and imposes conflicting information on neural systems. In the context of predation, selectively attending to one of multiple threats is one possible solution. However, how animals make such escape decisions is rarely studied. A previous field study on the fiddler crab, Gelasimus dampieri, provided evidence of selective attention in the context of escape decisions. To identify the underlying mechanisms that guide their escape decisions, we measured the crabs' behavioural and neural responses to either a single, or two simultaneously approaching looming stimuli. The two stimuli were either identical or differed in contrast to represent different levels of threat certainty. Although our behavioural data provides some evidence that crabs perceive signals from both stimuli, we show that both the crabs and their looming-sensitive neurons almost exclusively respond to only one of two simultaneous threats. The crabs' body orientation played an important role in their decision about which stimulus to run away from. When faced with two stimuli of differing contrasts, both neurons and crabs were much more likely to respond to the stimulus with the higher contrast. Our data provides evidence that the crabs' looming-sensitive neurons play an important part in the mechanism that drives their selective attention in the context of predation. Our results support previous suggestions that the crabs' escape direction is calculated downstream of their looming-sensitive neurons by means of a population vector of the looming sensitive neuronal ensemble.
Collapse
Affiliation(s)
- Zahra M Bagheri
- School of Biological Sciences, The University of Western Australia, Perth, Australia. .,The UWA Oceans Institute, The University of Western Australia, Perth, Australia.
| | - Callum G Donohue
- School of Biological Sciences, The University of Western Australia, Perth, Australia.,The UWA Oceans Institute, The University of Western Australia, Perth, Australia.,Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | - Julian C Partridge
- The UWA Oceans Institute, The University of Western Australia, Perth, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, Perth, Australia. .,The UWA Oceans Institute, The University of Western Australia, Perth, Australia.
| |
Collapse
|
8
|
Brodrick EA, How MJ, Hemmi JM. Fiddler crab electroretinograms reveal vast circadian shifts in visual sensitivity and temporal summation in dim light. J Exp Biol 2022; 225:274663. [PMID: 35156128 PMCID: PMC8976941 DOI: 10.1242/jeb.243693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/04/2022] [Indexed: 11/20/2022]
Abstract
Many animals with compound eyes undergo major optical changes to adjust visual sensitivity from day to night, often under control of a circadian clock. In fiddler crabs, this presents most conspicuously in the huge volume increase of photopigment-packed rhabdoms and the widening of crystalline cone apertures at night. These changes are hypothesised to adjust the light flux to the photoreceptors and to alter optical sensitivity as the eye moves between light- and dark-adapted states. Here, we compare optical sensitivity in fiddler crab eyes (Gelasimus dampieri) during daytime and night via three electroretinogram (ERG) experiments performed on light- and dark-adapted crabs.
1) Light intensity required to elicit a threshold ERG response varied over six orders of magnitude, allowing more sensitive vision for discriminating small contrasts in dim light after dusk. During daytime, the eyes remained relatively insensitive, which would allow effective vision on bright mudflats, even after prolonged dark adaptation.
2) Flicker fusion frequency (FFF) experiments indicated that temporal summation is employed in dim light to increase light-gathering integration times and enhance visual sensitivity during both night and day.
3) ERG responses to flickering lights during 60 mins of dark adaptation increased at a faster rate and greater extent after sunset compared to daytime. However, even brief, dim and intermittent light exposure strongly disrupted dark-adaptation processes.
Together, these findings demonstrate effective light adaptation to optimise vision over the large range of light intensities that these animals experience.
Collapse
Affiliation(s)
| | - Martin J. How
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Jan M. Hemmi
- School of Biological Sciences & UWA Oceans Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Currea JP, Frazer R, Wasserman SM, Theobald J. Acuity and summation strategies differ in vinegar and desert fruit flies. iScience 2022; 25:103637. [PMID: 35028530 PMCID: PMC8741510 DOI: 10.1016/j.isci.2021.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/16/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022] Open
Abstract
An animal's vision depends on terrain features that limit the amount and distribution of available light. Approximately 10,000 years ago, vinegar flies (Drosophila melanogaster) transitioned from a single plant specialist into a cosmopolitan generalist. Much earlier, desert flies (D. mojavensis) colonized the New World, specializing on rotting cactuses in southwest North America. Their desert habitats are characteristically flat, bright, and barren, implying environmental differences in light availability. Here, we demonstrate differences in eye morphology and visual motion perception under three ambient light levels. Reducing ambient light from 35 to 18 cd/m2 causes sensitivity loss in desert but not vinegar flies. However, at 3 cd/m2, desert flies sacrifice spatial and temporal acuity more severely than vinegar flies to maintain contrast sensitivity. These visual differences help vinegar flies navigate under variably lit habitats around the world and desert flies brave the harsh desert while accommodating their crepuscular lifestyle.
Collapse
Affiliation(s)
- John P. Currea
- Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Rachel Frazer
- Division of Neurobiology and Behavior, Columbia University, New York, NY 10027, USA
| | - Sara M. Wasserman
- Department of Neuroscience, Wellesley College, Wellesley, MA 02481, USA
| | - Jamie Theobald
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
10
|
Rigosi E, Warrant EJ, O’Carroll DC. A new, fluorescence-based method for visualizing the pseudopupil and assessing optical acuity in the dark compound eyes of honeybees and other insects. Sci Rep 2021; 11:21267. [PMID: 34711871 PMCID: PMC8553845 DOI: 10.1038/s41598-021-00407-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Recent interest in applying novel imaging techniques to infer optical resolution in compound eyes underscores the difficulty of obtaining direct measures of acuity. A widely used technique exploits the principal pseudopupil, a dark spot on the eye surface representing the ommatidial gaze direction and the number of detector units (ommatidia) viewing that gaze direction. However, dark-pigmented eyes, like those of honeybees, lack a visible pseudopupil. Attempts over almost a century to estimate optical acuity in this species are still debated. Here, we developed a method to visualize a stable, reliable pseudopupil by staining the photoreceptors with fluorescent dyes. We validated this method in several species and found it to outperform the dark pseudopupil for this purpose, even in pale eyes, allowing more precise location of the gaze centre. We then applied this method to estimate the sampling resolution in the frontal part of the eye of the honeybee forager. We found a broad frontal acute zone with interommatidial angles below 2° and a minimum interommatidial angle of 1.3°, a broader, sharper frontal acute zone than previously reported. Our study provides a new method to directly measure the sampling resolution in most compound eyes of living animals.
Collapse
Affiliation(s)
- Elisa Rigosi
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Eric J. Warrant
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - David C. O’Carroll
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
11
|
Feller KD, Sharkey CR, McDuffee-Altekruse A, Bracken-Grissom HD, Lord NP, Porter ML, Schweikert LE. Surf and turf vision: Patterns and predictors of visual acuity in compound eye evolution. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:101002. [PMID: 33191145 DOI: 10.1016/j.asd.2020.101002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Eyes have the flexibility to evolve to meet the ecological demands of their users. Relative to camera-type eyes, the fundamental limits of optical diffraction in arthropod compound eyes restrict the ability to resolve fine detail (visual acuity) to much lower degrees. We tested the capacity of several ecological factors to predict arthropod visual acuity, while simultaneously controlling for shared phylogenetic history. In this study, we have generated the most comprehensive review of compound eye visual acuity measurements to date, containing 385 species that span six of the major arthropod classes. An arthropod phylogeny, made custom to this database, was used to develop a phylogenetically-corrected generalized least squares (PGLS) linear model to evaluate four ecological factors predicted to underlie compound eye visual acuity: environmental light intensity, foraging strategy (predator vs. non-predator), horizontal structure of the visual scene, and environmental medium (air vs. water). To account for optical constraints on acuity related to animal size, body length was also included, but this did not show a significant effect in any of our models. Rather, the PGLS analysis revealed that the strongest predictors of compound eye acuity are described by a combination of environmental medium, foraging strategy, and environmental light intensity.
Collapse
Affiliation(s)
- Kathryn D Feller
- Union College, Department of Biological Sciences, 807 Union St., Schenectady, NY, 12308, USA.
| | - Camilla R Sharkey
- University of Minnesota, Ecology Evolution and Behavior Department, Saint Paul, MN, USA
| | | | - Heather D Bracken-Grissom
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Nathan P Lord
- Louisiana State University, Entomology Department, Baton Rouge, LA, USA
| | - Megan L Porter
- University of Hawai'i at Mānoa, Department of Biology, Honolulu, HI, USA
| | - Lorian E Schweikert
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| |
Collapse
|
12
|
Bagheri ZM, Donohue CG, Hemmi JM. Evidence of predictive selective attention in fiddler crabs during escape in the natural environment. ACTA ACUST UNITED AC 2020; 223:223/21/jeb234963. [PMID: 33168543 DOI: 10.1242/jeb.234963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022]
Abstract
Selective attention is of fundamental relevance to animals for performing a diversity of tasks such as mating, feeding, predation and avoiding predators. Within natural environments, prey animals are often exposed to multiple, simultaneous threats, which significantly complicates the decision-making process. However, selective attention is rarely studied in complex, natural environments or in the context of escape responses. We therefore asked how relatively simple animals integrate the information from multiple, concurrent threatening events. Do they identify and respond only to what they perceive as the most dangerous threat, or do they respond to multiple stimuli at the same time? Do simultaneous threats evoke an earlier or stronger response than single threats? We investigated these questions by conducting field experiments and compared escape responses of the fiddler crab Gelasimus dampieri when faced with either a single or two simultaneously approaching dummy predators. We used the dummies' approach trajectories to manipulate the threat level; a directly approaching dummy indicated higher risk while a tangentially approaching dummy that passed the crabs at a distance represented a lower risk. The crabs responded later, but on average more often, when approached more directly. However, when confronted with the two dummies simultaneously, the crabs responded as if approached only by the directly approaching dummy. This suggests that the crabs are able to predict how close the dummy's trajectory is to a collision course and selectively suppress their normally earlier response to the less dangerous dummy. We thus provide evidence of predictive selective attention within a natural environment.
Collapse
Affiliation(s)
- Zahra M Bagheri
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Callum G Donohue
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia.,The UWA Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
13
|
Brodrick EA, Roberts NW, Sumner-Rooney L, Schlepütz CM, How MJ. Light adaptation mechanisms in the eye of the fiddler crab Afruca tangeri. J Comp Neurol 2020; 529:616-634. [PMID: 32592497 DOI: 10.1002/cne.24973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/07/2022]
Abstract
A great diversity of adaptations is found among animals with compound eyes and even closely related taxa can show variation in their light-adaptation strategies. A prime example of a visual system evolved to function in specific light environments is the fiddler crab, used widely as a model to research aspects of crustacean vision and neural pathways. However, questions remain regarding how their eyes respond to the changes in brightness spanning many orders of magnitude, associated with their habitat and ecology. The fiddler crab Afruca tangeri forages at low tide on tropical and semi-tropical mudflats, under bright sunlight and on moonless nights, suggesting that their eyes undergo effective light adaptation. Using synchrotron X-ray tomography, light and transmission electron microscopy and in vivo ophthalmoscopy, we describe the ultrastructural changes in the eye between day and night. Dark adaptation at dusk triggered extensive widening of the rhabdoms and crystalline cone tips. This doubled the ommatidial acceptance angles and increased microvillar surface area for light capture in the rhabdom, theoretically boosting optical sensitivity 7.4 times. During daytime, only partial dark-adaptation was achieved and rhabdoms remained narrow, indicating strong circadian control on the process. Bright light did not evoke changes in screening pigment distributions, suggesting a structural inability to adapt rapidly to the light level fluctuations frequently experienced when entering their burrow to escape predators. This should enable fiddler crabs to shelter for several minutes without undergoing significant dark-adaptation, their vision remaining effectively adapted for predator detection when surfacing again in bright light.
Collapse
Affiliation(s)
- Emelie A Brodrick
- Ecology of Vision Laboratory, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Nicholas W Roberts
- Ecology of Vision Laboratory, School of Biological Sciences, University of Bristol, Bristol, UK
| | | | | | - Martin J How
- Ecology of Vision Laboratory, School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
14
|
Ciofini A, Yamahama Y, Mercatelli L, Hariyama T, Ugolini A. Specializations in the compound eye of Talitrus saltator (Crustacea, Amphipoda). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:711-723. [PMID: 32561972 DOI: 10.1007/s00359-020-01432-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
We investigated the eye regionalization in Talitrus saltator by morphological, electrophysiological and behavioural experiments. Each ommatidium possesses five radially arranged retinular cells producing a square fused rhabdom by R1-R4 cells; the smaller R5 exists between R1 and R4. The size of R5 rhabdomere is larger in the dorsal part and becomes smaller in the median and ventral parts of the eye. Spectral-sensitivity by electroretinograms were recorded from dorsal or ventral parts of the eye. The dorsal part possesses maxima at green and UV-blue region. The main response region in the ventral part is only from UV (390 nm) to blue (430 nm) decreasing at longer wavelengths. To evaluate the sandhoppers' celestial orientation, their eyes were painted black either in the dorsal or ventral part, under the natural sky or a blue filter with or without the vision of the sun. Sandhoppers with the dorsal region of the eyes painted and tested under the screened sun were more dispersed and their directions varied more than in other groups of individuals. Sandhoppers with this area of the eye obscured display considerable difficulties to head in a specific direction. This work suggests the existence of regional specializations in the eye of T. saltator.
Collapse
Affiliation(s)
- Alice Ciofini
- Department of Biology, University of Florence, Via Romana 17, 50125, Florence, Italy
| | - Yumi Yamahama
- Department of Biology, School of Medicine, Hamamatsu University, 1-20-1, Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Luca Mercatelli
- National Institute of Optics, CNR, Largo E. Fermi 6, 50125, Florence, Italy
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education and Research Center, School of Medicine, Hamamatsu University, 1-20-1, Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Alberto Ugolini
- Department of Biology, University of Florence, Via Romana 17, 50125, Florence, Italy.
| |
Collapse
|
15
|
Kingston ACN, Lucia RL, Havens LT, Cronin TW, Speiser DI. Vision in the snapping shrimp Alpheus heterochaelis. J Exp Biol 2019; 222:jeb.209015. [PMID: 31624099 DOI: 10.1242/jeb.209015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/07/2019] [Indexed: 11/20/2022]
Abstract
Snapping shrimp engage in heterospecific behavioral associations in which their partners, such as goby fish, help them avoid predators. It has been argued that snapping shrimp engage in these partnerships because their vision is impaired by their orbital hood, an extension of their carapace that covers their eyes. To examine this idea, we assessed the visual abilities of snapping shrimp. We found the big claw snapping shrimp, Alpheus heterochaelis, has spatial vision provided by compound eyes with reflecting superposition optics. These eyes view the world through an orbital hood that is 80-90% as transparent as seawater across visible wavelengths (400-700 nm). Through electroretinography and microspectrophotometry, we found the eyes of A. heterochaelis have a temporal sampling rate of >40 Hz and have at least two spectral classes of photoreceptors (λmax=500 and 519 nm). From the results of optomotor behavioral experiments, we estimate the eyes of A. heterochaelis provide spatial vision with an angular resolution of ∼8 deg. We conclude that snapping shrimp have competent visual systems, suggesting the function and evolution of their behavioral associations should be re-assessed and that these animals may communicate visually with conspecifics and heterospecific partners.
Collapse
Affiliation(s)
- Alexandra C N Kingston
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Rebecca L Lucia
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Luke T Havens
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Daniel I Speiser
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
16
|
Ramos AP, Gustafsson O, Labert N, Salecker I, Nilsson DE, Averof M. Analysis of the genetically tractable crustacean Parhyale hawaiensis reveals the organisation of a sensory system for low-resolution vision. BMC Biol 2019; 17:67. [PMID: 31416484 PMCID: PMC6694581 DOI: 10.1186/s12915-019-0676-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Arthropod eyes have diversified during evolution to serve multiple needs, such as finding mates, hunting prey and navigating in complex surroundings under varying light conditions. This diversity is reflected in the optical apparatus, photoreceptors and neural circuits that underpin vision. Yet our ability to genetically manipulate the visual system to investigate its function is largely limited to a single species, the fruit fly Drosophila melanogaster. Here, we describe the visual system of Parhyale hawaiensis, an amphipod crustacean for which we have established tailored genetic tools. RESULTS Adult Parhyale have apposition-type compound eyes made up of ~ 50 ommatidia. Each ommatidium contains four photoreceptor cells with large rhabdomeres (R1-4), expected to be sensitive to the polarisation of light, and one photoreceptor cell with a smaller rhabdomere (R5). The two types of photoreceptors express different opsins, belonging to families with distinct wavelength sensitivities. Using the cis-regulatory regions of opsin genes, we established transgenic reporters expressed in each photoreceptor cell type. Based on these reporters, we show that R1-4 and R5 photoreceptors extend axons to the first optic lobe neuropil, revealing striking differences compared with the photoreceptor projections found in related crustaceans and insects. Investigating visual function, we show that Parhyale have a positive phototactic response and are capable of adapting their eyes to different levels of light intensity. CONCLUSIONS We propose that the visual system of Parhyale serves low-resolution visual tasks, such as orientation and navigation, based on broad gradients of light intensity and polarisation. Optic lobe structure and photoreceptor projections point to significant divergence from the typical organisation found in other malacostracan crustaceans and insects, which could be associated with a shift to low-resolution vision. Our study provides the foundation for research in the visual system of this genetically tractable species.
Collapse
Affiliation(s)
- Ana Patricia Ramos
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 32 avenue Tony Garnier, 69007, Lyon, France.
- BMIC Graduate Programme, Université de Lyon, Lyon, France.
- Centre National de la Recherche Scientifique (CNRS), .
| | - Ola Gustafsson
- Lund Vision Group Department of Biology, University of Lund, Sölvegatan 35, 223 62, Lund, Sweden
| | - Nicolas Labert
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 32 avenue Tony Garnier, 69007, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Iris Salecker
- Visual Circuit Assembly Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Dan-Eric Nilsson
- Lund Vision Group Department of Biology, University of Lund, Sölvegatan 35, 223 62, Lund, Sweden
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 32 avenue Tony Garnier, 69007, Lyon, France.
- Centre National de la Recherche Scientifique (CNRS), .
| |
Collapse
|
17
|
Smithers SP, Roberts NW, How MJ. Parallel processing of polarization and intensity information in fiddler crab vision. SCIENCE ADVANCES 2019; 5:eaax3572. [PMID: 31457103 PMCID: PMC6703871 DOI: 10.1126/sciadv.aax3572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Many crustaceans are sensitive to the polarization of light and use this information for object-based visually guided behaviors. For these tasks, it is unknown whether polarization and intensity information are integrated into a single-contrast channel, whereby polarization directly contributes to perceived intensity, or whether they are processed separately and in parallel. Using a novel type of visual display that allowed polarization and intensity properties of visual stimuli to be adjusted independently and simultaneously, we conducted behavioral experiments with fiddler crabs to test which of these two models of visual processing occurs. We found that, for a loom detection task, fiddler crabs process polarization and intensity information independently and in parallel. The crab's response depended on whichever contrast was the most salient. By contributing independent measures of visual contrast, polarization and intensity provide a greater range of detectable contrast information for the receiver, increasing the chance of detecting a potential threat.
Collapse
|
18
|
Barnatan Y, Tomsic D, Sztarker J. Unidirectional Optomotor Responses and Eye Dominance in Two Species of Crabs. Front Physiol 2019; 10:586. [PMID: 31156462 PMCID: PMC6532708 DOI: 10.3389/fphys.2019.00586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Animals, from invertebrates to humans, stabilize the panoramic optic flow through compensatory movements of the eyes, the head or the whole body, a behavior known as optomotor response (OR). The same optic flow moved clockwise or anticlockwise elicits equivalent compensatory right or left turning movements, respectively. However, if stimulated monocularly, many animals show a unique effective direction of motion, i.e., a unidirectional OR. This phenomenon has been reported in various species from mammals to birds, reptiles, and amphibious, but among invertebrates, it has only been tested in flies, where the directional sensitivity is opposite to that found in vertebrates. Although OR has been extensively investigated in crabs, directional sensitivity has never been analyzed. Here, we present results of behavioral experiments aimed at exploring the directional sensitivity of the OR in two crab species belonging to different families: the varunid mud crab Neohelice granulata and the ocypode fiddler crab Uca uruguayensis. By using different conditions of visual perception (binocular, left or right monocular) and direction of flow field motion (clockwise, anticlockwise), we found in both species that in monocular conditions, OR is effectively displayed only with progressive (front-to-back) motion stimulation. Binocularly elicited responses were directional insensitive and significantly weaker than monocular responses. These results are coincident with those described in flies and suggest a commonality in the circuit underlying this behavior among arthropods. Additionally, we found the existence of a remarkable eye dominance for the OR, which is associated to the size of the larger claw. This is more evident in the fiddler crab where the difference between the two claws is huge.
Collapse
Affiliation(s)
- Yair Barnatan
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Tomsic
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular Dr. Héctor Maldonado, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Sztarker
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular Dr. Héctor Maldonado, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Steele EP, Laidre ME. Leaf me alone: visual constraints on the ecology of social group formation. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2662-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Ogawa Y, Ryan LA, Palavalli-Nettimi R, Seeger O, Hart NS, Narendra A. Spatial Resolving Power and Contrast Sensitivity Are Adapted for Ambient Light Conditions in Australian Myrmecia Ants. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
21
|
Bagheri ZM, Jessop AL, Kato S, Partridge JC, Shaw J, Ogawa Y, Hemmi JM. A new method for mapping spatial resolution in compound eyes suggests two visual streaks in fiddler crabs. J Exp Biol 2019; 223:jeb.210195. [DOI: 10.1242/jeb.210195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/01/2019] [Indexed: 11/20/2022]
Abstract
Visual systems play a vital role in guiding the behaviour of animals. Understanding the visual information animals are able to acquire is therefore key to understanding their visually-mediated decision making. Compound eyes, the dominant eye type in arthropods, are inherently low-resolution structures. Their ability to resolve spatial detail depends on sampling resolution (interommatidial angle) and the quality of ommatidial optics. Current techniques for estimating interommatidial angles are difficult, and generally require in vivo measurements. Here, we present a new method for estimating interommatidial angles based on the detailed analysis of 3D Micro-CT images of fixed samples. Using custom-made MATLAB software we determine the optical axes of individual ommatidia and project these axes into the three-dimensional space around the animal. The combined viewing directions of all ommatidia, estimated from geometrical optics, allow us to estimate interommatidial angles and map the animal's sampling resolution across its entire visual field. The resulting topographic representations of visual acuity match very closely the previously published data obtained from both fiddler and grapsid crabs. However, the new method provides additional detail that was not previously detectable and reveals that fiddler crabs, rather than having a single horizontal visual streak as is common in flat world inhabitants, likely have two parallel streaks located just above and below the visual horizon. A key advantage of our approach is that it can be used on appropriately preserved specimens allowing the technique to be applied to animals such as deep-sea crustaceans that are inaccessible or unsuitable for in vivo approaches.
Collapse
Affiliation(s)
- Zahra M. Bagheri
- School of Biological Sciences, the University of Western Australia, Perth, Australia
| | - Anna-Lee Jessop
- School of Biological Sciences, the University of Western Australia, Perth, Australia
| | - Susumu Kato
- School of Biological Sciences, the University of Western Australia, Perth, Australia
| | - Julian C. Partridge
- The UWA Oceans Institute, the University of Western Australia, Perth, Australia
| | - Jeremy Shaw
- Centre for Microscopy, Characterisation and Analysis, the University of Western Australia, Perth, Australia
| | - Yuri Ogawa
- School of Biological Sciences, the University of Western Australia, Perth, Australia
| | - Jan M. Hemmi
- School of Biological Sciences, the University of Western Australia, Perth, Australia
- The UWA Oceans Institute, the University of Western Australia, Perth, Australia
| |
Collapse
|
22
|
Binocular Neuronal Processing of Object Motion in an Arthropod. J Neurosci 2018; 38:6933-6948. [PMID: 30012687 DOI: 10.1523/jneurosci.3641-17.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/02/2018] [Accepted: 06/05/2018] [Indexed: 11/21/2022] Open
Abstract
Animals use binocular information to guide many behaviors. In highly visual arthropods, complex binocular computations involved in processing panoramic optic flow generated during self-motion occur in the optic neuropils. However, the extent to which binocular processing of object motion occurs in these neuropils remains unknown. We investigated this in a crab, where the distance between the eyes and the extensive overlapping of their visual fields advocate for the use of binocular processing. By performing in vivo intracellular recordings from the lobula (third optic neuropil) of male crabs, we assessed responses of object-motion-sensitive neurons to ipsilateral or contralateral moving objects under binocular and monocular conditions. Most recorded neurons responded to stimuli seen independently with either eye, proving that each lobula receives profuse visual information from both eyes. The contribution of each eye to the binocular response varies among neurons, from those receiving comparable inputs from both eyes to those with mainly ipsilateral or contralateral components, some including contralateral inhibition. Electrophysiological profiles indicated that a similar number of neurons were recorded from their input or their output side. In monocular conditions, the first group showed shorter response delays to ipsilateral than to contralateral stimulation, whereas the second group showed the opposite. These results fit well with neurons conveying centripetal and centrifugal information from and toward the lobula, respectively. Intracellular and massive stainings provided anatomical support for this and for direct connections between the two lobulae, but simultaneous recordings failed to reveal such connections. Simplified model circuits of interocular connections are discussed.SIGNIFICANCE STATEMENT Most active animals became equipped with two eyes, which contributes to functions like depth perception, objects spatial location, and motion processing, all used for guiding behaviors. In visually active arthropods, binocular neural processing of the panoramic optic flow generated during self-motion happens already in the optic neuropils. However, whether binocular processing of single-object motion occurs in these neuropils remained unknown. We investigated this in a crab, where motion-sensitive neurons from the lobula can be recorded in the intact animal. Here we demonstrate that different classes of neurons from the lobula compute binocular information. Our results provide new insight into where and how the visual information acquired by the two eyes is first combined in the brain of an arthropod.
Collapse
|
23
|
Tomsic D, Sztarker J, Berón de Astrada M, Oliva D, Lanza E. The predator and prey behaviors of crabs: from ecology to neural adaptations. J Exp Biol 2017; 220:2318-2327. [DOI: 10.1242/jeb.143222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Predator avoidance and prey capture are among the most vital of animal behaviors. They require fast reactions controlled by comparatively straightforward neural circuits often containing giant neurons, which facilitates their study with electrophysiological techniques. Naturally occurring avoidance behaviors, in particular, can be easily and reliably evoked in the laboratory, enabling their neurophysiological investigation. Studies in the laboratory alone, however, can lead to a biased interpretation of an animal's behavior in its natural environment. In this Review, we describe current knowledge – acquired through both laboratory and field studies – on the visually guided escape behavior of the crab Neohelice granulata. Analyses of the behavioral responses to visual stimuli in the laboratory have revealed the main characteristics of the crab's performance, such as the continuous regulation of the speed and direction of the escape run, or the enduring changes in the strength of escape induced by learning and memory. This work, in combination with neuroanatomical and electrophysiological studies, has allowed the identification of various giant neurons, the activity of which reflects most essential aspects of the crabs' avoidance performance. In addition, behavioral analyses performed in the natural environment reveal a more complex picture: crabs make use of much more information than is usually available in laboratory studies. Moreover, field studies have led to the discovery of a robust visually guided chasing behavior in Neohelice. Here, we describe similarities and differences in the results obtained between the field and the laboratory, discuss the sources of any differences and highlight the importance of combining the two approaches.
Collapse
Affiliation(s)
- Daniel Tomsic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Julieta Sztarker
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Martín Berón de Astrada
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Damián Oliva
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, CP1878, CONICET, Argentina
| | - Estela Lanza
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| |
Collapse
|
24
|
Douglass JK, Wehling MF. Rapid mapping of compound eye visual sampling parameters with FACETS, a highly automated wide-field goniometer. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:839-851. [PMID: 27655343 DOI: 10.1007/s00359-016-1119-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 11/29/2022]
Abstract
A highly automated goniometer instrument (called FACETS) has been developed to facilitate rapid mapping of compound eye parameters for investigating regional visual field specializations. The instrument demonstrates the feasibility of analyzing the complete field of view of an insect eye in a fraction of the time required if using non-motorized, non-computerized methods. Faster eye mapping makes it practical for the first time to employ sample sizes appropriate for testing hypotheses about the visual significance of interspecific differences in regional specializations. Example maps of facet sizes are presented from four dipteran insects representing the Asilidae, Calliphoridae, and Stratiomyidae. These maps provide the first quantitative documentation of the frontal enlarged-facet zones (EFZs) that typify asilid eyes, which, together with the EFZs in male Calliphoridae, are likely to be correlated with high-spatial-resolution acute zones. The presence of EFZs contrasts sharply with the almost homogeneous distribution of facet sizes in the stratiomyid. Moreover, the shapes of EFZs differ among species, suggesting functional specializations that may reflect differences in visual ecology. Surveys of this nature can help identify species that should be targeted for additional studies, which will elucidate fundamental principles and constraints that govern visual field specializations and their evolution.
Collapse
Affiliation(s)
- John K Douglass
- Eglin Air Force Base, 101 W. Eglin Blvd., Eglin AFB, FL, 32542, USA.
| | - Martin F Wehling
- Eglin Air Force Base, 101 W. Eglin Blvd., Eglin AFB, FL, 32542, USA
| |
Collapse
|
25
|
Vannier J, Schoenemann B, Gillot T, Charbonnier S, Clarkson E. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nat Commun 2016; 7:10320. [PMID: 26785293 PMCID: PMC4735654 DOI: 10.1038/ncomms10320] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/30/2015] [Indexed: 11/29/2022] Open
Abstract
Vision has revolutionized the way animals explore their environment and interact with each other and rapidly became a major driving force in animal evolution. However, direct evidence of how ancient animals could perceive their environment is extremely difficult to obtain because internal eye structures are almost never fossilized. Here, we reconstruct with unprecedented resolution the three-dimensional structure of the huge compound eye of a 160-million-year-old thylacocephalan arthropod from the La Voulte exceptional fossil biota in SE France. This arthropod had about 18,000 lenses on each eye, which is a record among extinct and extant arthropods and is surpassed only by modern dragonflies. Combined information about its eyes, internal organs and gut contents obtained by X-ray microtomography lead to the conclusion that this thylacocephalan arthropod was a visual hunter probably adapted to illuminated environments, thus contradicting the hypothesis that La Voulte was a deep-water environment.
Collapse
Affiliation(s)
- Jean Vannier
- Université Lyon 1, UMR 5276 du CNRS, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Bâtiment GEODE, 2, rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Brigitte Schoenemann
- Department of Neurobiology/Animal Physiology, Biocenter Cologne, Institute of Zoology, University of Cologne, Zülpicherstrasse 47b, D-50674 Köln, Germany
- Institute of Biology Education (Zoology), University of Cologne, Herbert Lewinstrasse 2, D-50931 Köln, Germany
| | - Thomas Gillot
- Université Lyon 1, UMR 5276 du CNRS, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Bâtiment GEODE, 2, rue Raphaël Dubois, 69622 Villeurbanne, France
- Centre de Géosciences, MINES-ParisTech, 33, rue Saint Honoré, 77300 Fontainebleau, France
| | - Sylvain Charbonnier
- Muséum National d'Histoire Naturelle, Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités-MNHN, CNRS, UPMC-Paris6, Case postale 38, 57 rue Cuvier, F-75005 Paris, France
| | - Euan Clarkson
- University of Edinburgh, School of Geosciences, King's Buildings, West Mains Road, Edinburgh EH9 3JW, UK
| |
Collapse
|
26
|
Bergman M, Rutowski RL. Eye morphology and visual acuity in the pipevine swallowtail (Battus philenor) studied with a new method of measuring interommatidial angles. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Bergman
- School of Life Sciences; Arizona State University; Tempe AZ 85287-4501 USA
- Department of Biology; Lund University; Sölvegatan 35 SE-223 62 Lund Sweden
| | - Ronald L. Rutowski
- School of Life Sciences; Arizona State University; Tempe AZ 85287-4501 USA
| |
Collapse
|
27
|
Stürzl W, Grixa I, Mair E, Narendra A, Zeil J. Three-dimensional models of natural environments and the mapping of navigational information. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:563-84. [DOI: 10.1007/s00359-015-1002-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 11/24/2022]
|
28
|
Hemmi JM, Tomsic D. Differences in the escape response of a grapsid crab in the field and in the laboratory. J Exp Biol 2015; 218:3499-507. [DOI: 10.1242/jeb.129072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/03/2015] [Indexed: 11/20/2022]
Abstract
Escape behaviours of prey animals are frequently used to study the neural control of behaviour. Escape responses are robust, fast, and can be reliably evoked under both field and laboratory conditions. Many escape responses are not as simple as previously suggested, however, and are often modulated by a range of contextual factors. To date it has been unclear to what extent behaviours studied in controlled laboratory experiments are actually representative of the behaviours that occur under more natural conditions. Here we have used the model species, Neohelice granulata, a grapsid crab, to show that there are significant differences between the crabs' escape responses in the field compared to those previously documented in laboratory experiments. These differences are consistent with contextual adjustments such as the availability of a refuge and have clear consequences for understanding the crabs' neural control of behaviour. Furthermore, the methodology used in this study mirrors the methodology previously used in fiddler crab research, allowing us to show that the previously documented differences in escape responses between these grapsid species are real and substantial. Neohelice's responses are delayed and more controlled. Overall, the results highlight the adaptability and flexibility of escape behaviours and provide further evidence that the neural control of behaviour needs to be address in both the laboratory and field context.
Collapse
Affiliation(s)
- Jan M. Hemmi
- School of Animal Biology & Oceans Institute, University of Western Australia, 35 Stirling Hwy Crawley WA 6009, Australia
| | - Daniel Tomsic
- Depto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, Argentina
| |
Collapse
|
29
|
Organization of columnar inputs in the third optic ganglion of a highly visual crab. ACTA ACUST UNITED AC 2014; 108:61-70. [PMID: 24929118 DOI: 10.1016/j.jphysparis.2014.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/24/2022]
Abstract
Motion information provides essential cues for a wide variety of animal behaviors such as mate, prey, or predator detection. In decapod crustaceans and pterygote insects, visual codification of object motion is associated with visual processing in the third optic neuropile, the lobula. In this neuropile, tangential neurons collect motion information from small field columnar neurons and relay it to the midbrain where behavioral responses would be finally shaped. In highly ordered structures, detailed knowledge of the neuroanatomy can give insight into their function. In spite of the relevance of the lobula in processing motion information, studies on the neuroarchitecture of this neuropile are scant. Here, by applying dextran-conjugated dyes in the second optic neuropile (the medulla) of the crab Neohelice, we mass stained the columnar neurons that convey visual information into the lobula. We found that the arborizations of these afferent columnar neurons lie at four main lobula depths. A detailed examination of serial optical sections of the lobula revealed that these input strata are composed of different number of substrata and that the strata are thicker in the centre of the neuropile. Finally, by staining the different lobula layers composed of tangential processes we combined the present characterization of lobula input strata with the previous characterization of the neuroarchitecture of the crab's lobula based on reduced-silver preparations. We found that the third lobula input stratum overlaps with the dendrites of lobula giant tangential neurons. This suggests that columnar neurons projecting from the medulla can directly provide visual input to the crab's lobula giant neurons.
Collapse
|
30
|
Alkaladi A, Zeil J. Functional anatomy of the fiddler crab compound eye (Uca vomeris: Ocypodidae, Brachyura, Decapoda). J Comp Neurol 2014; 522:1264-83. [DOI: 10.1002/cne.23472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Ali Alkaladi
- ARC Centre of Excellence in Vision Science, Research School of Biology; Australian National University; Canberra Australia
| | - Jochen Zeil
- ARC Centre of Excellence in Vision Science, Research School of Biology; Australian National University; Canberra Australia
| |
Collapse
|
31
|
|
32
|
How MJ, Christy J, Roberts NW, Marshall NJ. Null point of discrimination in crustacean polarisation vision. J Exp Biol 2014; 217:2462-7. [DOI: 10.1242/jeb.103457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The polarisation of light is used by many species of cephalopods and crustaceans to discriminate objects or to communicate. Most visual systems with this ability, such as that of the fiddler crab, include receptors with photopigments that are oriented horizontally and vertically relative to the outside world. Photoreceptors in such an orthogonal array are maximally sensitive to polarised light with the same fixed e-vector orientation. Using opponent neural connections, this two-channel system may produce a single value of polarisation contrast and, consequently, it may suffer from null points of discrimination. Stomatopod crustaceans use a different system for polarisation vision, comprising at least four types of polarisation-sensitive photoreceptor arranged at 0°, 45°, 90° and 135° relative to each other, in conjunction with extensive rotational eye movements. This anatomical arrangement should not suffer from equivalent null points of discrimination. To test whether these two systems were vulnerable to null points, we presented the fiddler crab Uca heteropleura and the stomatopod Haptosquilla trispinosa with polarised looming stimuli on a modified LCD monitor. The fiddler crab was less sensitive to differences in the degree of polarised light when the e-vector was at -45°, than when the e-vector was horizontal. In comparison, stomatopods showed no difference in sensitivity between the two stimulus types. The results suggest that fiddler crabs suffer from a null point of sensitivity, while stomatopods do not.
Collapse
Affiliation(s)
| | - John Christy
- Smithsonian Tropical Research Institute, Republic of Panama
| | | | | |
Collapse
|
33
|
Araujo SBL, Rorato AC, Perez DM, Pie MR. A spatially explicit model of synchronization in fiddler crab waving displays. PLoS One 2013; 8:e57362. [PMID: 23483905 PMCID: PMC3590187 DOI: 10.1371/journal.pone.0057362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 01/24/2013] [Indexed: 11/19/2022] Open
Abstract
Fiddler crabs (Uca spp., Decapoda: Ocypodidae) are commonly found forming large aggregations in intertidal zones, where they perform rhythmic waving displays with their greatly enlarged claws. While performing these displays, fiddler crabs often synchronize their behavior with neighboring males, forming the only known synchronized visual courtship displays involving reflected light and moving body parts. Despite being one of the most conspicuous aspects of fiddler crab behavior, little is known about the mechanisms underlying synchronization of male displays. In this study we develop a spatially explicit model of fiddler crab waving displays using coupled logistic map equations. We explored two alternative models in which males either direct their attention at random angles or preferentially toward neighbors. Our results indicate that synchronization is possible over a fairly large region of parameter space. Moreover, our model was capable of generating local synchronization neighborhoods, as commonly observed in fiddler crabs under natural conditions.
Collapse
Affiliation(s)
- Sabrina Borges Lino Araujo
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | | | | | | |
Collapse
|
34
|
Systematic variations in microvilli banding patterns along fiddler crab rhabdoms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 199:99-113. [DOI: 10.1007/s00359-012-0771-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 11/25/2022]
|
35
|
How MJ, Pignatelli V, Temple SE, Marshall NJ, Hemmi JM. High e-vector acuity in the polarisation vision system of the fiddler crab Uca vomeris. J Exp Biol 2012; 215:2128-34. [DOI: 10.1242/jeb.068544] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Polarisation vision is used by a variety of species in many important tasks, including navigation and orientation (e.g. desert ant), communication and signalling (e.g. stomatopod crustaceans), and as a possible substitute for colour vision (e.g. cephalopod molluscs). Fiddler crabs are thought to possess the anatomical structures necessary to detect polarised light, and occupy environments rich in polarisation cues. Yet little is known about the capabilities of their polarisation sense. A modified polarisation-only liquid crystal display and a spherical rotating treadmill were combined to test the responses of fiddler crabs to moving polarisation stimuli. The species Uca vomeris was found to be highly sensitive to polarised light and detected stimuli differing in e-vector angle by as little as 3.2 deg. This represents the most acute behavioural sensitivity to polarised light yet measured for a crustacean. The occurrence of null points in their discrimination curve indicates that this species employs an orthogonal (horizontal/vertical) receptor array for the detection of polarised light.
Collapse
Affiliation(s)
- Martin J. How
- Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Vincenzo Pignatelli
- Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shelby E. Temple
- School of Biomedical Science, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| | - N. Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jan M. Hemmi
- ARC Centre of Excellence in Vision Science and Research School of Biology, The Australian National University, ACT 0200, Australia
- School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
36
|
Hemmi JM, Tomsic D. The neuroethology of escape in crabs: from sensory ecology to neurons and back. Curr Opin Neurobiol 2012; 22:194-200. [DOI: 10.1016/j.conb.2011.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/17/2011] [Accepted: 11/27/2011] [Indexed: 11/30/2022]
|
37
|
Raderschall CA, Magrath RD, Hemmi JM. Habituation under natural conditions: model predators are distinguished by approach direction. ACTA ACUST UNITED AC 2012; 214:4209-16. [PMID: 22116764 DOI: 10.1242/jeb.061614] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Habituation is an active process that allows animals to learn to identify repeated, harmless events, and so could help individuals deal with the trade-off between reducing the risk of predation and minimizing escape costs. Safe habituation requires an accurate distinction between dangerous and harmless events, but in natural environments such an assessment is challenging because sensory information is often noisy and limited. What, then, comprises the information animals use to recognize objects that they have previously learned to be harmless? We tested whether the fiddler crab Uca vomeris distinguishes objects purely by their sensory signature or whether identification also involves more complex attributes such as the direction from which an object approaches. We found that crabs habituated their escape responses after repeated presentations of a dummy predator consistently approaching from the same compass direction. Females habituated both movement towards the burrow and descent into the burrow, whereas males only habituated descent into the burrow. The crabs were more likely to respond again when a physically identical dummy approached them from a new compass direction. The crabs distinguished between the two dummies even though both dummies were visible for the entire duration of the experiment and there was no difference in the timing of the dummies' movements. Thus, the position or approach direction of a dummy encodes important information that allows animals to identify an event and habituate to it. These results argue against the traditional notion that habituation is a simple, non-associative learning process, and instead suggest that habituation is very selective and uses information to distinguish between objects that is not available from the sensory signature of the object itself.
Collapse
Affiliation(s)
- Chloé A Raderschall
- ARC Centre of Excellence in Vision Science, Centre of Visual Sciences, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
38
|
Smolka J, Raderschall CA, Hemmi JM. Flicker is part of a multi-cue response criterion in fiddler crab predator avoidance. J Exp Biol 2012; 216:1219-24. [DOI: 10.1242/jeb.076133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Predator avoidance behaviour costs time, energy and opportunities, and prey animals need to balance these costs with the risk of predation. The necessary decisions to strike this balance are often based on information that is inherently imperfect and incomplete due to the limited sensory capabilities of prey animals. Our knowledge, however, about how prey animals solve the challenging task of restricting their responses to the most dangerous stimuli in their environment, is very limited. Using dummy predators, we examined the contribution of visual flicker to the predator avoidance response of the fiddler crab Uca vomeris. The results illustrate that crabs let purely black or purely white dummies approach significantly closer than black-and-white flickering dummies. We show that this effect complements other factors that modulate escape timing such as retinal speed and the crab's distance to its burrow, and is therefore not exclusively due to an earlier detection of the flickering signal. By combining and adjusting a range of imperfect response criteria in a way that relates to actual threats in their natural environment, prey animals may be able to measure risk and adjust their responses more efficiently - even under difficult or noisy sensory conditions.
Collapse
|
39
|
Berón de Astrada M, Bengochea M, Medan V, Tomsic D. Regionalization in the eye of the grapsid crab Neohelice granulata (=Chasmagnathus granulatus): variation of resolution and facet diameters. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 198:173-80. [DOI: 10.1007/s00359-011-0697-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 12/01/2022]
|
40
|
Smolka J, Zeil J, Hemmi JM. Natural visual cues eliciting predator avoidance in fiddler crabs. Proc Biol Sci 2011; 278:3584-92. [PMID: 21490009 DOI: 10.1098/rspb.2010.2746] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To efficiently provide an animal with relevant information, the design of its visual system should reflect the distribution of natural signals and the animal's tasks. In many behavioural contexts, however, we know comparatively little about the moment-to-moment information-processing challenges animals face in their daily lives. In predator avoidance, for instance, we lack an accurate description of the natural signal stream and its value for risk assessment throughout the prey's defensive behaviour. We characterized the visual signals generated by real, potentially predatory events by video-recording bird approaches towards an Uca vomeris colony. Using four synchronized cameras allowed us to simultaneously monitor predator avoidance responses of crabs. We reconstructed the signals generated by dangerous and non-dangerous flying animals, identified the cues that triggered escape responses and compared them with those triggering responses to dummy predators. Fiddler crabs responded to a combination of multiple visual cues (including retinal speed, elevation and visual flicker) that reflect the visual signatures of distinct bird and insect behaviours. This allowed crabs to discriminate between dangerous and non-dangerous events. The results demonstrate the importance of measuring natural sensory signatures of biologically relevant events in order to understand biological information processing and its effects on behavioural organization.
Collapse
Affiliation(s)
- Jochen Smolka
- ARC Centre of Excellence in Vision Science and Centre for Visual Sciences, Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | |
Collapse
|
41
|
Rajkumar P, Rollmann SM, Cook TA, Layne JE. Molecular evidence for color discrimination in the Atlantic sand fiddler crab, Uca pugilator. ACTA ACUST UNITED AC 2011; 213:4240-8. [PMID: 21113005 DOI: 10.1242/jeb.051011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fiddler crabs are intertidal brachyuran crabs that belong to the genus Uca. Approximately 97 different species have been identified, and several of these live sympatrically. Many have species-specific body color patterns that may act as signals for intra- and interspecific communication. To understand the behavioral and ecological role of this coloration we must know whether fiddler crabs have the physiological capacity to perceive color cues. Using a molecular approach, we identified the opsin-encoding genes and determined their expression patterns across the eye of the sand fiddler crab, Uca pugilator. We identified three different opsin-encoding genes (UpRh1, UpRh2 and UpRh3). UpRh1 and UpRh2 are highly related and have similarities in their amino acid sequences to other arthropod long- and medium-wavelength-sensitive opsins, whereas UpRh3 is similar to other arthropod UV-sensitive opsins. All three opsins are expressed in each ommatidium, in an opsin-specific pattern. UpRh3 is present only in the R8 photoreceptor cell, whereas UpRh1 and UpRh2 are present in the R1-7 cells, with UpRh1 expression restricted to five cells and UpRh2 expression present in three cells. Thus, one photoreceptor in every ommatidium expresses both UpRh1 and UpRh2, providing another example of sensory receptor coexpression. These results show that U. pugilator has the basic molecular machinery for color perception, perhaps even trichromatic vision.
Collapse
Affiliation(s)
- Premraj Rajkumar
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | | | | | |
Collapse
|
42
|
Schwarz S, Narendra A, Zeil J. The properties of the visual system in the Australian desert ant Melophorus bagoti. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:128-134. [PMID: 21044895 DOI: 10.1016/j.asd.2010.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 05/30/2023]
Abstract
The Australian desert ant Melophorus bagoti shows remarkable visual navigational skills relying on visual rather than on chemical cues during their foraging trips. M. bagoti ants travel individually through a visually cluttered environment guided by landmarks as well as by path integration. An examination of their visual system is hence of special interest and we address this here. Workers exhibit distinct size polymorphism and their eye and ocelli size increases with head size. The ants possess typical apposition eyes with about 420-590 ommatidia per eye, a horizontal visual field of approximately 150° and facet lens diameters between 8 and 19 μm, depending on body size, with frontal facets being largest. The average interommatidial angle Δϕ is 3.7°, the average acceptance angle of the rhabdom Δρ(rh) is 2.9°, with average rhabdom diameter of 1.6 μm and the average lens blur at half-width Δρ(l) is 2.3°. With a Δρ(rh)/Δϕ ratio of much less than 2, the eyes undersample the visual scene but provide high contrast, and surprising detail of the landmark panorama that has been shown to be used for navigation.
Collapse
Affiliation(s)
- Sebastian Schwarz
- Department of Brain, Behaviour and Evolution, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | |
Collapse
|
43
|
Kim TW, Kim TK, Choe JC. Compensation for homing errors by using courtship structures as visual landmarks. Behav Ecol 2010. [DOI: 10.1093/beheco/arq067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
44
|
Hemmi JM, Pfeil A. A multi-stage anti-predator response increases information on predation risk. J Exp Biol 2010; 213:1484-9. [DOI: 10.1242/jeb.039925] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Optimal escape theory generally assumes that animals have accurate information about predator distance and direction of approach. To what degree such information is available depends not only on the prey's sensory capabilities but also on its behaviour. The structure of behaviour can strongly constrain or support the gathering of information. The ability of animals to collect and process information is therefore an important factor shaping predator avoidance strategies. Fiddler crabs, like many prey animals, escape predators in a multi-step sequence. In their initial response, they do not have accurate information about a predator's distance and approach trajectory and are forced to base their response decision on incomplete information that is not strictly correlated with risk. We show here that fiddler crabs gather qualitatively different visual information during successive stages of their escape sequence. This suggests that multi-stage anti-predator behaviours serve not only to successively reduce risk but also to increase the quality of information with regards to the actual risk. There are countless reasons why prey animals are not able to accurately assess risk. By concentrating on sensory limitations, we can quantify such information deficits and investigate how improving risk assessment helps prey optimise the balance between predation risk and escape costs.
Collapse
Affiliation(s)
- Jan M. Hemmi
- ARC Centre of Excellence in Vision Science and Centre for Visual Sciences, Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Andreas Pfeil
- Department of Computer Science, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
45
|
Hemmi JM, Merkle T. High stimulus specificity characterizes anti-predator habituation under natural conditions. Proc Biol Sci 2009; 276:4381-8. [PMID: 19776070 DOI: 10.1098/rspb.2009.1452] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Habituation is one of the most fundamental learning processes that allow animals to adapt to dynamic environments. It is ubiquitous and often thought of as a simple form of non-associative learning. Very little is known, though, about the rules that govern habituation and their significance under natural conditions. Questions about how animals incorporate habituation into their daily behaviour and how they can assure only to habituate to non-relevant stimuli are still unanswered. Animals under threat of predation should be particularly selective about which stimuli they habituate to, since ignoring a real threat could be fatal. In this study, we tested the response of fiddler crabs, Uca vomeris, to repeatedly approaching dummy predators to find out whether these animals habituate to potential predators and to test the selectivity of the habituation process. The crabs habituated to model predators, even though they were confronted with real predators during the same habituation process. They showed remarkable selectivity towards the stimulus: a simple change in the approach distance of the stimulus led to a recovery in their responses. The results strongly indicate that in the context of predator avoidance, habituation under natural conditions is highly selective and a stimulus is not defined just by its current sensory signature, but also its spatio-temporal history.
Collapse
Affiliation(s)
- Jan M Hemmi
- ARC Centre of Excellence in Vision Science, The Australian National University, Building 46, Canberra ACT 2601, Australia.
| | | |
Collapse
|