1
|
Shrestha M, Dyer AG, Dorin A, Ren ZX, Burd M. Rewardlessness in orchids: how frequent and how rewardless? PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:555-561. [PMID: 32181557 DOI: 10.1111/plb.13113] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/09/2020] [Indexed: 05/26/2023]
Abstract
About one-third of orchid species are thought to offer no floral reward and therefore attract pollinators through deception. Statements of this idea are common in the botanical literature, but the empirical basis of the estimate is rarely mentioned. We traced citation pathways for the one-third estimate in a sample of the literature and found that the paths lead to empirical foundations that are surprisingly narrow. Moreover, recent measurements have detected minute quantities of sugar available to insect visitors in some orchids thought to be rewardless, raising the possibility of a pollination strategy that is largely deceitful but different to absolute rewardlessness. The orchids are a well-studied group and there is no doubt that rewardlessness is common in the family. However, greater empirical effort is needed to verify rewardlessness in orchids and to explore geographic and environmental variation in the proportion of rewardless species.
Collapse
Affiliation(s)
- M Shrestha
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
- Faculty of Information Technology, Monash University, Melbourne, Victoria, Australia
| | - A G Dyer
- School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
| | - A Dorin
- Faculty of Information Technology, Monash University, Melbourne, Victoria, Australia
| | - Z-X Ren
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - M Burd
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Shrestha M, Garcia JE, Burd M, Dyer AG. Australian native flower colours: Does nectar reward drive bee pollinator flower preferences? PLoS One 2020; 15:e0226469. [PMID: 32525873 PMCID: PMC7289428 DOI: 10.1371/journal.pone.0226469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/18/2020] [Indexed: 11/18/2022] Open
Abstract
Colour is an important signal that flowering plants use to attract insect pollinators like bees. Previous research in Germany has shown that nectar volume is higher for flower colours that are innately preferred by European bees, suggesting an important link between colour signals, bee preferences and floral rewards. In Australia, flower colour signals have evolved in parallel to the Northern hemisphere to enable easy discrimination and detection by the phylogenetically ancient trichromatic visual system of bees, and native Australian bees also possess similar innate colour preferences to European bees. We measured 59 spectral signatures from flowers present at two preserved native habitats in South Eastern Australia and tested whether there were any significant differences in the frequency of flowers presenting higher nectar rewards depending upon the colour category of the flower signals, as perceived by bees. We also tested if there was a significant correlation between chromatic contrast and the frequency of flowers presenting higher nectar rewards. For the entire sample, and for subsets excluding species in the Asteraceae and Orchidaceae, we found no significant difference among colour categories in the frequency of high nectar reward. This suggests that whilst such relationships between flower colour signals and nectar volume rewards have been observed at a field site in Germany, the effect is likely to be specific at a community level rather than a broad general principle that has resulted in the common signalling of bee flower colours around the world.
Collapse
Affiliation(s)
- Mani Shrestha
- Bio-Inspired Digital Lab (BIDS-Lab), Schools of Media and Communication, RMIT University, Melbourne, Australia
| | - Jair E. Garcia
- Bio-Inspired Digital Lab (BIDS-Lab), Schools of Media and Communication, RMIT University, Melbourne, Australia
| | - Martin Burd
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Adrian G. Dyer
- Bio-Inspired Digital Lab (BIDS-Lab), Schools of Media and Communication, RMIT University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
3
|
Van Nest BN, Wagner AE, Hobbs CN, Moore D. Dance floor clustering: food-anticipatory behavior in persistent and reticent honey bee foragers. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2202-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Abstract
An individual’s choices are shaped by its experience, a fundamental property of behavior important to understanding complex processes. Learning and memory are observed across many taxa and can drive behaviors, including foraging behavior. To explore the conditions under which memory provides an advantage, we present a continuous-space, continuous-time model of animal movement that incorporates learning and memory. Using simulation models, we evaluate the benefit memory provides across several types of landscapes with variable-quality resources and compare the memory model within a nested hierarchy of simpler models (behavioral switching and random walk). We find that memory almost always leads to improved foraging success, but that this effect is most marked in landscapes containing sparse, contiguous patches of high-value resources that regenerate relatively fast and are located in an otherwise devoid landscape. In these cases, there is a large payoff for finding a resource patch, due to size, value, or locational difficulty. While memory-informed search is difficult to differentiate from other factors using solely movement data, our results suggest that disproportionate spatial use of higher value areas, higher consumption rates, and consumption variability all point to memory influencing the movement direction of animals in certain ecosystems.
Collapse
|
5
|
Marter K, Grauel MK, Lewa C, Morgenstern L, Buckemüller C, Heufelder K, Ganz M, Eisenhardt D. Duration of the unconditioned stimulus in appetitive conditioning of honeybees differentially impacts learning, long-term memory strength, and the underlying protein synthesis. ACTA ACUST UNITED AC 2014; 21:676-85. [PMID: 25403456 PMCID: PMC4236413 DOI: 10.1101/lm.035600.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study examines the role of stimulus duration in learning and memory formation of honeybees (Apis mellifera). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS becomes a predictor for the US eliciting a conditioned response (CR). Here we study the role of US duration in classical conditioning by examining honeybees conditioned with different US durations. We quantify the CR during acquisition, memory retention, and extinction of the early long-term memory (eLTM), and examine the molecular mechanisms of eLTM by interfering with protein synthesis. We find that the US duration affects neither the probability nor the strength of the CR during acquisition, eLTM retention, and extinction 24 h after conditioning. However, we find that the resistance to extinction 24 h after conditioning is susceptible to protein synthesis inhibition depending on the US duration. We conclude that the US duration does not affect the predictability of the US but modulates the protein synthesis underlying the eLTM's strength. Thus, the US duration differentially impacts learning, eLTM strength, and its underlying protein synthesis.
Collapse
Affiliation(s)
- Kathrin Marter
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - M Katharina Grauel
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Carmen Lewa
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Laura Morgenstern
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Christina Buckemüller
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Karin Heufelder
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Marion Ganz
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Dorothea Eisenhardt
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| |
Collapse
|
6
|
Eisenhardt D. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera). ACTA ACUST UNITED AC 2014; 21:534-42. [PMID: 25225299 PMCID: PMC4175491 DOI: 10.1101/lm.033118.113] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates.
Collapse
Affiliation(s)
- Dorothea Eisenhardt
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Neurobiology, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
7
|
Gil M. Reward expectations in honeybees. Commun Integr Biol 2011; 3:95-100. [PMID: 20585498 DOI: 10.4161/cib.3.2.10621] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 11/12/2009] [Indexed: 11/19/2022] Open
Abstract
The study of expectations of reward helps to understand rules controlling goal-directed behavior as well as decision making and planning. I shall review a series of recent studies focusing on how the food gathering behavior of honeybees depends upon reward expectations. These studies document that free-flying honeybees develop long-term expectations of reward and use them to regulate their investment of energy/time during foraging. Also, they present a laboratory procedure suitable for analysis of neural substrates of reward expectations in the honeybee brain. I discuss these findings in the context of individual and collective foraging, on the one hand, and neurobiology of learning and memory of reward.
Collapse
Affiliation(s)
- Mariana Gil
- Free University of Berlin; Department of Biology/Chemistry/Pharmacy; Institute of Biology/Neurobiology; Berlin, Germany
| |
Collapse
|