1
|
Gladman NW, Askew GN. The contractile efficiency of the mantle muscle of European common cuttlefish (Sepia officinalis) during cyclical contractions. J Exp Biol 2024; 227:jeb249297. [PMID: 39297692 PMCID: PMC11583979 DOI: 10.1242/jeb.249297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 11/09/2024]
Abstract
Escape jet propulsion swimming in cuttlefish (Sepia officinalis) is powered by the circular muscles surrounding the mantle cavity. This mode of locomotion is energetically costly compared with undulatory swimming. The energetic cost of swimming is determined by the mechanical power requirements and the efficiency with which chemical energy is transferred into useful mechanical work. One step in this energy transduction process is the transfer of energy from ATP hydrolysis into mechanical work by the muscles. Here, we determined the efficiency of this step, termed the contractile efficiency. Muscle preparations from the circular muscles of the mantle cavity were subjected to sinusoidal length changes at different cycle frequencies, and stimulated with a phase and duration that maximised initial net work. Changes in ATP, arginine phosphate and octopine content between control and exercised muscles were determined and used to calculate the energy released from ATP hydrolysis (Emet). The maximum contractile efficiency (the ratio of net work to Emet) was 0.37, occurring at the same cycle frequency at which mechanical power was maximal and that was used during jet propulsion swimming, suggesting that cuttlefish muscle is adapted to generate muscular power efficiently. The overall efficiency of cuttlefish jet propulsion swimming was estimated to be 0.17, which is broadly comparable to that measured during animal flight and human-powered pedalled locomotion, indicating the high energetic costs of jet propulsion swimming are not due to inefficient locomotion per se; instead, they result from the relatively high mechanical power requirements.
Collapse
Affiliation(s)
- Nicholas W. Gladman
- School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Graham N. Askew
- School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| |
Collapse
|
2
|
Darveau CA. Insect Flight Energetics and the Evolution of Size, Form, and Function. Integr Comp Biol 2024; 64:586-597. [PMID: 38688867 PMCID: PMC11406158 DOI: 10.1093/icb/icae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024] Open
Abstract
Flying insects vary greatly in body size and wing proportions, significantly impacting their flight energetics. Generally, the larger the insect, the slower its flight wingbeat frequency. However, variation in frequency is also explained by differences in wing proportions, where larger-winged insects tend to have lower frequencies. These associations affect the energy required for flight. The correlated evolution of flight form and function can be further defined using a lineage of closely related bee species varying in body mass. The decline in flight wingbeat frequency with increasing size is paralleled by the flight mass-specific metabolic rate. The specific scaling exponents observed can be predicted from the wing area allometry, where a greater increase (hyperallometry) leads to a more pronounced effect on flight energetics, and hypoallometry can lead to no change in frequency and metabolic rate across species. The metabolic properties of the flight muscles also vary with body mass and wing proportions, as observed from the activity of glycolytic enzymes and the phospholipid compositions of muscle tissue, connecting morphological differences with muscle metabolic properties. The evolutionary scaling observed across species is recapitulated within species. The static allometry observed within the bumblebee Bombus impatiens, where the wing area is proportional and isometric, affects wingbeat frequency and metabolic rate, which is predicted to decrease with an increase in size. Intraspecific variation in flight muscle tissue properties is also related to flight metabolic rate. The role of developmental processes and phenotypic plasticity in explaining intraspecific differences is central to our understanding of flight energetics. These studies provide a framework where static allometry observed within species gives rise to evolutionary allometry, connecting the evolution of size, form, and function associated with insect flight.
Collapse
Affiliation(s)
- Charles-A Darveau
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
3
|
Treidel LA, Deem KD, Salcedo MK, Dickinson MH, Bruce HS, Darveau CA, Dickerson BH, Ellers O, Glass JR, Gordon CM, Harrison JF, Hedrick TL, Johnson MG, Lebenzon JE, Marden JH, Niitepõld K, Sane SP, Sponberg S, Talal S, Williams CM, Wold ES. Insect Flight: State of the Field and Future Directions. Integr Comp Biol 2024; 64:icae106. [PMID: 38982327 PMCID: PMC11406162 DOI: 10.1093/icb/icae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biomechanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new interdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight evolution.
Collapse
Affiliation(s)
- Lisa A Treidel
- School of Biological Sciences, University of Nebraska, Lincoln, Lincoln NE, 68588, USA
| | - Kevin D Deem
- Department of Biology, University of Rochester, Rochester NY, 14627, USA
| | - Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Michael H Dickinson
- Department of Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | | | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa Ontario, K1N 6N5, Canada
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Olaf Ellers
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jordan R Glass
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82070, USA
| | - Caleb M Gordon
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith G Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16803, USA
| | | | - Sanjay P Sane
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065 India
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Casey C, Heveran C, Jankauski M. Experimental studies suggest differences in the distribution of thorax elasticity between insects with synchronous and asynchronous musculature. J R Soc Interface 2023; 20:20230029. [PMID: 37015268 PMCID: PMC10072941 DOI: 10.1098/rsif.2023.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Insects have developed diverse flight actuation mechanisms, including synchronous and asynchronous musculature. Indirect actuation, used by insects with both synchronous and asynchronous musculature, transforms thorax exoskeletal deformation into wing rotation. Though thorax deformation is often attributed exclusively to muscle tension, the inertial and aerodynamic forces generated by the flapping wings may also contribute. In this study, a tethered flight experiment was used to simultaneously measure thorax deformation and the inertial/aerodynamic forces acting on the thorax generated by the flapping wing. Compared to insects with synchronous musculature, insects with asynchronous muscle deformed their thorax 60% less relative to their thorax diameter and their wings generated 2.8 times greater forces relative to their body weight. In a second experiment, dorsalventral thorax stiffness was measured across species. Accounting for weight and size, the asynchronous thorax was on average 3.8 times stiffer than the synchronous thorax in the dorsalventral direction. Differences in thorax stiffness and forces acting at the wing hinge led us to hypothesize about differing roles of series and parallel elasticity in the thoraxes of insects with synchronous and asynchronous musculature. Specifically, wing hinge elasticity may contribute more to wing motion in insects with asynchronous musculature than in those with synchronous musculature.
Collapse
Affiliation(s)
- Cailin Casey
- Mechanical and Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Chelsea Heveran
- Mechanical and Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Mark Jankauski
- Mechanical and Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
5
|
Hettige P, Tahir U, Nishikawa KC, Gage MJ. Comparative analysis of the transcriptomes of EDL, psoas, and soleus muscles from mice. BMC Genomics 2020; 21:808. [PMID: 33213377 PMCID: PMC7678079 DOI: 10.1186/s12864-020-07225-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Individual skeletal muscles have evolved to perform specific tasks based on their molecular composition. In general, muscle fibers are characterized as either fast-twitch or slow-twitch based on their myosin heavy chain isoform profiles. This approach made sense in the early days of muscle studies when SDS-PAGE was the primary tool for mapping fiber type. However, Next Generation Sequencing tools permit analysis of the entire muscle transcriptome in a single sample, which allows for more precise characterization of differences among fiber types, including distinguishing between different isoforms of specific proteins. We demonstrate the power of this approach by comparing the differential gene expression patterns of extensor digitorum longus (EDL), psoas, and soleus from mice using high throughput RNA sequencing. RESULTS EDL and psoas are typically classified as fast-twitch muscles based on their myosin expression pattern, while soleus is considered a slow-twitch muscle. The majority of the transcriptomic variability aligns with the fast-twitch and slow-twitch characterization. However, psoas and EDL exhibit unique expression patterns associated with the genes coding for extracellular matrix, myofibril, transcription, translation, striated muscle adaptation, mitochondrion distribution, and metabolism. Furthermore, significant expression differences between psoas and EDL were observed in genes coding for myosin light chain, troponin, tropomyosin isoforms, and several genes encoding the constituents of the Z-disk. CONCLUSIONS The observations highlight the intricate molecular nature of skeletal muscles and demonstrate the importance of utilizing transcriptomic information as a tool for skeletal muscle characterization.
Collapse
Affiliation(s)
- Pabodha Hettige
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA.,UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Uzma Tahir
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Kiisa C Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Matthew J Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA. .,UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
6
|
Franz P, Gassl V, Topf A, Eckelmann L, Iorga B, Tsiavaliaris G. A thermophoresis-based biosensor for real-time detection of inorganic phosphate during enzymatic reactions. Biosens Bioelectron 2020; 169:112616. [PMID: 32979591 DOI: 10.1016/j.bios.2020.112616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 01/07/2023]
Abstract
Inorganic phosphate (Pi)-sensing is a key application in many disciplines, and biosensors emerged as powerful analytic tools for use in environmental Pi monitoring, food quality control, basic research, and medical diagnosis. Current sensing techniques exploit either electrochemical or optical detection approaches for Pi quantification. Here, by combining the advantages of a biological Pi-receptor based on the bacterial phosphate binding protein with the principle of thermophoresis, i.e. the diffusional motion of particles in response to a temperature gradient, we developed a continuous, sensitive, and versatile method for detecting and quantifying free Pi in the subnanomolar to micromolar range in sample volumes ≤10 μL. By recording entropy-driven changes in the directed net diffusional flux of the Pi-sensor in a temperature gradient at defined time intervals, we validate the method for analyzing steady-state enzymatic reactions associated with Pi liberation in real-time for adenosine triphosphate (ATP) turnover by myosin, the actomyosin system and for insoluble, high molecular weight enzyme-protein assemblies in biopsy derived myofibrils. Particular features of the method are: (1) high Pi-sensitivity and selectivity, (2) uncoupling of the read-out signal from potential chemical and spectroscopic interferences, (3) minimal sample volumes and nanogram protein amounts, (4) possibility to run several experiments in parallel, and (5) straightforward data analysis. The present work establishes thermophoresis as powerful sensing method in microscale format for a wide range of applications, augmenting the current set of detection principles in biosensor technology.
Collapse
Affiliation(s)
- Peter Franz
- Cellular Biophysics, Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, 30625, Hannover, Germany
| | - Vincent Gassl
- Cellular Biophysics, Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, 30625, Hannover, Germany
| | - Andrea Topf
- Cellular Biophysics, Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, 30625, Hannover, Germany
| | - Luca Eckelmann
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Bogdan Iorga
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany; Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Georgios Tsiavaliaris
- Cellular Biophysics, Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
7
|
Groom DJE, Toledo MCB, Powers DR, Tobalske BW, Welch KC. Integrating morphology and kinematics in the scaling of hummingbird hovering metabolic rate and efficiency. Proc Biol Sci 2019; 285:rspb.2017.2011. [PMID: 29491168 DOI: 10.1098/rspb.2017.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/01/2018] [Indexed: 11/12/2022] Open
Abstract
Wing kinematics and morphology are influential upon the aerodynamics of flight. However, there is a lack of studies linking these variables to metabolic costs, particularly in the context of morphological adaptation to body size. Furthermore, the conversion efficiency from chemical energy into movement by the muscles (mechanochemical efficiency) scales with mass in terrestrial quadrupeds, but this scaling relationship has not been demonstrated within flying vertebrates. Positive scaling of efficiency with body size may reduce the metabolic costs of flight for relatively larger species. Here, we assembled a dataset of morphological, kinematic, and metabolic data on hovering hummingbirds to explore the influence of wing morphology, efficiency, and mass on hovering metabolic rate (HMR). We hypothesize that HMR would decline with increasing wing size, after accounting for mass. Furthermore, we hypothesize that efficiency will increase with mass, similarly to other forms of locomotion. We do not find a relationship between relative wing size and HMR, and instead find that the cost of each wingbeat increases hyperallometrically while wingbeat frequency declines with increasing mass. This suggests that increasing wing size is metabolically favourable over cycle frequency with increasing mass. Further benefits are offered to larger hummingbirds owing to the positive scaling of efficiency.
Collapse
Affiliation(s)
- Derrick J E Groom
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada, M1C 1A4 .,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3G5
| | - M Cecilia B Toledo
- Instituto Bàsico de Biociências, Universidade de Taubaté, Taubaté, SP, 12010-180, Brazil
| | - Donald R Powers
- Department of Biology, George Fox University, Newberg, OR 97132, USA
| | - Bret W Tobalske
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Kenneth C Welch
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada, M1C 1A4.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3G5
| |
Collapse
|
8
|
Harrison JF. Approaches for testing hypotheses for the hypometric scaling of aerobic metabolic rate in animals. Am J Physiol Regul Integr Comp Physiol 2018; 315:R879-R894. [DOI: 10.1152/ajpregu.00165.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypometric scaling of aerobic metabolism [larger organisms have lower mass-specific metabolic rates (MR/g)] is nearly universal for interspecific comparisons among animals, yet we lack an agreed upon explanation for this pattern. If physiological constraints on the function of larger animals occur and limit MR/g, these should be observable as direct constraints on animals of extant species and/or as evolved responses to compensate for the proposed constraint. There is evidence for direct constraints and compensatory responses to O2 supply constraint in skin-breathing animals, but not in vertebrates with gas-exchange organs. The duration of food retention in the gut is longer for larger birds and mammals, consistent with a direct constraint on nutrient uptake across the gut wall, but there is little evidence for evolving compensatory responses to gut transport constraints in larger animals. Larger placental mammals (but not marsupials or birds) show evidence of greater challenges with heat dissipation, but there is little evidence for compensatory adaptations to enhance heat loss in larger endotherms, suggesting that metabolic rate (MR) more generally balances heat loss for thermoregulation in endotherms. Size-dependent patterns in many molecular, physiological, and morphological properties are consistent with size-dependent natural selection, such as stronger selection for neurolocomotor performance and growth rate in smaller animals and stronger selection for safety and longevity in larger animals. Hypometric scaling of MR very likely arises from different mechanisms in different taxa and conditions, consistent with the diversity of scaling slopes for MR.
Collapse
Affiliation(s)
- Jon F. Harrison
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
9
|
Abstract
Muscles convert energy from ATP into useful work, which can be used to move limbs and to transport ions across membranes. The energy not converted into work appears as heat. At the start of contraction heat is also produced when Ca(2+) binds to troponin-C and to parvalbumin. Muscles use ATP throughout an isometric contraction at a rate that depends on duration of stimulation, muscle type, temperature and muscle length. Between 30% and 40% of the ATP used during isometric contraction fuels the pumping Ca(2+) and Na(+) out of the myoplasm. When shortening, muscles produce less force than in an isometric contraction but use ATP at a higher rate and when lengthening force output is higher than the isometric force but rate of ATP splitting is lower. Efficiency quantifies the fraction of the energy provided by ATP that is converted into external work. Each ATP molecule provides 100 zJ of energy that can potentially be converted into work. The mechanics of the myosin cross-bridge are such that at most 50 zJ of work can be done in one ATP consuming cycle; that is, the maximum efficiency of a cross-bridge is ∼50%. Cross-bridges in tortoise muscle approach this limit, producing over 90% of the possible work per cycle. Other muscles are less efficient but contract more rapidly and produce more power.
Collapse
Affiliation(s)
- C J Barclay
- School of Allied Health Sciences/Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
10
|
Abstract
Here we review recent contributions to the study of insect flight, in particular those brought about by advances in experimental techniques. We focus particularly on the following areas: wing flexibility and deformation, the physiology and biophysics of asynchronous insect flight muscle, the aerodynamics of flight, and stability and maneuverability. This recent research reveals the importance of wing flexibility to insect flight, provides a detailed model of how asynchronous flight muscle functions and how it may have evolved, synthesizes many recent studies of insect flight aerodynamics into a broad-reaching summary of unsteady flight aerodynamics, and highlights new insights into the sources of flight stability in insects. The focus on experimental techniques and recently developed apparatus shows how these advancements have occurred and point the way towards future experiments.
Collapse
Affiliation(s)
- Tyson L. Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stacey A. Combes
- Harvard University, Concord Field Station, 100 Old Causeway Road, Bedford, MA 01730, USA
| | - Laura A. Miller
- Departments of Mathematics and Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Gavrilov VM. Ecological and scaling analysis of the energy expenditure of rest, activity, flight, and evaporative water loss in Passeriformes and non-Passeriformes in relation to seasonal migrations and to the occupation of boreal stations in high and moderate latitudes. QUARTERLY REVIEW OF BIOLOGY 2014; 89:107-50. [PMID: 24984324 DOI: 10.1086/676046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A unified system of bioenergetic parameters that describe thermal regulation and energy metabolism in many passerine and non-passerine species has been developed. These parameters have been analyzed as functions of ambient temperature, and bioenergetic models for various species have been developed. The level of maximum food energy or maximal existence metabolism (MPE) is 1.3 times higher in passerines than in non-passerines, which is consistent with the ratio of their basal metabolic rates (BMR). The optimal ambient temperature for maximizing productive processes (e.g., reproduction, molting) is lower for passerines than for non passerines, which allows passerines to have higher production rates at moderate ambient temperatures. This difference in the optimal ambient temperature may explain the variation in bioenergetic parameters along latitudinal gradients, such as the well-known ecological rule of clutch size (or mass) increase in the more northerly passerine birds. The increased potential for productive energy output in the north may also allow birds to molt faster there. This phenomenon allows passerine birds to occupy a habitat that fluctuates widely in ambient temperature compared with non-passerine birds of similar size. Passerines have a more effective system for maintaining heat balance at both high and low temperatures. The high metabolism and small body sizes of passerines are consistent with omnivore development and with ecological plasticity. Among large passerines, the unfavorable ratio of MPE to BMR should decrease the energy that is available for productive processes. This consequence limits both the reproductive output and the development of long migration (particularly in Corvus corax). The hypothesis regarding BMR increase in passerines was suggested based on an aerodynamic analysis of the flight speed and the wing characteristics. This allometric analysis shows that the flight velocity is approximately 20% lower in Passeriformes than in non-Passeriformes, which is consistent with the inverted ratio of their BMR level. The regressions for the aerodynamic characteristics of wings show that passerines do not change the morphological characteristics of their wings to decrease velocity. Passerine birds prefer forest habitats. The size range of 5-150 g for birds in forest habitats is almost exclusively occupied by passerines because of their large energetic capability.
Collapse
|
12
|
Gavrilov VM. Fundamental energetics of birds: 1. The maximum ability of birds to change their thermal conductance and the efficiency of metabolic energy transformation into mechanical work. BIOL BULL+ 2012. [DOI: 10.1134/s1062359012070047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|