1
|
Chin DD, Lentink D. How birds direct impulse to minimize the energetic cost of foraging flight. SCIENCE ADVANCES 2017; 3:e1603041. [PMID: 28560342 PMCID: PMC5435416 DOI: 10.1126/sciadv.1603041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
Birds frequently hop and fly between tree branches to forage. To determine the mechanical energy trade-offs of their bimodal locomotion, we rewarded four Pacific parrotlets with a seed for flying voluntarily between instrumented perches inside a new aerodynamic force platform. By integrating direct measurements of both leg and wing forces with kinematics in a bimodal long jump and flight model, we discovered that parrotlets direct their leg impulse to minimize the mechanical energy needed to forage over different distances and inclinations. The bimodal locomotion model further shows how even a small lift contribution from a single proto-wingbeat would have significantly lengthened the long jump of foraging arboreal dinosaurs. These avian bimodal locomotion strategies can also help robots traverse cluttered environments more effectively.
Collapse
|
2
|
Konow N, Cheney JA, Roberts TJ, Iriarte-Díaz J, Breuer KS, Waldman JRS, Swartz SM. Speed-dependent modulation of wing muscle recruitment intensity and kinematics in two bat species. ACTA ACUST UNITED AC 2017; 220:1820-1829. [PMID: 28235906 DOI: 10.1242/jeb.144550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/21/2017] [Indexed: 02/05/2023]
Abstract
Animals respond to changes in power requirements during locomotion by modulating the intensity of recruitment of their propulsive musculature, but many questions concerning how muscle recruitment varies with speed across modes of locomotion remain unanswered. We measured normalized average burst EMG (aEMG) for pectoralis major and biceps brachii at different flight speeds in two relatively distantly related bat species: the aerial insectivore Eptesicus fuscus, and the primarily fruit-eating Carollia perspicillata These ecologically distinct species employ different flight behaviors but possess similar wing aspect ratio, wing loading and body mass. Because propulsive requirements usually correlate with body size, and aEMG likely reflects force, we hypothesized that these species would deploy similar speed-dependent aEMG modulation. Instead, we found that aEMG was speed independent in E. fuscus and modulated in a U-shaped or linearly increasing relationship with speed in C. perspicillata This interspecific difference may be related to differences in muscle fiber type composition and/or overall patterns of recruitment of the large ensemble of muscles that participate in actuating the highly articulated bat wing. We also found interspecific differences in the speed dependence of 3D wing kinematics: E. fuscus modulates wing flexion during upstroke significantly more than C. perspicillata Overall, we observed two different strategies to increase flight speed: C. perspicillata tends to modulate aEMG, and E. fuscus tends to modulate wing kinematics. These strategies may reflect different requirements for avoiding negative lift and overcoming drag during slow and fast flight, respectively, a subject we suggest merits further study.
Collapse
Affiliation(s)
- Nicolai Konow
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Jorn A Cheney
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Thomas J Roberts
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Jose Iriarte-Díaz
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kenneth S Breuer
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,School of Engineering, Brown University, Providence, RI 02912, USA
| | - J Rhea S Waldman
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Sharon M Swartz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Hedrick TL, Martínez-Blat J, Goodman MJ. Flight motor modulation with speed in the hawkmoth Manduca sexta. JOURNAL OF INSECT PHYSIOLOGY 2017; 96:115-121. [PMID: 27983942 DOI: 10.1016/j.jinsphys.2016.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
The theoretical underpinnings for flight, including animal flight with flapping wings, predict a curvilinear U-shaped or J-shaped relationship between flight speed and the power required to maintain that speed. Experimental data have confirmed this relationship for a variety of bird and bat species but not insects, possibly due to differences in aerodynamics and physiology or experimental difficulties. Here we quantify modulation of the main flight motor muscles (the dorsolongitudinal and dorsoventral) via electromyography in hawkmoths (Manduca sexta) flying freely over a range of speeds in a wind tunnel and show that these insects exhibit a U-shaped speed-power relationship, with a minimum power speed of 2ms-1, indicating that at least large flying insects achieve sufficiently high flight speeds that drag and power become limiting factors.
Collapse
Affiliation(s)
- Tyson L Hedrick
- University of North Carolina at Chapel Hill, NC 27599-3280, USA.
| | | | | |
Collapse
|
4
|
Abstract
One of the classic examples of an exaggerated sexually selected trait is the elaborate plumage that forms the train in male peafowl Pavo cristatus (peacock). Such ornaments are thought to reduce locomotor performance as a result of their weight and aerodynamic drag, but this cost is unknown. Here, the effect that the train has on take-off flight in peacocks was quantified as the sum of the rates of change of the potential and kinetic energies of the body (PCoM) in birds with trains and following the train's removal. There was no significant difference between PCoM in birds with and without a train. The train incurs drag during take-off; however, while this produces a twofold increase in parasite drag, parasite power only accounts for 0.1% of the total aerodynamic power. The train represented 6.9% of body weight and is expected to increase induced power. The absence of a detectable effect on take-off performance does not necessarily mean that there is no cost associated with possessing such ornate plumage; rather, it suggests that given the variation in take-off performance per se, the magnitude of any effect of the train has little meaningful functional relevance.
Collapse
Affiliation(s)
- Graham N. Askew
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Donovan ER, Keeney BK, Kung E, Makan S, Wild JM, Altshuler DL. Muscle Activation Patterns and Motor Anatomy of Anna’s HummingbirdsCalypte annaand Zebra FinchesTaeniopygia guttata. Physiol Biochem Zool 2013; 86:27-46. [DOI: 10.1086/668697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Robertson AMB, Biewener AA. Muscle function during takeoff and landing flight in the pigeon (Columba livia). ACTA ACUST UNITED AC 2012; 215:4104-14. [PMID: 22972885 DOI: 10.1242/jeb.075275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study explored the muscle strain and activation patterns of several key flight muscles of the pigeon (Columba livia) during takeoff and landing flight. Using electromyography (EMG) to measure muscle activation, and sonomicrometry to quantify muscle strain, we evaluated the muscle function patterns of the pectoralis, biceps, humerotriceps and scapulotriceps as pigeons flew between two perches. These recordings were analyzed in the context of three-dimensional wing kinematics. To understand the different requirements of takeoff, midflight and landing, we compared the activity and strain of these muscles among the three flight modes. The pectoralis and biceps exhibited greater fascicle strain rates during takeoff than during midflight or landing. However, the triceps muscles did not exhibit notable differences in strain among flight modes. All observed strain, activation and kinematics were consistent with hypothesized muscle functions. The biceps contracted to stabilize and flex the elbow during the downstroke. The humerotriceps contracted to extend the elbow at the upstroke-downstroke transition, followed by scapulotriceps contraction to maintain elbow extension during the downstroke. The scapulotriceps also appeared to contribute to humeral elevation. Greater muscle activation intensity was observed during takeoff, compared with mid-flight and landing, in all muscles except the scapulotriceps. The timing patterns of muscle activation and length change differed among flight modes, yet demonstrated that pigeons do not change the basic mechanical actions of key flight muscles as they shift from flight activities that demand energy production, such as takeoff and midflight, to maneuvers that require absorption of energy, such as landing. Similarly, joint kinematics were consistent among flight modes. The stereotypy of these neuromuscular and joint kinematic patterns is consistent with previously observed stereotypy of wing kinematics relative to the pigeon's body (in the local body frame) across these flight behaviors. Taken together, these observations suggest that the control of takeoff and landing flight primarily involves modulation of overall body pitch to effect changes in stroke plane angle and resulting wing aerodynamics.
Collapse
Affiliation(s)
- Angela M Berg Robertson
- Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX 77054, USA.
| | | |
Collapse
|
7
|
Biewener AA. Muscle function in avian flight: achieving power and control. Philos Trans R Soc Lond B Biol Sci 2011; 366:1496-506. [PMID: 21502121 DOI: 10.1098/rstb.2010.0353] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to reduce the skeletal muscles' work requirements. Muscles also produce substantial power during swimming, but this is mainly to overcome body drag rather than to support the animal's weight. Here, I review the function and architecture of key flight muscles related to how these muscles contribute to producing the power required for flapping flight, how the muscles are recruited to control wing motion and how they are used in manoeuvring. An emergent property of the primary flight muscles, consistent with their need to produce considerable work by moving the wings through large excursions during each wing stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of their resting fibre length (33-42%). Both muscles are activated while being lengthened or undergoing nearly isometric force development, enhancing the work they perform during subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a smaller range of contractile strains (12-23%), reflecting their role in controlling wing shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke plane mainly via changes in whole-body pitch during take-off and landing, relative to level flight, allowing their wing muscles to operate with little change in activation timing, strain magnitude and pattern.
Collapse
Affiliation(s)
- Andrew A Biewener
- Concord Field Station, Harvard University, 100 Old Causeway Road, Bedford, MA 01730, USA.
| |
Collapse
|
8
|
Morris CR, Nelson FE, Askew GN. The metabolic power requirements of flight and estimations of flight muscle efficiency in the cockatiel (Nymphicus hollandicus). ACTA ACUST UNITED AC 2010; 213:2788-96. [PMID: 20675549 DOI: 10.1242/jeb.035717] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known about how in vivo muscle efficiency, that is the ratio of mechanical and metabolic power, is affected by changes in locomotory tasks. One of the main problems with determining in vivo muscle efficiency is the large number of muscles generally used to produce mechanical power. Animal flight provides a unique model for determining muscle efficiency because only one muscle, the pectoralis muscle, produces nearly all of the mechanical power required for flight. In order to estimate in vivo flight muscle efficiency, we measured the metabolic cost of flight across a range of flight speeds (6-13 m s(-1)) using masked respirometry in the cockatiel (Nymphicus hollandicus) and compared it with measurements of mechanical power determined in the same wind tunnel. Similar to measurements of the mechanical power-speed relationship, the metabolic power-speed relationship had a U-shape, with a minimum at 10 m s(-1). Although the mechanical and metabolic power-speed relationships had similar minimum power speeds, the metabolic power requirements are not a simple multiple of the mechanical power requirements across a range of flight speeds. The pectoralis muscle efficiency (estimated from mechanical and metabolic power, basal metabolism and an assumed value for the 'postural costs' of flight) increased with flight speed and ranged from 6.9% to 11.2%. However, it is probable that previous estimates of the postural costs of flight have been too low and that the pectoralis muscle efficiency is higher.
Collapse
Affiliation(s)
- Charlotte R Morris
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
9
|
Knight K. HOW BIRDS POWER FLIGHT. J Exp Biol 2010. [DOI: 10.1242/jeb.049114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|