1
|
Booth JH, Meek AT, Kronenberg NM, Pulver SR, Gather MC. Optical mapping of ground reaction force dynamics in freely behaving Drosophila melanogaster larvae. eLife 2024; 12:RP87746. [PMID: 39042447 PMCID: PMC11265794 DOI: 10.7554/elife.87746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
During locomotion, soft-bodied terrestrial animals solve complex control problems at substrate interfaces, but our understanding of how they achieve this without rigid components remains incomplete. Here, we develop new all-optical methods based on optical interference in a deformable substrate to measure ground reaction forces (GRFs) with micrometre and nanonewton precision in behaving Drosophila larvae. Combining this with a kinematic analysis of substrate-interfacing features, we shed new light onto the biomechanical control of larval locomotion. Crawling in larvae measuring ~1 mm in length involves an intricate pattern of cuticle sequestration and planting, producing GRFs of 1-7 µN. We show that larvae insert and expand denticulated, feet-like structures into substrates as they move, a process not previously observed in soft-bodied animals. These 'protopodia' form dynamic anchors to compensate counteracting forces. Our work provides a framework for future biomechanics research in soft-bodied animals and promises to inspire improved soft-robot design.
Collapse
Affiliation(s)
- Jonathan H Booth
- SUPA, School of Physics and Astronomy, University of St AndrewsSt AndrewsUnited Kingdom
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of CologneCologneGermany
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| | - Andrew T Meek
- SUPA, School of Physics and Astronomy, University of St AndrewsSt AndrewsUnited Kingdom
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of CologneCologneGermany
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| | - Nils M Kronenberg
- SUPA, School of Physics and Astronomy, University of St AndrewsSt AndrewsUnited Kingdom
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of CologneCologneGermany
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| | - Malte C Gather
- SUPA, School of Physics and Astronomy, University of St AndrewsSt AndrewsUnited Kingdom
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of CologneCologneGermany
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| |
Collapse
|
2
|
Zoomorphic Mobile Robot Development for Vertical Movement Based on the Geometrical Family Caterpillar. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3046116. [PMID: 35035455 PMCID: PMC8759835 DOI: 10.1155/2022/3046116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/05/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022]
Abstract
Research in robotics is one of the promising areas in mobile robot development, which is planned to be implemented in extreme dangerous conditions of areas explored by humans. This article aims at developing and improving a prototype of zoomorphic mobile robots that are designed to repeat the existing biological objects in nature. The authors performed a detailed analysis on the structure and dynamics of the geometrical family caterpillar movement, which is passed on a practical design implemented to perform the dynamic movement on uneven vertical surfaces. Based on the obtained analysis, the design and kinematic scheme of the movement is developed. Also, the structural control scheme via the Internet technologies that allow carrying out remote control is presented in this paper, considering the dangerous mobile robot work zones. To test the recommended solutions, the authors developed detailed 3D printed models of the mobile robot constructions for the implemented hardware. The model of the mobile robot is constructed, and the control system with examples of the user program code implementations is performed. Several experiments were performed, which showed the efficiency of the achieved mobile robot for solving problems of vertical movement on uneven metal surfaces. Moreover, the obtained slow motion of the designed robot proves that the simulated robot behaves similarly to the natural behavior of caterpillar movement.
Collapse
|
3
|
Mukherjee R, Caron DP, Edson T, Trimmer BA. The control of nocifensive movements in the caterpillar Manduca sexta. J Exp Biol 2020; 223:jeb221010. [PMID: 32647020 DOI: 10.1242/jeb.221010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/01/2020] [Indexed: 11/20/2022]
Abstract
In response to a noxious stimulus on the abdomen, caterpillars lunge their head towards the site of stimulation. This nocifensive 'strike' behavior is fast (∼0.5 s duration), targeted and usually unilateral. It is not clear how the fast strike movement is generated and controlled, because caterpillar muscle develops peak force relatively slowly (∼1 s) and the baseline hemolymph pressure is low (<2 kPa). Here, we show that strike movements are largely driven by ipsilateral muscle activation that propagates from anterior to posterior segments. There is no sustained pre-strike muscle activation that would be expected for movements powered by the rapid release of stored elastic energy. Although muscle activation on the ipsilateral side is correlated with segment shortening, activity on the contralateral side consists of two phases of muscle stimulation and a marked decline between them. This decrease in motor activity precedes rapid expansion of the segment on the contralateral side, presumably allowing the body wall to stretch more easily. The subsequent increase in contralateral motor activation may slow or stabilize movements as the head reaches its target. Strike behavior is therefore a controlled fast movement involving the coordination of muscle activity on each side and along the length of the body.
Collapse
Affiliation(s)
- Ritwika Mukherjee
- Tufts University, Department of Biology, 200 Boston Avenue, Suite 2600, MA 02155, USA
| | - Daniel P Caron
- Tufts University, Department of Biology, 200 Boston Avenue, Suite 2600, MA 02155, USA
| | - Timothy Edson
- Department of Chemistry and Biochemistry, Bates College, 2 Andrews Road, Lewiston, ME 04240, USA
| | - Barry A Trimmer
- Tufts University, Department of Biology, 200 Boston Avenue, Suite 2600, MA 02155, USA
| |
Collapse
|
4
|
Metallo C, Mukherjee R, Trimmer BA. Stepping pattern changes in the caterpillar Manduca sexta: the effects of orientation and substrate. J Exp Biol 2020; 223:jeb220319. [PMID: 32527957 DOI: 10.1242/jeb.220319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/28/2020] [Indexed: 02/04/2023]
Abstract
Most animals can successfully travel across cluttered, uneven environments and cope with enormous changes in surface friction, deformability and stability. However, the mechanisms used to achieve such remarkable adaptability and robustness are not fully understood. Even more limited is the understanding of how soft, deformable animals such as tobacco hornworm Manduca sexta (caterpillars) can control their movements as they navigate surfaces that have varying stiffness and are oriented at different angles. To fill this gap, we analyzed the stepping patterns of caterpillars crawling on two different types of substrate (stiff and soft) and in three different orientations (horizontal and upward/downward vertical). Our results show that caterpillars adopt different stepping patterns (i.e. different sequences of transition between the swing and stance phases of prolegs in different body segments) based on substrate stiffness and orientation. These changes in stepping pattern occur more frequently in the upward vertical orientation. The results of this study suggest that caterpillars can detect differences in the material properties of the substrate on which they crawl and adjust their behavior to match those properties.
Collapse
Affiliation(s)
- Cinzia Metallo
- Tufts University, Biology Department, 200 Boston Avenue, room 2613, Medford, MA 02155, USA
| | - Ritwika Mukherjee
- Tufts University, Biology Department, 200 Boston Avenue, room 2613, Medford, MA 02155, USA
| | - Barry A Trimmer
- Tufts University, Biology Department, 200 Boston Avenue, room 2613, Medford, MA 02155, USA
| |
Collapse
|
5
|
Vaughan SC, Lin HT, Trimmer BA. Caterpillar Climbing: Robust, Tension-Based Omni-Directional Locomotion. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5033588. [PMID: 29878231 PMCID: PMC6007585 DOI: 10.1093/jisesa/iey055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Indexed: 05/05/2023]
Abstract
Animals that must transition from horizontal to inclined or vertical surfaces typically change their locomotion strategy to compensate for the relative shift in gravitational forces. The species that have been studied have stiff articulated skeletons that allow them to redistribute ground reaction forces (GRFs) to control traction. Most also change their stepping patterns to maintain stability as they climb. In contrast, caterpillars, most of which are highly scansorial, soft-bodied, and lack rigid support or joints, can move with the same general kinematics in all orientations. In this study, we measure the GRFs exerted by the abdominal prolegs of Manduca sexta (Linnaeus) during locomotion. We show that, despite the orthogonal shift in gravitational forces, caterpillars use the same tension-based environmental skeleton strategy to crawl horizontally and to climb vertically. Furthermore, the transition from horizontal to vertical surfaces does not seem to require a change in gait; instead gravitational loading is used to help maintain a stance-phase body tension against which the muscles can pull the body upwards.
Collapse
Affiliation(s)
| | - Huai-ti Lin
- Department of Biology, Tufts University, Medford, MA
| | - Barry A Trimmer
- Department of Biology, Tufts University, Medford, MA
- Corresponding author, e-mail:
| |
Collapse
|
6
|
Mukherjee R, Vaughn S, Trimmer BA. The neuromechanics of proleg grip release. J Exp Biol 2018; 221:jeb.173856. [DOI: 10.1242/jeb.173856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/30/2018] [Indexed: 02/02/2023]
Abstract
Because soft animals are deformable their locomotion is particularly affected by external forces and they are expected to face challenges controlling movements in different environments and orientations. We have used the caterpillar Manduca sexta to study neuromechanical strategies of soft-bodied scansorial locomotion. Manduca locomotion critically depends on the timing of proleg grip release which is mediated by the principle planta retractor muscle and its single motoneuron, PPR. During upright crawling, PPR firing frequency increases approximately 0.6 seconds before grip release but during upside-down crawling, this activity begins significantly earlier, possibly pre-tensioning the muscle. Under different loading conditions the timing of PPR activity changes relative to the stance/swing cycle. PPR motor activity is greater during upside-down crawling but these frequency changes are too small to produce significant differences in muscle force. Detailed observation of the proleg tip show that it swells before the retractor muscle is activated. This small movement is correlated with the activation of more posterior body segments suggesting that it results from indirect mechanical effects. The timing and direction of this proleg displacement implies that proleg grip release is a dynamic interplay of mechanics and active neural control.
Collapse
Affiliation(s)
- Ritwika Mukherjee
- Tufts University, Department of Biology, 200 Boston Avenue, Suite 2600, MA 02155, USA
| | - Samuel Vaughn
- Tufts University, Department of Biology, 200 Boston Avenue, Suite 2600, MA 02155, USA
| | - Barry A. Trimmer
- Tufts University, Department of Biology, 200 Boston Avenue, Suite 2600, MA 02155, USA
| |
Collapse
|
7
|
Schuldt DW, Rife J, Trimmer B. Template for robust soft-body crawling with reflex-triggered gripping. BIOINSPIRATION & BIOMIMETICS 2015; 10:016018. [PMID: 25650372 DOI: 10.1088/1748-3190/10/1/016018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Caterpillars show a remarkable ability to get around in complex environments (e.g. tree branches). Part of this is attributable to crochets which allow the animal to firmly attach to a wide range of substrates. This introduces an additional challenge to locomotion, however, as the caterpillar needs a way to coordinate the release of the crochets and the activation of muscles to adjust body posture. Typical control models have focused on global coordination through a central pattern generator (CPG). This paper develops an alternative to the CPG, which accomplishes the same task and is robust to a wide range of body properties and control parameter variation. A one-dimensional model is proposed which consists of lumped masses connected by a network of springs, dampers and muscles. Computer simulations of the controller/model system are performed to verify its robustness and to permit comparison between the generated gaits and those observed in real caterpillars (specifically Manduca sexta.).
Collapse
Affiliation(s)
- Dieter W Schuldt
- Department of Mechanical Engineering, Tufts University, 024 Anderson Hall Medford, MA 02155, USA
| | | | | |
Collapse
|
8
|
Abstract
Muscular hydrostats (such as mollusks), and fluid-filled animals (such as annelids), can exploit their constant-volume tissues to transfer forces and displacements in predictable ways, much as articulated animals use hinges and levers. Although larval insects contain pressurized fluids, they also have internal air tubes that are compressible and, as a result, they have more uncontrolled degrees of freedom. Therefore, the mechanisms by which larval insects control their movements are expected to reveal useful strategies for designing soft biomimetic robots. Using caterpillars as a tractable model system, it is now possible to identify the biomechanical and neural strategies for controlling movements in such highly deformable animals. For example, the tobacco hornworm, Manduca sexta, can stiffen its body by increasing muscular tension (and therefore body pressure) but the internal cavity (hemocoel) is not iso-barometric, nor is pressure used to directly control the movements of its limbs. Instead, fluid and tissues flow within the hemocoel and the body is soft and flexible to conform to the substrate. Even the gut contributes to the biomechanics of locomotion; it is decoupled from the movements of the body wall and slides forward within the body cavity at the start of each step. During crawling the body is kept in tension for part of the stride and compressive forces are exerted on the substrate along the axis of the caterpillar, thereby using the environment as a skeleton. The timing of muscular activity suggests that crawling is coordinated by proleg-retractor motoneurons and that the large segmental muscles produce anterograde waves of lifting that do not require precise timing. This strategy produces a robust form of locomotion in which the kinematics changes little with orientation. In different species of caterpillar, the presence of prolegs on particular body segments is related to alternative kinematics such as "inching." This suggests a mechanism for the evolution of different gaits through changes in the usage of prolegs, rather than, through extensive alterations in the motor program controlling the body wall. Some of these findings are being used to design and test novel control-strategies for highly deformable robots. These "softworm" devices are providing new insights into the challenges faced by any soft animal navigating in a terrestrial environment.
Collapse
Affiliation(s)
- B A Trimmer
- *Department of Biology, School of Arts and Sciences, Tufts University, 200 Boston Avenue, Suite 2600, Medford, MA 02155, USA; Howard Hughes Medical Institute, Janelia Farm, Ashburn, VA, USA
| | - Huai-ti Lin
- *Department of Biology, School of Arts and Sciences, Tufts University, 200 Boston Avenue, Suite 2600, Medford, MA 02155, USA; Howard Hughes Medical Institute, Janelia Farm, Ashburn, VA, USA
| |
Collapse
|
9
|
van Griethuijsen LI, Trimmer BA. Locomotion in caterpillars. Biol Rev Camb Philos Soc 2014; 89:656-70. [DOI: 10.1111/brv.12073] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 11/10/2013] [Accepted: 11/12/2013] [Indexed: 11/30/2022]
Affiliation(s)
- L. I. van Griethuijsen
- Department of Biology; School of Arts and Sciences, Tufts University; 200 Boston Avenue, Suite 2600 Medford MA 02155 U.S.A
| | - B. A. Trimmer
- Department of Biology; School of Arts and Sciences, Tufts University; 200 Boston Avenue, Suite 2600 Medford MA 02155 U.S.A
| |
Collapse
|
10
|
Dupont S. Early leaf miners and the ground plan of the lepidopteran larval trunk: Caterpillar morphology of the basal mothsHeterobathmia,Eriocrania, andAcanthopteroctetes. J Morphol 2013; 274:1239-62. [DOI: 10.1002/jmor.20176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/22/2013] [Accepted: 05/30/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Steen Dupont
- Department of Entomology; Natural History Museum of Denmark, Universitetsparken 15; 2100; Copenhagen Ø; Denmark
| |
Collapse
|
11
|
Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 2013; 31:287-94. [DOI: 10.1016/j.tibtech.2013.03.002] [Citation(s) in RCA: 1265] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/25/2013] [Accepted: 03/08/2013] [Indexed: 12/21/2022]
|
12
|
Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature. J Neurosci 2012; 32:12460-71. [PMID: 22956837 DOI: 10.1523/jneurosci.0222-12.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding rhythmic behavior at the developmental and genetic levels has important implications for neurobiology, medicine, evolution, and robotics. We studied rhythmic behavior--larval crawling--in the genetically and developmentally tractable organism, Drosophila melanogaster. We used narrow-diameter channels to constrain behavior to simple, rhythmic crawling. We quantified crawling at the organism, segment, and muscle levels. We showed that Drosophila larval crawling is made up of a series of periodic strides. Each stride consists of two phases. First, while most abdominal segments remain planted on the substrate, the head, tail, and gut translocate; this "visceral pistoning" moves the center of mass. The movement of the center of mass is likely powered by muscle contractions in the head and tail. Second, the head and tail anchor while a body wall wave moves each abdominal segment in the direction of the crawl. These two phases can be observed occurring independently in embryonic stages before becoming coordinated at hatching. During forward crawls, abdominal body wall movements are powered by simultaneous contraction of dorsal and ventral muscle groups, which occur concurrently with contraction of lateral muscles of the adjacent posterior segment. During reverse crawls, abdominal body wall movements are powered by phase-shifted contractions of dorsal and ventral muscles; and ventral muscle contractions occur concurrently with contraction of lateral muscles in the adjacent anterior segment. This work lays a foundation for use of Drosophila larva as a model system for studying the genetics and development of rhythmic behavior.
Collapse
|
13
|
Lin HT, Slate DJ, Paetsch CR, Dorfmann AL, Trimmer BA. Scaling of caterpillar body properties and its biomechanical implications for the use of a hydrostatic skeleton. J Exp Biol 2011; 214:1194-204. [DOI: 10.1242/jeb.051029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
SUMMARY
Caterpillars can increase their body mass 10,000-fold in 2 weeks. It is therefore remarkable that most caterpillars appear to maintain the same locomotion kinematics throughout their entire larval stage. This study examined how the body properties of a caterpillar might change to accommodate such dramatic changes in body load. Using Manduca sexta as a model system, we measured changes in body volume, tissue density and baseline body pressure, and the dimensions of load-bearing tissues (the cuticle and muscles) over a body mass range from milligrams to several grams. All Manduca biometrics relevant to the hydrostatic skeleton scaled allometrically but close to the isometric predictions. Body density and pressure were almost constant. We next investigated the effects of scaling on the bending stiffness of the caterpillar hydrostatic skeleton. The anisotropic non-linear mechanical response of Manduca muscles and soft cuticle has previously been quantified and modeled with constitutive equations. Using biometric data and these material laws, we constructed finite element models to simulate a hydrostatic skeleton under different conditions. The results show that increasing the internal pressure leads to a non-linear increase in bending stiffness. Increasing the body size results in a decrease in the normalized bending stiffness. Muscle activation can double this stiffness in the physiological pressure range, but thickening the cuticle or increasing the muscle area reduces the structural stiffness. These non-linear effects may dictate the effectiveness of a hydrostatic skeleton at different sizes. Given the shared anatomy and size variation in Lepidoptera larvae, these mechanical scaling constraints may implicate the diverse locomotion strategies in different species.
Collapse
Affiliation(s)
- Huai-Ti Lin
- Department of Biology, Tufts University, 165 Packard Avenue, Dana Lab, Medford, MA 02155, USA
| | - Daniel J. Slate
- Department of Biology, Tufts University, 165 Packard Avenue, Dana Lab, Medford, MA 02155, USA
| | - Christopher R. Paetsch
- Department of Civil & Environmental Engineering, Tufts University, 200 College Avenue, Anderson Hall, Medford, MA 02155, USA
| | - A. Luis Dorfmann
- Department of Civil & Environmental Engineering, Tufts University, 200 College Avenue, Anderson Hall, Medford, MA 02155, USA
| | - Barry A. Trimmer
- Department of Biology, Tufts University, 165 Packard Avenue, Dana Lab, Medford, MA 02155, USA
| |
Collapse
|
14
|
Saunders F, Trimmer BA, Rife J. Modeling locomotion of a soft-bodied arthropod using inverse dynamics. BIOINSPIRATION & BIOMIMETICS 2011; 6:016001. [PMID: 21160115 DOI: 10.1088/1748-3182/6/1/016001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Most bio-inspired robots have been based on animals with jointed, stiff skeletons. There is now an increasing interest in mimicking the robust performance of animals in natural environments by incorporating compliant materials into the locomotory system. However, the mechanics of moving, highly conformable structures are particularly difficult to predict. This paper proposes a planar, extensible-link model for the soft-bodied tobacco hornworm caterpillar, Manduca sexta, to provide insight for biologists and engineers studying locomotion by highly deformable animals and caterpillar-like robots. Using inverse dynamics to process experimentally acquired point-tracking data, ground reaction forces and internal forces were determined for a crawling caterpillar. Computed ground reaction forces were compared to experimental data to validate the model. The results show that a system of linked extendable joints can faithfully describe the general form and magnitude of the contact forces produced by a crawling caterpillar. Furthermore, the model can be used to compute internal forces that cannot be measured experimentally. It is predicted that between different body segments in stance phase the body is mostly kept in tension and that compression only occurs during the swing phase when the prolegs release their grip. This finding supports a recently proposed mechanism for locomotion by soft animals in which the substrate transfers compressive forces from one part of the body to another (the environmental skeleton) thereby minimizing the need for hydrostatic stiffening. The model also provides a new means to characterize and test control strategies used in caterpillar crawling and soft robot locomotion.
Collapse
|
15
|
Flexible parylene-based microelectrode arrays for high resolution EMG recordings in freely moving small animals. J Neurosci Methods 2011; 195:176-84. [DOI: 10.1016/j.jneumeth.2010.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 11/22/2022]
|
16
|
Simon MA, Woods WA, Serebrenik YV, Simon SM, van Griethuijsen LI, Socha JJ, Lee WK, Trimmer BA. Visceral-Locomotory Pistoning in Crawling Caterpillars. Curr Biol 2010; 20:1458-63. [DOI: 10.1016/j.cub.2010.06.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/04/2010] [Accepted: 06/17/2010] [Indexed: 11/27/2022]
|