1
|
Rautsaw RM, Schramer TD, Acuña R, Arick LN, DiMeo M, Mercier KP, Schrum M, Mason AJ, Margres MJ, Strickland JL, Parkinson CL. Genomic Adaptations to Salinity Resist Gene Flow in the Evolution of Floridian Watersnakes. Mol Biol Evol 2021; 38:745-760. [PMID: 33035326 PMCID: PMC7947766 DOI: 10.1093/molbev/msaa266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The migration-selection balance often governs the evolution of lineages, and speciation with gene flow is now considered common across the tree of life. Ecological speciation is a process that can facilitate divergence despite gene flow due to strong selective pressures caused by ecological differences; however, the exact traits under selection are often unknown. The transition from freshwater to saltwater habitats provides strong selection targeting traits with osmoregulatory function. Several lineages of North American watersnakes (Nerodia spp.) are known to occur in saltwater habitat and represent a useful system for studying speciation by providing an opportunity to investigate gene flow and evaluate how species boundaries are maintained or degraded. We use double digest restriction-site associated DNA sequencing to characterize the migration-selection balance and test for evidence of ecological divergence within the Nerodia fasciata-clarkii complex in Florida. We find evidence of high intraspecific gene flow with a pattern of isolation-by-distance underlying subspecific lineages. However, we identify genetic structure indicative of reduced gene flow between inland and coastal lineages suggesting divergence due to isolation-by-environment. This pattern is consistent with observed environmental differences where the amount of admixture decreases with increased salinity. Furthermore, we identify significantly enriched terms related to osmoregulatory function among a set of candidate loci, including several genes that have been previously implicated in adaptation to salinity stress. Collectively, our results demonstrate that ecological differences, likely driven by salinity, cause strong divergent selection which promotes divergence in the N. fasciata-clarkii complex despite significant gene flow.
Collapse
Affiliation(s)
- Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC.,Department of Biology, University of Central Florida, Orlando, FL
| | | | - Rachel Acuña
- Department of Biology, University of Central Florida, Orlando, FL
| | - Lindsay N Arick
- Department of Biology, University of Central Florida, Orlando, FL
| | - Mark DiMeo
- Department of Biological Sciences, Clemson University, Clemson, SC.,Department of Biology, University of Central Florida, Orlando, FL
| | - Kathryn P Mercier
- Department of Biological Sciences, Clemson University, Clemson, SC.,Department of Biology, University of Central Florida, Orlando, FL.,Department of Biology, City College of New York, New York, NY.,PhD Program in Biology, The Graduate Center of the City University of New York, New York, NY
| | - Michael Schrum
- Department of Biology, University of Central Florida, Orlando, FL
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC.,Department of Biology, University of Central Florida, Orlando, FL
| | - Mark J Margres
- Department of Biological Sciences, Clemson University, Clemson, SC.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA.,Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC.,Department of Biology, University of Central Florida, Orlando, FL.,Department of Biology, University of South Alabama, Mobile, AL
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC.,Department of Biology, University of Central Florida, Orlando, FL.,Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC
| |
Collapse
|
2
|
Bernard C, Compagnoni A, Salguero‐Gómez R. Testing Finch's hypothesis: The role of organismal modularity on the escape from actuarial senescence. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13486] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Aldo Compagnoni
- Martin Luther University Halle‐Wittenberg German Centre for Integrative Biodiversity Research Leipzig Germany
| | - Roberto Salguero‐Gómez
- Department of Zoology University of Oxford Oxford UK
- Centre for Biodiversity and Conservation Science University of Queensland St. Lucia QLD Australia
- Evolutionary Demography laboratory Max Plank Institute for Demographic Research Rostock Germany
| |
Collapse
|
3
|
Snakes exhibit tissue-specific variation in cardiotonic steroid sensitivity of Na +/K +-ATPase. Comp Biochem Physiol B Biochem Mol Biol 2017; 217:21-26. [PMID: 29223875 DOI: 10.1016/j.cbpb.2017.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/01/2017] [Accepted: 11/28/2017] [Indexed: 11/22/2022]
Abstract
Toads are among several groups of organisms chemically defended with lethal concentrations of cardiotonic steroids. As a result, most predators that prey on amphibians avoid toads. However, several species of snakes have gained resistance-conferring mutations of Na+/K+-ATPase, the molecular target of cardiotonic steroids, and can feed on toads readily. Despite recent advances in our understanding of this adaptation at the genetic level, we have lacked functional evidence for how mutations of Na+/K+-ATPase account for cardiotonic steroid resistance in snake tissues. To address this issue, it is necessary to determine how the Na+/K+-ATPases of snakes react to the toxins. Some tissues might have Na+/K+-ATPases that are more susceptible than others and can thus provide clues about how the toxins influence organismal function. Here we provide a mechanistic link between observed Na+/K+-ATPase substitutions and observed resistance using actual snake Na+/K+-ATPases. We used an in vitro approach to determine the tissue-specific levels of sensitivity to cardiotonic steroids in select resistant and non-resistant snakes. We compared the sensitivities of select tissues within and between species. Our results suggest that resistant snakes contain highly resistant Na+/K+-ATPases in their heart and kidney, both of which rely heavily on the enzymes to function, whereas tissues that do not rely as heavily on Na+/K+-ATPases or might be protected from cardiotonic steroids by other means (liver, gut, and brain) contain non-resistant forms of the enzyme. This study reveals functional evidence that tissue-level target-site insensitivity to cardiotonic steroids varies not only among species but also across tissues within resistant taxa.
Collapse
|
4
|
Brischoux F, Kornilev YV, Lillywhite HB. Physiological and behavioral responses to salinity in coastal Dice snakes. Comp Biochem Physiol A Mol Integr Physiol 2017; 214:13-18. [PMID: 28893666 DOI: 10.1016/j.cbpa.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/25/2017] [Accepted: 09/01/2017] [Indexed: 11/15/2022]
Abstract
Secondarily marine tetrapods have evolved adaptations to maintain their osmotic balance in a hyperosmotic environment. During the transition to a marine habitat, the evolution of a euryhaline physiology likely encompassed successive changes in behavior and physiology that released organisms from regular access to fresh water. Deciphering these key steps is a complicated task. In this study, we investigated a species of freshwater natricine snake in which some populations are known to use marine environments. We experimentally subjected 30 adult Dice snakes (Natrix tessellata) from a population inhabiting the Black Sea coast to three salinities corresponding to freshwater (~0.1‰), brackish water (~15.0‰), and full-strength seawater (~34.0‰) in order to investigate their physiological (variation of body mass, osmolality) and behavioral (activity, drinking behavior) responses to salinity. Our results show that coastal Dice snakes from the study population are relatively tolerant to salinity close to that recorded in the Black Sea, but that prolonged exposure to full-strength seawater increases osmolality, stimulates thirst, decreases the activity of snakes and may ultimately jeopardize survival. Collectively with previously published data, our results strongly suggest specific physiological adaptations to withstand hyperosmolality rather than to reduce intake of salt, in coastal populations or species of semi-aquatic snakes. Future comparative investigations of Dice snakes from populations restricted to freshwater environment might reveal the functional traits and the behavioral and physiological responses of coastal N. tessellata to life in water with elevated salinity.
Collapse
Affiliation(s)
- François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360 Villiers en Bois, France.
| | - Yurii V Kornilev
- National Museum of Natural History, Sofia, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria; Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| | | |
Collapse
|
5
|
Mohammadi S, Savitzky AH, Lohr J, Dobler S. Toad toxin-resistant snake ( Thamnophis elegans ) expresses high levels of mutant Na + /K + -ATPase mRNA in cardiac muscle. Gene 2017; 614:21-25. [DOI: 10.1016/j.gene.2017.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/26/2017] [Accepted: 02/24/2017] [Indexed: 10/25/2022]
|
6
|
Kao CF, Chen JL, Tsao WT, Lee AH, Liu CH, Wang FI. A renal adenocarcinoma in a corn snake (Pantherophis guttatus) resembling human collecting duct carcinoma. J Vet Diagn Invest 2016; 28:599-603. [DOI: 10.1177/1040638716661380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A 5-year-old male captive corn snake ( Pantherophis guttatus) with caudal coelomic swelling was admitted for surgical treatment. Laparotomy revealed a 5 × 4 × 2.5 cm, firm, expansile, irregularly shaped mass arising from the middle portion of the right kidney with a mild lobulated pattern and mottled white-to-tan. Microscopically, the mass was composed of numerous bizarre angulated tubules of polygonal neoplastic cells separated by a scirrhous stroma with remarkable heterophilic infiltrates. The neoplastic cells were nonciliated and mucin secreting, with abundant brightly eosinophilic cytoplasm. There were marked cellular and nuclear atypia, frequent cell individualization, and stromal invasion, indicative of malignant behavior, which was confirmed by metastasis to the left kidney 1.5 months postoperatively. Both neoplastic epithelial cells and mesenchymal cells contributing to the scirrhous stroma had variable immunopositivity for pan-cytokeratin. The neoplasm was considered a renal adenocarcinoma resembling human collecting duct carcinoma.
Collapse
Affiliation(s)
- Chi-Fei Kao
- Graduate Institute of Molecular and Comparative Pathobiology (Kao, Liu, Wang), School of Veterinary Medicine, National Taiwan University, Taipei
- Institute of Veterinary Science (Tsao), School of Veterinary Medicine, National Taiwan University, Taipei
- College of Bioresources and Agriculture, National Taiwan University Veterinary Hospital, Taipei (Chen), Taiwan
- Taipei Zoo, Taipei (Lee), Taiwan
| | - Jiun-Liang Chen
- Graduate Institute of Molecular and Comparative Pathobiology (Kao, Liu, Wang), School of Veterinary Medicine, National Taiwan University, Taipei
- Institute of Veterinary Science (Tsao), School of Veterinary Medicine, National Taiwan University, Taipei
- College of Bioresources and Agriculture, National Taiwan University Veterinary Hospital, Taipei (Chen), Taiwan
- Taipei Zoo, Taipei (Lee), Taiwan
| | - Wen-Tien Tsao
- Graduate Institute of Molecular and Comparative Pathobiology (Kao, Liu, Wang), School of Veterinary Medicine, National Taiwan University, Taipei
- Institute of Veterinary Science (Tsao), School of Veterinary Medicine, National Taiwan University, Taipei
- College of Bioresources and Agriculture, National Taiwan University Veterinary Hospital, Taipei (Chen), Taiwan
- Taipei Zoo, Taipei (Lee), Taiwan
| | - An-Hsing Lee
- Graduate Institute of Molecular and Comparative Pathobiology (Kao, Liu, Wang), School of Veterinary Medicine, National Taiwan University, Taipei
- Institute of Veterinary Science (Tsao), School of Veterinary Medicine, National Taiwan University, Taipei
- College of Bioresources and Agriculture, National Taiwan University Veterinary Hospital, Taipei (Chen), Taiwan
- Taipei Zoo, Taipei (Lee), Taiwan
| | - Chen-Hsuan Liu
- Graduate Institute of Molecular and Comparative Pathobiology (Kao, Liu, Wang), School of Veterinary Medicine, National Taiwan University, Taipei
- Institute of Veterinary Science (Tsao), School of Veterinary Medicine, National Taiwan University, Taipei
- College of Bioresources and Agriculture, National Taiwan University Veterinary Hospital, Taipei (Chen), Taiwan
- Taipei Zoo, Taipei (Lee), Taiwan
| | - Fun-In Wang
- Graduate Institute of Molecular and Comparative Pathobiology (Kao, Liu, Wang), School of Veterinary Medicine, National Taiwan University, Taipei
- Institute of Veterinary Science (Tsao), School of Veterinary Medicine, National Taiwan University, Taipei
- College of Bioresources and Agriculture, National Taiwan University Veterinary Hospital, Taipei (Chen), Taiwan
- Taipei Zoo, Taipei (Lee), Taiwan
| |
Collapse
|
7
|
Engelund MB, Madsen SS. Tubular localization and expressional dynamics of aquaporins in the kidney of seawater-challenged Atlantic salmon. J Comp Physiol B 2014; 185:207-23. [PMID: 25491777 DOI: 10.1007/s00360-014-0878-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/07/2014] [Accepted: 11/22/2014] [Indexed: 01/05/2023]
Abstract
Most vertebrate nephrons possess an inherited ability to secrete fluid in normal or pathophysiological states. We hypothesized that renal aquaporin expression and localization are functionally regulated in response to seawater and during smoltification in Atlantic salmon and thus reflect a shift in renal function from filtration towards secretion. We localized aquaporins (Aqp) in Atlantic salmon renal tubular segments by immunohistochemistry and monitored their expressional dynamics using RT-PCR and immunoblotting. Three aquaporins: Aqpa1aa, Aqp1ab and Aqp8b and two aquaglyceroporins Aqp3a and Aqp10b were localized in the kidney of salmon. The staining for all aquaporins was most abundant in the proximal kidney tubules and there was no clear effect of salinity or developmental stage on localization pattern. Aqp1aa and Aqp3a were abundant apically but extended throughout the epithelial cells. Aqp10b was expressed apically and along the lateral membrane. Aqp8b was mainly basolateral and Aqp1ab was located in sub-apical intracellular compartments. mRNAs of aqp8b and aqp10b were higher in FW smolts compared to FW parr, whereas the opposite was true for aqp1aa. Aqp mRNA levels changed in response to both SW and sham transfer. Protein levels, however, were stable for most paralogs. In conclusion, aquaporins are abundant in salmon proximal renal tubules and may participate in water secretion and thus urine modification as suggested for other vertebrates. Further studies should seek to couple functional measurements of single nephrons to expression and localization of Aqps in the salmonid kidney.
Collapse
Affiliation(s)
- Morten Buch Engelund
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark,
| | | |
Collapse
|
8
|
Brischoux F, Kornilev YV. Hypernatremia in Dice snakes (Natrix tessellata) from a coastal population: implications for osmoregulation in marine snake prototypes. PLoS One 2014; 9:e92617. [PMID: 24658047 PMCID: PMC3962449 DOI: 10.1371/journal.pone.0092617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
The widespread relationship between salt excreting structures (e.g., salt glands) and marine life strongly suggests that the ability to regulate salt balance has been crucial during the transition to marine life in tetrapods. Elevated natremia (plasma sodium) recorded in several marine snakes species suggests that the development of a tolerance toward hypernatremia, in addition to salt gland development, has been a critical feature in the evolution of marine snakes. However, data from intermediate stage (species lacking salt glands but occasionally using salty environments) are lacking to draw a comprehensive picture of the evolution of an euryhaline physiology in these organisms. In this study, we assessed natremia of free-ranging Dice snakes (Natrix tessellata, a predominantly fresh water natricine lacking salt glands) from a coastal population in Bulgaria. Our results show that coastal N. tessellata can display hypernatremia (up to 195.5 mmol x l(-1)) without any apparent effect on several physiological and behavioural traits (e.g., hematocrit, body condition, foraging). More generally, a review of natremia in species situated along a continuum of habitat use between fresh- and seawater shows that snake species display a concomitant tolerance toward hypernatremia, even in species lacking salt glands. Collectively, these data suggest that a physiological tolerance toward hypernatremia has been critical during the evolution of an euryhaline physiology, and may well have preceded the evolution of salt glands.
Collapse
Affiliation(s)
- François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-ULR, Villiers en Bois, France
| | - Yurii V. Kornilev
- Bulgarian Society for the Protection of Birds, NCC “Poda”, Burgas, Bulgaria
| |
Collapse
|
9
|
Cheng YC, Tu MC, Tsai JR, Lin HC, Lin LY. Comparison of the osmoregulatory capabilities among three amphibious sea snakes (Laticauda spp.) in Taiwan. Zool Stud 2013. [DOI: 10.1186/1810-522x-52-28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
The three species of amphibious sea snakes (Laticauda semifasciata, L. laticaudata, and L. colubrina) in Taiwan were described as having different habitat affinities from terrestrial to marine. In this study, the osmoregulatory capabilities of three species were compared to test if their capabilities were associated with different habitat affinities.
Results
The sea snakes were transferred from a terrestrial environment to freshwater (FW) or seawater (SW) for 1 week, and then, Na+/K+-ATPase (NKA) activities of the salt gland (sublingual glands) and kidneys, the water content of the muscles, the body fluid osmolality, and Na+, Cl−, and K+ concentrations were measured. Results showed that the body fluid osmolality, Na+ and Cl− levels, and muscle water content of most marine species, L. semifasciata, remained relatively constant, and the NKA activity of its salt gland was approximately threefold higher than those of L. laticaudata and L. colubrina. In both L. semifasciata and L. laticaudata, NKA activities of the salt glands were higher in SW than in FW; however, no significant change was found in L. colubrina (the most terrestrial species).
Conclusions
This study suggests that the NKA activity of the sublingual gland is associated with salt excretion, and the three species possess different osmoregulatory strategies which are associated with their habitat affinities.
Collapse
|
10
|
Brischoux F, Briand MJ, Billy G, Bonnet X. Variations of natremia in sea kraits (Laticauda spp.) kept in seawater and fresh water. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:333-7. [PMID: 23845707 DOI: 10.1016/j.cbpa.2013.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
|
11
|
Babonis LS, Brischoux F. Perspectives on the convergent evolution of tetrapod salt glands. Integr Comp Biol 2012; 52:245-56. [PMID: 22586069 DOI: 10.1093/icb/ics073] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since their discovery in 1958, the function of specialized salt-secreting glands in tetrapods has been studied in great detail, and such studies continue to contribute to a general understanding of transport mechanisms of epithelial water and ions. Interestingly, during that same time period, there have been only few attempts to understand the convergent evolution of this tissue, likely as a result of the paucity of taxonomic, embryological, and molecular data available. In this review, we synthesize the available data regarding the distribution of salt glands across extant and extinct tetrapod lineages and the anatomical position of the salt gland in each taxon. Further, we use these data to develop hypotheses about the various factors that have influenced the convergent evolution of salt glands across taxa with special focus on the variation in the anatomical position of the glands and on the molecular mechanisms that may have facilitated the development of a salt gland by co-option of a nonsalt-secreting ancestral gland. It is our hope that this review will stimulate renewed interest in the topic of the convergent evolution of salt glands and inspire future empirical studies aimed at evaluating the hypotheses we lay out herein.
Collapse
Affiliation(s)
- Leslie S Babonis
- Kewalo Marine Laboratory, PBRC/University of Hawaii, Honolulu, HI 96813, USA.
| | | |
Collapse
|
12
|
Babonis LS, Womack MC, Evans DH. Morphology and putative function of the colon and cloaca of marine and freshwater snakes. J Morphol 2011; 273:88-102. [DOI: 10.1002/jmor.11009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/06/2011] [Accepted: 06/24/2011] [Indexed: 11/06/2022]
|
13
|
Morphological and biochemical evidence for the evolution of salt glands in snakes. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:400-11. [PMID: 21807110 DOI: 10.1016/j.cbpa.2011.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/10/2011] [Accepted: 07/12/2011] [Indexed: 11/23/2022]
Abstract
Vertebrate salt glands have evolved independently multiple times, yet there are few hypotheses about the processes underlying the convergent evolution of salt glands across taxa. Here, we compare the morphology and molecular biology of specialized salt-secreting glands from a marine snake (Laticauda semifasciata) with the cephalic glands from semi-marine (Nerodia clarkii clarkii) and freshwater (N. fasciata) watersnakes to look for evidence of a salt gland in the former and to develop hypotheses about the evolution of snake salt glands. Like the salt gland of L. semifasciata, the nasal and anterior/posterior sublingual glands in both species of Nerodia exhibit a compound tubular shape, and express basolateral Na(+)/K(+)-ATPase (NKA) and Na(+)/K(+)/2Cl(-)cotransporter (NKCC); however, the abundance of NKA and NKCC in N. fasciata appears lower than in N. c. clarkii. Aquaporin 3 (AQP3) is also basolateral in the sublingual glands of both species of Nerodia, as is abundant neutral mucin; both AQP3 and mucin are absent from the salt gland in L. semifasciata. Thus, we propose that the evolution of the snake salt gland by co-option of an existing gland involved at least two steps: (i) an increase in the abundance of NKA and NKCC in the basolateral membranes of the secretory epithelia, and (ii) loss of AQP3/mucus secretion from these epithelia.
Collapse
|