1
|
Hunter-Manseau F, Cormier J, Pichaud N. From molecular to physiological responses: improved stress tolerance and longevity in Drosophila melanogaster under fluctuating thermal regimes. J Exp Biol 2025; 228:JEB249402. [PMID: 39698946 DOI: 10.1242/jeb.249402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Climate change introduces greater thermal variability, profoundly affecting ectothermic species whose body temperatures rely heavily on the environment. Understanding the physiological and metabolic responses to such variability is crucial for predicting how these species will cope with changing climates. This study investigates how chronic thermal stress impacts mitochondrial metabolism and physiological parameters in Drosophila melanogaster, hypothesizing that a fluctuating thermal regime (FTR) activates protective mechanisms enhancing stress tolerance and longevity. To test this, Drosophila were exposed to constant 24°C or to an FTR of 24°C:15°C (day:night) cycle following an initial 5 day period at 24°C. The FTR group exhibited rapid transcript level changes after the first day of FTR, particularly those related to heat shock proteins, mitophagy and regulatory factors, which returned to initial levels after 5 days. Mitochondrial respiration rates initially decreased after 1 and 2 days of FTR, then recovered by day 5, indicating rapid acclimation. Enhanced antioxidant enzyme activities were observed early in the FTR group, after 1 day for mtSOD and SODcyt+ext and 3 days for both SOD and catalase, followed by a decline by day 5, suggesting efficient oxidative stress management. The FTR group showed lower CTmax on day 3, reflecting possible physiological strain at that time point, and complete recovery by day 5. Longevity increased under FTR, highlighting the activation of protective mechanisms with beneficial long-term effects. These results suggest that FTR prompts a temporal succession of rapid physiological adjustments at different levels of organisation, enhancing long-term survival in D. melanogaster.
Collapse
Affiliation(s)
- Florence Hunter-Manseau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine, Moncton, NB, CanadaE1C 8X3
| | - Jolène Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine, Moncton, NB, CanadaE1C 8X3
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine, Moncton, NB, CanadaE1C 8X3
| |
Collapse
|
2
|
Waybright SA, Dillon ME. Soilscapes of Mortality Risk Suggest a Goldilocks Effect for Overwintering Ectotherms. Am Nat 2025; 205:E16-E33. [PMID: 39718789 DOI: 10.1086/733183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
AbstractChanging climates are driving population declines in diverse animals worldwide. Winter conditions may play an important role in these declines but are often overlooked. Animals must not only survive winter but also preserve body condition, a key determinant of growing season success. We hypothesized that ectotherms overwintering in soil face a trade-off between risks of cold damage (including freezing) near the surface and elevated energy use at deeper depths. To test this hypothesis, we developed landscapes of mortality risk across depth for overwintering bumble bee queens. These critical pollinators are in decline in part because of climate change, but little is known about how climate affects overwintering mortality. We developed a mechanistic modeling approach combining measurements of freezing points and the temperature dependence of metabolic rates with soil temperatures from across the United States to estimate mortality risk across depth under historic conditions and under several climate change scenarios. Under current conditions, overwintering queens face a Goldilocks effect: temperatures can be too cold at shallow depths because of substantial freezing risk but too hot at deep depths where they risk prematurely exhausting lipid stores. Models suggest that increases in mean temperatures and in seasonal and daily temperature variation will increase risk of overwinter mortality. Better predictions of effects of changing climate on dormant ectotherms require more measurements of physiological responses to temperature during dormancy across diverse taxa.
Collapse
|
3
|
Holzmann KL, Alonso-Alonso P, Correa-Carmona Y, Pinos A, Yon F, Brehm G, Keller A, Steffan-Dewenter I, Peters MK. Cold waves in the Amazon rainforest and their ecological impact. Biol Lett 2025; 21:20240591. [PMID: 39838733 PMCID: PMC11751630 DOI: 10.1098/rsbl.2024.0591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Cold waves crossing the Amazon rainforest are an extraordinary phenomenon likely to be affected by climate change. We here describe an extensive cold wave that occurred in June 2023 in Amazonian-Andean forests and compare environmental temperatures to experimentally measured thermal tolerances and their impact on lowland animal communities (insects and wild mammals). While we found strong reductions in activity abundance of all animal groups under the cold wave, tropical lowland animals showed thermal tolerance limits below the lowest environmental temperatures measured during the cold wave. While mammal activity and the biomass of most insects recovered over the next season, dung beetle biomass remained low. A quarter of all insects showed very small thermal safety margins (0.62 °C) with respect to the recorded minimum temperature of 10.5 °C, suggesting that an increased intensity of cold waves in the future could imperil cold-sensitive taxa of Amazonian animal communities.
Collapse
Affiliation(s)
- Kim L. Holzmann
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Pedro Alonso-Alonso
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Yenny Correa-Carmona
- Institut für Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller University Jena, 07743 Jena, Germany
| | - Andrea Pinos
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Felipe Yon
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, 15102 Lima, Peru
- Instituto de Medicina Tropical, Universidad Peruana Cayetano Heredia, 15102 Lima, Peru
| | - Gunnar Brehm
- Institut für Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller University Jena, 07743 Jena, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Marcell K. Peters
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
4
|
Dewenter BS, Shah AA, Hughes J, Poff NL, Thompson R, Kefford BJ. The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis. Ecol Evol 2024; 14:e10937. [PMID: 38405410 PMCID: PMC10891360 DOI: 10.1002/ece3.10937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
Climate change involves increases in mean temperature and changes in temperature variability at multiple temporal scales but research rarely considers these temporal scales. The climate variability hypothesis (CVH) provides a conceptual framework for exploring the potential effects of annual scale thermal variability across climatic zones. The CVH predicts ectotherms in temperate regions tolerate a wider range of temperatures than those in tropical regions in response to greater annual variability in temperate regions. However, various other aspects of thermal regimes (e.g. diel variability), organisms' size and taxonomic identity are also hypothesised to influence thermal tolerance. Indeed, high temperatures in the tropics have been proposed as constraining organisms' ability to tolerate a wide range of temperatures, implying that high annual maximum temperatures would be associated with tolerating a narrow range of temperatures. We measured thermal regimes and critical thermal limits (CTmax and CTmin) of freshwater insects in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) along elevation gradients in streams in temperate and tropical regions of eastern Australia and tested the CVH by determining which variables were most correlated with thermal breadth (T br = CTmax - CTmin). Consistent with the CVH, T br tended to increase with increasing annual temperature range. T br also increased with body size and T br was generally wider in Plecoptera than in Ephemeroptera or Trichoptera. We also find some support for a related hypothesis, the climate extreme hypothesis (CEH), particularly for predicting upper thermal limits. We found no evidence that higher annual maximum temperature constrained individuals' abilities to tolerate a wide range of temperatures. The support for the CVH we document suggests that temperate organisms may be able to tolerate wider ranges of temperatures than tropical organisms. There is an urgent need to investigate other aspects of thermal regimes, such as diel temperature cycling and minimum temperature.
Collapse
Affiliation(s)
- Beatrice S. Dewenter
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Alisha A. Shah
- W.K. Kellogg Biological Station, Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Jane Hughes
- School of Environment and ScienceGriffith UniversityNathanQueenslandAustralia
| | - N. LeRoy Poff
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Ross Thompson
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Ben J. Kefford
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
5
|
Rowe HI, Johnson B, Broatch J, Cruz TMP, Prudic KL. Winter Rains Support Butterfly Diversity, but Summer Monsoon Rainfall Drives Post-Monsoon Butterfly Abundance in the Arid Southwest of the US. INSECTS 2023; 15:5. [PMID: 38276819 PMCID: PMC10816195 DOI: 10.3390/insects15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Butterfly populations are declining worldwide, reflecting our current global biodiversity crisis. Because butterflies are a popular and accurate indicator of insect populations, these declines reflect an even more widespread threat to insects and the food webs upon which they rely. As small ectotherms, insects have a narrow range of habitable conditions; hence, extreme fluctuations and shifts caused by climate change may increase insects' risk of extinction. We evaluated trends of butterfly richness and abundance and their relationship with relevant climate variables in Arizona, U.S.A., using the past 40 years of community science data. We focused on precipitation and temperature as they are known to be influential for insect survival, particularly in arid areas like southwestern U.S.A. We found that preceding winter precipitation is a driver of both spring and summer/fall butterfly richness and spring butterfly abundance. In contrast, summer/fall butterfly abundance was driven by summer monsoon precipitations. The statistically significant declines over the 40-year period were summer/fall butterfly abundance and spring butterfly richness. When controlling for the other variables in the model, there was an average annual 1.81% decline in summer/fall season butterfly abundance and an average annual decline of 2.13 species in the spring season. As climate change continues to negatively impact winter precipitation patterns in this arid region, we anticipate the loss of butterfly species in this region and must consider individual butterfly species trends and additional management and conservation needs.
Collapse
Affiliation(s)
- Helen Ivy Rowe
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA
- Parsons Field Institute, McDowell Sonoran Conservancy, Scottsdale, AZ 85260, USA
| | - Bradly Johnson
- School of Mathematical and Natural Sciences, Arizona State University West, Phoenix, AZ 85069, USA (J.B.)
| | - Jennifer Broatch
- School of Mathematical and Natural Sciences, Arizona State University West, Phoenix, AZ 85069, USA (J.B.)
| | - Terese Maxine Papag Cruz
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA; (T.M.P.C.); (K.L.P.)
| | - Kathleen L. Prudic
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA; (T.M.P.C.); (K.L.P.)
- Arizona Institute for Resilience, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Awde DN, Řeřicha M, Knapp M. Increased pupal temperature has reversible effects on thermal performance and irreversible effects on immune system and fecundity in adult ladybirds. Commun Biol 2023; 6:838. [PMID: 37573399 PMCID: PMC10423239 DOI: 10.1038/s42003-023-05196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023] Open
Abstract
The environmental conditions an organism encounters during development vary in their lasting impact on adult phenotypes. In the context of ongoing climate change, it is particularly relevant to understand how high developmental temperatures can impact adult traits, and whether these effects persist or diminish during adulthood. Here, we assessed the effects of pupal temperature (17 °C - normal temperature, 26 °C - increased temperature, or 35 °C - heat wave) on adult Harmonia axyridis thermal stress tolerance, immune function, starvation resistance, and fecundity. The temperature during pupation significantly affected all investigated traits in fresh adults. Heat acclimation decreased adult haemocyte concentration, cold tolerance, and total egg production, and had a positive effect on heat tolerance and starvation resistance. The negative effects of heat acclimation on cold tolerance diminished after seven days. In contrast, heat acclimation had a lasting positive effect on adult heat tolerance. Our results provide a broad assessment of the effects of developmental thermal acclimation on H. axyridis adult phenotypes. The relative plasticity of several adult traits after thermal acclimation may be consequential for the future geographic distribution and local performance of various insect species.
Collapse
Affiliation(s)
- David N Awde
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
- Department of Biology, Faculty of Science, Mount Saint Vincent University, Halifax, NS, Canada
| | - Michal Řeřicha
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Michal Knapp
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic.
| |
Collapse
|
7
|
Mbande A, Mutamiswa R, Chidawanyika F. Ontogenetic responses of physiological fitness in Spodoptera frugiperda (Lepidoptera: Noctuidae) in response to repeated cold exposure. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:449-455. [PMID: 37587795 DOI: 10.1017/s0007485323000111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
In this era of global climate change, intrinsic rapid and evolutionary responses of invasive agricultural pests to thermal variability are of concern given the potential implications on their biogeography and dire consequences on human food security. For insects, chill coma recovery time (CCRT) and critical thermal minima (CTmin), the point at which neuromuscular coordination is lost following cold exposure, remain good indices for cold tolerance. Using laboratory-reared Spodoptera frugiperda (Lepidoptera: Noctuidae), we explored cold tolerance repeated exposure across life stages of this invasive insect pest. Specifically, we measured their CTmin and CCRT across four consecutive assays, each 24 h apart. In addition, we assessed body water content (BWC) and body lipid content (BLC) of the life stages. Our results showed that CTmin improved with repeated exposure in 5th instar larvae, virgin males and females while CCRT improved in 4th, 5th and 6th instar larvae following repeated cold exposure. In addition, the results revealed evidence of cold hardening in this invasive insect pest. However, there was no correlation between cold tolerance and BWC as well as BLC. Our results show capacity for cold hardening and population persistence of S. frugiperda in cooler environments. This suggests potential of fall armyworm (FAW) to withstand considerable harsh winter environments typical of its recently invaded geographic range in sub-Saharan Africa.
Collapse
Affiliation(s)
- Abongile Mbande
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| | - Reyard Mutamiswa
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
- Tugwi-Mukosi Multidisciplinary Research Institute, Midlands State University, Gweru, Zimbabwe
- Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Frank Chidawanyika
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| |
Collapse
|
8
|
Bennett MM, DeBardlabon KM, Rinehart JP, Yocum GD, Greenlee KJ. Effects of developmental state on low-temperature physiology of the alfalfa leafcutting bee, Megachile rotundata. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:299-305. [PMID: 36883790 DOI: 10.1017/s0007485321001103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The success of agriculture relies on healthy bees to pollinate crops. Commercially managed pollinators are often kept under temperature-controlled conditions to better control development and optimize field performance. One such pollinator, the alfalfa leafcutting bee, Megachile rotundata, is the most widely used solitary bee in agriculture. Problematically, very little is known about the thermal physiology of M. rotundata or the consequences of artificial thermal regimes used in commercial management practices. Therefore, we took a broad look at the thermal performance of M. rotundata across development and the effects of commonly used commercial thermal regimes on adult bee physiology. After the termination of diapause, we hypothesized thermal sensitivity would vary across pupal metamorphosis. Our data show that bees in the post-diapause quiescent stage were more tolerant of low temperatures compared to bees in active development. We found that commercial practices applied during development decrease the likelihood of a bee recovering from another bout of thermal stress in adulthood, thereby decreasing their resilience. Lastly, commercial regimes applied during development affected the number of days to adult emergence, but the time of day that adults emerged was unaffected. Our data demonstrate the complex interactions between bee development and thermal regimes used in management. This knowledge can help improve the commercial management of these bees by optimizing the thermal regimes used and the timing of their application to alleviate negative downstream effects on adult performance.
Collapse
Affiliation(s)
- Meghan M Bennett
- USDA-ARS Carl Hayden Bee Research Center, 2000 East Allen Road, Tucson, AZ 85719, USA
| | - Korie M DeBardlabon
- Biosciences Research Laboratory, USDA_ARS, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Boulevard North, Fargo, ND 58102-2765, USA
- Department of Biological Sciences, North Dakota State University, 308 Stevens Hall, P.O. Box 6050, Fargo, ND 58102, USA
| | - Joseph P Rinehart
- Biosciences Research Laboratory, USDA_ARS, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Boulevard North, Fargo, ND 58102-2765, USA
| | - George D Yocum
- Biosciences Research Laboratory, USDA_ARS, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Boulevard North, Fargo, ND 58102-2765, USA
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, 308 Stevens Hall, P.O. Box 6050, Fargo, ND 58102, USA
| |
Collapse
|
9
|
Papadogiorgou GD, Moraiti CA, Nestel D, Terblanche JS, Verykouki E, Papadopoulos NT. Acute cold stress and supercooling capacity of Mediterranean fruit fly populations across the Northern Hemisphere (Middle East and Europe). JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104519. [PMID: 37121467 DOI: 10.1016/j.jinsphys.2023.104519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
The Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), holds an impressive record of successful invasion events promoted by globalization in fruit trade and human mobility. In addition, C. capitata is gradually expanding its geographic distribution to cooler temperate areas of the Northern Hemisphere. Cold tolerance of C. capitata seems to be a crucial feature that promotes population establishment and hence invasion success. To elucidate the interplay between the invasion process in the northern hemisphere and cold tolerance of geographically isolated populations of C. capitata, we determined (a) the response to acute cold stress survival of adults, and (b) the supercooling capacity (SCP) of immature stages and adults. To assess the phenotypic plasticity in these populations, the effect of acclimation to low temperatures on acute cold stress survival in adults was also examined. The results revealed that survival after acute cold stress was positively related to low temperature acclimation, except for females originating from Thessaloniki (northern Greece). Adults from the warmer environment of South Arava (Israel) were less tolerant after acute cold stress compared with those from Heraklion (Crete, Greece) and Thessaloniki. Plastic responses to cold acclimation were population specific, with the South Arava population being more plastic compared to the two Greek populations. For SCP, the results revealed that there is little to no correlation between SCP and climate variables of the areas where C. capitata populations originated. SCP was much lower than the lowest temperature individuals are likely to experience in their respective habitats. These results set the stage for asking questions regarding the evolutionary adaptive processes that facilitate range expansions of C. capitata into cooler temperate areas of Europe.
Collapse
Affiliation(s)
- Georgia D Papadogiorgou
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Cleopatra A Moraiti
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - David Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa
| | - Eleni Verykouki
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Nikos T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| |
Collapse
|
10
|
Gill LT, Kennedy JR, Marshall KE. Proteostasis in ice: the role of heat shock proteins and ubiquitin in the freeze tolerance of the intertidal mussel, Mytilus trossulus. J Comp Physiol B 2023; 193:155-169. [PMID: 36593419 DOI: 10.1007/s00360-022-01473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
The bay mussel, Mytilus trossulus, is an animal that can survive extracellular ice formation. Depending on air and ocean temperatures, freeze tolerant intertidal organisms, like M. trossulus, may freeze and thaw many times during the winter. Freezing can cause protein denaturation, leading to an induction of the heat shock response with expression of chaperone proteins like the 70 kDa heat shock protein (HSP70), and an increase in ubiquitin-conjugated proteins. There has been little work on the mechanisms of freeze tolerance in intertidal species, limiting our understanding of this survival strategy. Additionally, this limited research has focused solely on the effects of single freezing events, but the act of repeatedly crossing the freezing threshold may present novel physiological or biochemical stressors that have yet to be discovered. Mytilus are important ecosystem engineers and provide habitat for other intertidal species, thus understanding their physiology under thermal extremes is important for preserving shoreline health. We predicted that repeated freeze exposures would increase mortality, upregulate HSP70 expression, and increase ubiquitin conjugates in mussels, relative to single, prolonged freeze exposures. Mytilus trossulus from Vancouver, Canada were repeatedly frozen for a combination of 1 × 8 h, 2 × 4 h, or 4 × 2 h. We then compared mortality, HSP70 expression, and the quantity of ubiquitin-conjugated proteins across experimental groups. We found a single 8-h freeze caused significantly more mortality than repeated freeze-thaw cycles. We also found that HSP70 and ubiquitinated protein was upregulated exclusively after freeze-thaw cycles, suggesting that freeze-thaw cycles offer a period of damage repair between freezes. This indicates that freeze-thaw cycles, which happen naturally in the intertidal, are crucial for M. trossulus survival in sub-zero temperatures.
Collapse
Affiliation(s)
- Lauren T Gill
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Jessica R Kennedy
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
11
|
Püffel F, Johnston R, Labonte D. A biomechanical model for the relation between bite force and mandibular opening angle in arthropods. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221066. [PMID: 36816849 PMCID: PMC9929505 DOI: 10.1098/rsos.221066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Bite forces play a key role in animal ecology: they affect mating behaviour, fighting success, and the ability to feed. Although feeding habits of arthropods have a significant ecological and economical impact, we lack fundamental knowledge on how the morphology and physiology of their bite apparatus controls bite performance, and its variation with mandible gape. To address this gap, we derived a biomechanical model that characterizes the relationship between bite force and mandibular opening angle from first principles. We validate this model by comparing its geometric predictions with morphological measurements on the muscoloskeletal bite apparatus of Atta cephalotes leaf-cutter ants, using computed tomography (CT) scans obtained at different mandible opening angles. We then demonstrate its deductive and inductive utility with three examplary use cases: Firstly, we extract the physiological properties of the leaf-cutter ant mandible closer muscle from in vivo bite force measurements. Secondly, we show that leaf-cutter ants are specialized to generate extraordinarily large bite forces, equivalent to about 2600 times their body weight. Thirdly, we discuss the relative importance of morphology and physiology in determining the magnitude and variation of bite force. We hope that a more detailed quantitative understanding of the link between morphology, physiology, and bite performance will facilitate future comparative studies on the insect bite apparatus, and help to advance our knowledge of the behaviour, ecology and evolution of arthropods.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Richard Johnston
- School of Engineering, Materials Research Centre, Swansea University, Swansea SA2 8PP, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
12
|
De La Torre AM, López-Martínez G. Anoxia hormesis improves performance and longevity at the expense of fitness in a classic life history trade-off. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159629. [PMID: 36280058 DOI: 10.1016/j.scitotenv.2022.159629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Hormesis occurs as a result of biphasic dose relationship resulting in stimulatory responses at low doses and inhibitory ones at high doses. In this framework, environmental factors are often studied to understand how this exposure benefits the animal. In the current study we used anoxia, the total absence of oxygen, as the most extreme version of low oxygen hormesis. Our goal was to determine the dose, the extent of the effect, and the cost of that response in Tenebrio molitor. We identified that the hormetic range (1 to 3 h of anoxia) was similar to that of other insects. Individuals that were exposed to 3 h had high emergence, increased activity throughout life, and lived longer. Beetles that experienced 1 h of anoxia performed better than the controls while the 6-h group had compromised performance. These boosts in performance at 3 h were accompanied by significant costs. Treated individuals had a delay in development and once matured they had decreased fitness. There were also transgenerational effects of hormesis and F1 beetles also experienced a delay in development. Additionally, the F1 generation had decreased developmental completion (i.e., stress-induced developmental halt). Our data suggests that anoxia hormesis triggers a trade-off where individuals benefiting from improved performance and living longer experience a decrease in reproduction.
Collapse
Affiliation(s)
- Alyssa M De La Torre
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States of America; College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Giancarlo López-Martínez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States of America; Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, United States of America.
| |
Collapse
|
13
|
Kefford BJ, Ghalambor CK, Dewenter B, Poff NL, Hughes J, Reich J, Thompson R. Acute, diel, and annual temperature variability and the thermal biology of ectotherms. GLOBAL CHANGE BIOLOGY 2022; 28:6872-6888. [PMID: 36177681 PMCID: PMC9828456 DOI: 10.1111/gcb.16453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Global warming is increasing mean temperatures and altering temperature variability at multiple temporal scales. To better understand the consequences of changes in thermal variability for ectotherms it is necessary to consider thermal variation at different time scales (i.e., acute, diel, and annual) and the responses of organisms within and across generations. Thermodynamics constrain acute responses to temperature, but within these constraints and over longer time periods, organisms have the scope to adaptively acclimate or evolve. Yet, hypotheses and predictions about responses to future warming tend not to explicitly consider the temporal scale at which temperature varies. Here, focusing on multicellular ectothermic animals, we argue that consideration of multiple processes and constraints associated with various timescales is necessary to better understand how altered thermal variability because of climate change will affect ectotherms.
Collapse
Affiliation(s)
- Ben J. Kefford
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Cameron K. Ghalambor
- Department of Biology and Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Beatrice Dewenter
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - N. LeRoy Poff
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
- Department of Biology and Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Jane Hughes
- Australian Rivers InstituteGriffith UniversityNathanQueenslandAustralia
| | - Jollene Reich
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Ross Thompson
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
14
|
Renault D, Leclerc C, Colleu M, Boutet A, Hotte H, Colinet H, Chown SL, Convey P. The rising threat of climate change for arthropods from Earth's cold regions: Taxonomic rather than native status drives species sensitivity. GLOBAL CHANGE BIOLOGY 2022; 28:5914-5927. [PMID: 35811569 PMCID: PMC9544941 DOI: 10.1111/gcb.16338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Polar and alpine regions are changing rapidly with global climate change. Yet, the impacts on biodiversity, especially on the invertebrate ectotherms which are dominant in these areas, remain poorly understood. Short-term extreme temperature events, which are growing in frequency, are expected to have profound impacts on high-latitude ectotherms, with native species being less resilient than their alien counterparts. Here, we examined in the laboratory the effects of short periodic exposures to thermal extremes on survival responses of seven native and two non-native invertebrates from the sub-Antarctic Islands. We found that survival of dipterans was significantly reduced under warming exposures, on average having median lethal times (LT50 ) of about 30 days in control conditions, which declined to about 20 days when exposed to daily short-term maxima of 24°C. Conversely, coleopterans were either not, or were less, affected by the climatic scenarios applied, with predicted LT50 as high as 65 days under the warmest condition (daily exposures at 28°C for 2 h). The native spider Myro kerguelensis was characterized by an intermediate sensitivity when subjected to short-term daily heat maxima. Our results unexpectedly revealed a taxonomic influence, with physiological sensitivity to heat differing between higher level taxa, but not between native and non-native species representing the same higher taxon. The survival of a non-native carabid beetle under the experimentally imposed conditions was very high, but similar to that of native beetles, while native and non-native flies also exhibited very similar sensitivity to warming. As dipterans are a major element of diversity of sub-Antarctic, Arctic and other cold ecosystems, such observations suggest that the increased occurrence of extreme, short-term, thermal events could lead to large-scale restructuring of key terrestrial ecosystem components both in ecosystems protected from and those exposed to the additional impacts of biological invasions.
Collapse
Affiliation(s)
- David Renault
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
| | - Camille Leclerc
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
- INRAE, Aix‐Marseille Université, UMR RECOVERAix‐en‐ProvenceFrance
| | - Marc‐Antoine Colleu
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
| | - Aude Boutet
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
| | - Hoel Hotte
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
- Nematology Unit, Plant Health LaboratoryANSESLe Rheu CedexFrance
| | - Hervé Colinet
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Peter Convey
- British Antarctic Survey, NERCCambridgeUK
- Department of ZoologyUniversity of JohannesburgAuckland ParkSouth Africa
| |
Collapse
|
15
|
Ørsted M, Jørgensen LB, Overgaard J. Finding the right thermal limit: a framework to reconcile ecological, physiological and methodological aspects of CTmax in ectotherms. J Exp Biol 2022; 225:277015. [DOI: 10.1242/jeb.244514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Upper thermal limits (CTmax) are frequently used to parameterize the fundamental niche of ectothermic animals and to infer biogeographical distribution limits under current and future climate scenarios. However, there is considerable debate associated with the methodological, ecological and physiological definitions of CTmax. The recent (re)introduction of the thermal death time (TDT) model has reconciled some of these issues and now offers a solid mathematical foundation to model CTmax by considering both intensity and duration of thermal stress. Nevertheless, the physiological origin and boundaries of this temperature–duration model remain unexplored. Supported by empirical data, we here outline a reconciling framework that integrates the TDT model, which operates at stressful temperatures, with the classic thermal performance curve (TPC) that typically describes biological functions at permissive temperatures. Further, we discuss how the TDT model is founded on a balance between disruptive and regenerative biological processes that ultimately defines a critical boundary temperature (Tc) separating the TDT and TPC models. Collectively, this framework allows inclusion of both repair and accumulation of heat stress, and therefore also offers a consistent conceptual approach to understand the impact of high temperature under fluctuating thermal conditions. Further, this reconciling framework allows improved experimental designs to understand the physiological underpinnings and ecological consequences of ectotherm heat tolerance.
Collapse
Affiliation(s)
- Michael Ørsted
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| | | | - Johannes Overgaard
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| |
Collapse
|
16
|
Beet CR, Hogg ID, Cary SC, McDonald IR, Sinclair BJ. The Resilience of Polar Collembola (Springtails) in a Changing Climate. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100046. [PMID: 36683955 PMCID: PMC9846479 DOI: 10.1016/j.cris.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Assessing the resilience of polar biota to climate change is essential for predicting the effects of changing environmental conditions for ecosystems. Collembola are abundant in terrestrial polar ecosystems and are integral to food-webs and soil nutrient cycling. Using available literature, we consider resistance (genetic diversity; behavioural avoidance and physiological tolerances; biotic interactions) and recovery potential for polar Collembola. Polar Collembola have high levels of genetic diversity, considerable capacity for behavioural avoidance, wide thermal tolerance ranges, physiological plasticity, generalist-opportunistic feeding habits and broad ecological niches. The biggest threats to the ongoing resistance of polar Collembola are increasing levels of dispersal (gene flow), increased mean and extreme temperatures, drought, changing biotic interactions, and the arrival and spread of invasive species. If resistance capacities are insufficient, numerous studies have highlighted that while some species can recover from disturbances quickly, complete community-level recovery is exceedingly slow. Species dwelling deeper in the soil profile may be less able to resist climate change and may not recover in ecologically realistic timescales given the current rate of climate change. Ultimately, diverse communities are more likely to have species or populations that are able to resist or recover from disturbances. While much of the Arctic has comparatively high levels of diversity and phenotypic plasticity; areas of Antarctica have extremely low levels of diversity and are potentially much more vulnerable to climate change.
Collapse
Affiliation(s)
- Clare R. Beet
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Ian D. Hogg
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, Nunavut, Canada
| | - S. Craig Cary
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Ian R. McDonald
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Brent J. Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
17
|
Weak effects on growth and cannibalism under fluctuating temperatures in damselfly larvae. Sci Rep 2022; 12:12910. [PMID: 35902660 PMCID: PMC9334275 DOI: 10.1038/s41598-022-17192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
The Earth’s climate is changing with a trend towards higher mean temperatures and increased temperature fluctuations. Little attention has been paid to the effects of thermal variation on competition within species. Understanding the temperature-dependence of competition is important since it might affect dynamics within and between populations. In a laboratory experiment we investigated the effects of thermal variation on growth and cannibalism in larvae of a damselfly. The temperature treatments included three amplitudes between 20 and 26 °C with an average of 23 °C, and a constant control at 23 °C. Larvae were also raised at five constant temperatures for an estimation of the thermal performance curve, which showed that the thermal optimum for growth was 26.9 °C. Cannibalism was significantly positively correlated with initial body size variance. There was neither a difference among the temperature variation treatments, nor between the constant and the variation treatments in growth and cannibalism. Hence, positive and negative effects of temperature variation within the linear range of a species thermal performance curve might cancel each other out. Since our study mimicked natural temperature conditions, we suggest that the increase in temperature variation predicted by climate models will not necessarily differ from the effects without an increase in variation.
Collapse
|
18
|
Neu A, Fischer K. Indications for rapid evolution of trait means and thermal plasticity in range-expanding populations of a butterfly. J Evol Biol 2021; 35:124-133. [PMID: 34860427 DOI: 10.1111/jeb.13969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023]
Abstract
Currently, poleward range expansions are observed in many taxa, often in response to anthropogenic climate change. At the expanding front, populations likely face cooler and more variable temperature conditions, imposing thermal selection. This may result in changes in trait means or plasticity, the relative contribution of which is not well understood. We, here, investigate evolutionary change in range-expanding populations of the butterfly Pieris mannii, by comparing populations from the core and the newly established northern range under laboratory conditions. We observed both changes in trait means and in thermal reaction norms. Range-expanding populations showed a more rapid development, potentially indicative of counter-gradient variation and an increased cold tolerance compared with core populations. Genotype-environment interactions prevailed in all associated traits, such that the above differences were restricted to cooler environmental conditions. In range-expanding populations, plasticity was decreased in developmental traits enabling relatively rapid growth even under cooler conditions but increased in cold tolerance arguably promoting higher activity under thermally challenging conditions. Notably, these changes must have occurred within a time period of ca. 10 years only. Our results suggest, in line with contemporary theory, that the evolution of plasticity may play a hitherto underestimated role for adaptation to climatic variation. However, rather than generally increased or decreased levels of plasticity, our results indicate fine-tuned, trait-specific evolutionary responses to increase fitness in novel environments.
Collapse
Affiliation(s)
- Anika Neu
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
19
|
Adult cold tolerance and potential North American distribution of Myllocerus undecimpustulatus undatus (Coleoptera: Curculionidae). Biol Invasions 2021. [DOI: 10.1007/s10530-021-02601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractCold tolerance and potential distribution of Myllocerus undecimpustulatus undatus Marshall, a polyphagous pest in the United States, were investigated. Adult survivorship after 2 days at 0 °C and − 5 °C averaged 60% and 18%, respectively. Four days of exposure resulted in survivorship of 11% at 0 °C and 4% at − 5 °C, respectively. Summer-collected weevils at − 5 °C through repeated cold exposure of 2 h survived 3 times longer than those subjected to sustained cold period of 10 h. Leaf consumption did not differ among summer-collected weevils at constant 20 °C and repeated cold exposure treatments; weevils under sustained cold exposure consumed less than weevils in repeated cold exposure treatments. Leaf area consumed after cold exposure was 2–4 times greater in winter-collected weevils compared to summer-collected weevils. Leaf consumption by winter-collected weevils decreased as the number of repeated cold exposure periods increased. Locality data from collections in Florida during 2000–2012 were used to produce a correlative model complemented by a mechanistic model from the cold tolerance data to project the potential distribution of M. undecimpustulatus undatus in North America. The models support the hypothesis that M. undecimpustulatus undatus could spread to areas of the southeastern and western United States. The predicted northern distribution followed an isothermal line about 33° North. The niche model defined an area along the western Gulf Coast as unsuitable for the weevil, possibly because the area receives greater annual rainfall than other areas of the southeastern United States and has aquic or udic soil unlike the well-drained sandy soil of peninsular Florida.
Collapse
|
20
|
Butterson S, Roe AD, Marshall KE. Plasticity of cold hardiness in the eastern spruce budworm, Choristoneura fumiferana. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:110998. [PMID: 34082110 DOI: 10.1016/j.cbpa.2021.110998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/18/2022]
Abstract
High latitude insect populations must cope with extreme conditions, particularly low temperatures. Insects use a variety of cold hardiness mechanisms to withstand this temperature stress, and these can drive geographic distributions through overwintering mortality. The degree of cold hardiness can be altered by two evolved responses: phenotypic plasticity and local adaptation. Phenotypic plasticity can occur within or between generations (transgenerational plasticity; TGP), and local adaptation can evolve through directional selection in response to regional climatic differences. We used the eastern spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) as a model to explore the role that variable winter temperatures play in inducing two aspects of plasticity in cold hardiness: TGP and local adaptation in phenotypic plasticity. This species is one of the most destructive boreal forest pests in North America, therefore accurately predicting overwintering survival is essential for effective management. While we found no evidence of TGP in cold hardiness, there was a long term fitness cost to larvae that experienced repeated cold exposures. We also found evidence of local adaptation in both seasonal and short-term plasticity of cold hardiness, as our more northerly populations that would experience lower overwintering temperatures had more plastic responses to cold exposure. These findings provide evidence for the importance of phenotypic plasticity and local adaptation when modelling species distributions.
Collapse
Affiliation(s)
- Skye Butterson
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amanda D Roe
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON P6A 2E5, Canada.
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
21
|
Tremblay P, MacMillan HA, Kharouba HM. Autumn larval cold tolerance does not predict the northern range limit of a widespread butterfly species. Ecol Evol 2021; 11:8332-8346. [PMID: 34188890 PMCID: PMC8216912 DOI: 10.1002/ece3.7663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/10/2022] Open
Abstract
Climate change is driving range shifts, and a lack of cold tolerance is hypothesized to constrain insect range expansion at poleward latitudes. However, few, if any, studies have tested this hypothesis during autumn when organisms are subjected to sporadic low-temperature exposure but may not have become cold-tolerant yet. In this study, we integrated organismal thermal tolerance measures into species distribution models for larvae of the Giant Swallowtail butterfly, Papilio cresphontes (Lepidoptera: Papilionidae), living at the northern edge of its actively expanding range. Cold hardiness of field-collected larvae was determined using three common metrics of cold-induced physiological thresholds: the supercooling point, critical thermal minimum, and survival following cold exposure. P. cresphontes larvae were determined to be tolerant of chilling but generally die at temperatures below their SCP, suggesting they are chill-tolerant or modestly freeze-avoidant. Using this information, we examined the importance of low temperatures at a broad scale, by comparing species distribution models of P. cresphontes based only on environmental data derived from other sources to models that also included the cold tolerance parameters generated experimentally. Our modeling revealed that growing degree-days and precipitation best predicted the distribution of P. cresphontes, while the cold tolerance variables did not explain much variation in habitat suitability. As such, the modeling results were consistent with our experimental results: Low temperatures in autumn are unlikely to limit the distribution of P. cresphontes. Understanding the factors that limit species distributions is key to predicting how climate change will drive species range shifts.
Collapse
|
22
|
Morgan Fleming J, Carter AW, Sheldon KS. Dung beetles show metabolic plasticity as pupae and smaller adult body size in response to increased temperature mean and variance. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104215. [PMID: 33662376 DOI: 10.1016/j.jinsphys.2021.104215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Though organisms may use thermal plasticity to cope with novel temperature regimes, our understanding of plastic responses is limited. Research on thermal plasticity has traditionally focused on the response of organisms to shifts in mean temperatures. However, increased temperature variation can have a greater impact on organismal performance than mean temperature alone. In addition, thermal plasticity studies are often designed to investigate plasticity in response to more extreme temperatures despite the fact that organisms make physiological adjustments to diurnal temperature fluctuations that they experience. Using pupae of the dung beetle Onthophagus taurus, we investigated the potential for plasticity in response to increasing temperature mean and variance using thermal regimes that were well within the species critical thermal limits. We reared 40 beetles from egg to pupae (n = 20) or adults (n = 20) at one of nine incubation treatments, including all combinations of three mean temperatures (22, 24, 26 °C) and three amplitudes of fluctuation (±2, ±4, ±8 °C). To measure thermal plasticity of pupae, we quantified CO2 production across a range of temperatures (i.e., 15, 20, 25, and 30 °C) for 20 beetles per treatment. The relationship between CO2 production and temperature provides an estimate of energetic costs at a given temperature (i.e., using the intercept) and thermal sensitivity (i.e., using the slope). We reared the remaining O. taurus in each treatment (n = 20) to adulthood and then recorded mass (g) to determine body size, a proxy for fitness. Pupae exhibited thermal plasticity in response to the additive and interactive effects of temperature mean and variance. Pupae reared in the warmest and most variable treatment (26 ± 8 °C) showed the greatest decrease in overall metabolism compared to all other treatments, and adult beetles from this treatment (26 ± 8 °C) were also significantly smaller than adult beetles from any other treatment. We found that both temperature mean and variance contributed to thermal plasticity of pupae and had consequences for adult body size, a trait related to dung beetle fitness. Importantly, the temperatures we used in our treatments are not extreme and are likely well below the critical thermal maxima of the species, demonstrating that organisms can make adjustments to temperatures they experience across diurnal or seasonal timescales.
Collapse
Affiliation(s)
- J Morgan Fleming
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| | - Amanda W Carter
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| | - Kimberly S Sheldon
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| |
Collapse
|
23
|
Marshall KE, Anderson KM, Brown NEM, Dytnerski JK, Flynn KL, Bernhardt JR, Konecny CA, Gurney-Smith H, Harley CDG. Whole-organism responses to constant temperatures do not predict responses to variable temperatures in the ecosystem engineer Mytilus trossulus. Proc Biol Sci 2021; 288:20202968. [PMID: 33757343 DOI: 10.1098/rspb.2020.2968] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Understanding and predicting responses of ectothermic animals to temperature are essential for decision-making and management. The thermal performance curve (TPC), which quantifies the thermal sensitivity of traits such as metabolism, growth and feeding rates in laboratory conditions, is often used to predict responses of wild populations. However, central assumptions of this approach are that TPCs are relatively static between populations and that curves measured under stable temperature conditions can predict performance under variable conditions. We test these assumptions using two latitudinally matched populations of the ecosystem engineer Mytilus trossulus that differ in their experienced temperature variability regime. We acclimated each population in a range of constant or fluctuating temperatures for six weeks and measured a series of both short term (feeding rate, byssal thread production) and long-term (growth, survival) metrics to test the hypothesis that performance in fluctuating temperatures can be predicted from constant temperatures. We find that this was not true for any metric, and that there were important interactions with the population of origin. Our results emphasize that responses to fluctuating conditions are still poorly understood and suggest caution must be taken in the use of TPCs generated under constant temperature conditions for the prediction of wild population responses.
Collapse
Affiliation(s)
- Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn M Anderson
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Norah E M Brown
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada.,Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - James K Dytnerski
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Kelsey L Flynn
- Fisheries and Oceans Canada, Aquatic Diagnostics, Genomics & Technology, Nanaimo, British Columbia, Canada
| | - Joey R Bernhardt
- Department of Ecology and Evolutionary Biology, Yale University, CT, USA
| | - Cassandra A Konecny
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Helen Gurney-Smith
- Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Biological Effects Section, St Andrews, New Brunswick, Canada.,Hakai Institute, Heriot Bay Road, Quadra Island, British Columbia, Canada
| | - Christopher D G Harley
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada.,Hakai Institute, Heriot Bay Road, Quadra Island, British Columbia, Canada
| |
Collapse
|
24
|
Tarusikirwa VL, Mutamiswa R, Chidawanyika F, Nyamukondiwa C. Cold hardiness of the South American tomato pinworm Tuta absoluta (Lepidoptera: Gelechiidae): both larvae and adults are chill-susceptible. PEST MANAGEMENT SCIENCE 2021; 77:184-193. [PMID: 32652749 DOI: 10.1002/ps.6006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/30/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND For many insects, including invasive species, overwintering survival is achieved behaviourally (e.g. through migration) or physiologically by entering diapause, a state of arrested physiological development that may be accompanied with depressed supercooling points (SCPs). Diapause allows in situ adaptation to adverse environmental conditions, providing sufficient parent propagules for insect pest proliferation when optimal conditions resurface. This phenomenon has however not been observed in the invasive South American tomato pinworm Tuta absoluta in its Mediterranean invaded areas. Moreover, no studies have looked at its overwintering survival in sub-Saharan Africa. Here, we thus investigated the cold hardiness of Tuta absoluta larvae and adults to better explain its local overwintering adaptation strategy. RESULTS Larval lower lethal temperatures ranged from -1 to -17 °C for 0.5 to 4 h durations. Adults showed lower temperature activity limits than larvae albeit freeze strategy experiments showed neither survived internal freezing. Fasting and dehydration pre-treatment generally depressed SCPs, although asymmetrically, conferring more negative SCPs for larvae. Ramping rates, synonymic to diurnal temperature changes also significantly affected SCPs while, inoculative freezing significantly compromised freezing temperatures in both larvae and adults. CONCLUSION Our results suggest that (i) Tuta absoluta larvae and adults are chill-susceptible and may successfully overwinter, (ii) larvae appear more cold hardy than adults and (iii) ecological factors e.g. inoculative freezing, cooling rates, feeding- and hydration-status may affect cold hardiness. These results are important in determining species range limits, population phenology, modelling pest risk status and allows temporal life-stage specific targeting of management strategies.
Collapse
Affiliation(s)
- Vimbai L Tarusikirwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Reyard Mutamiswa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| | - Frank Chidawanyika
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
25
|
Feliciello I, Pezer Ž, Sermek A, Bruvo Mađarić B, Ljubić S, Ugarković Đ. Satellite DNA-Mediated Gene Expression Regulation: Physiological and Evolutionary Implication. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:145-167. [PMID: 34386875 DOI: 10.1007/978-3-030-74889-0_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite DNAs are tandemly repeated sequences organized in large clusters within (peri)centromeric and/or subtelomeric heterochromatin. However, in many species, satellite DNAs are not restricted to heterochromatin but are also dispersed as short arrays within euchromatin. Such genomic organization together with transcriptional activity seems to be a prerequisite for the gene-modulatory effect of satellite DNAs which was first demonstrated in the beetle Tribolium castaneum upon heat stress. Namely, enrichment of a silent histone mark at euchromatic repeats of a major beetle satellite DNA results in epigenetic silencing of neighboring genes. In addition, human satellite III transcripts induced by heat shock contribute to genome-wide gene silencing, providing protection against stress-induced cell death. Gene silencing mediated by satellite RNA was also shown to be fundamental for the early embryonic development of the mosquito Aedes aegypti. Apart from a physiological role during embryogenesis and heat stress response, activation of satellite DNAs in terms of transcription and proliferation can have an evolutionary impact. Spreading of satellite repeats throughout euchromatin promotes the variation of epigenetic landscapes and gene expression diversity, contributing to the evolution of gene regulatory networks and to genome adaptation in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.,Dipartimento di Medicina Clinica e Chirurgia, Universita' degli Studi di Napoli Federico II, Naples, Italy
| | - Željka Pezer
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Antonio Sermek
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Sven Ljubić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
26
|
Ramadan MM, Abdel-Hady AAA, Guedes RNC, Hashem AS. Low temperature shock and chill-coma consequences for the red flour beetle (Tribolium castaneum) and the rice weevil (Sitophilus oryzae). J Therm Biol 2020; 94:102774. [PMID: 33293005 DOI: 10.1016/j.jtherbio.2020.102774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/04/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022]
Abstract
Insects face several (environmental) abiotic stressors, including low temperature, which cause the failure of neuromuscular function. Such exposure leads insects toa reversible comatose state termed chill-coma, but the consequences of this state for the organism biology were little explored. Here, the consequences of the chill-coma phase were investigated in two of the main stored product pest species - the red flour beetle Tribolium castaneum (larvae and adults) and the rice weevil Sitophilus oryzae (adults). For this purpose, a series of low-temperature shocks were used to estimate the chill-coma recovery time (CCRT), survival, nutrition and weight gain/growth of T. castaneum (larvae and adults) and S. oryzae, as well as the development of T. castaneum life stages. The relatively long CCRT was characteristic of beetle larvae, at different low-temperature shocks, and CCRT increased with decreasing temperatures and increasing exposure intervals for both pest species. The survival was little affected by the low-temperature shocks applied, but such shocks affected insect feeding and growth. Tribolium castaneum larvae was more sensitive than adults of both insect species. Moreover, the relative consumption and weight gain of S. oryzae adults were lower than those of T. castaneum adults and mainly larvae, while feeding deterrence was not affected by low temperature shocks, unlike food conversion efficiency. Low-temperature shocks, even under short duration at some temperatures, significantly delayed development. The lower the temperature and the higher the exposure period, the more delayed the development. Thus, the physiological costs of chill-coma are translated into life-history consequences, with potential implications for the management of this insect pest species in stored products and even more so on red flour beetles and rice weevils.
Collapse
Affiliation(s)
- Marwa M Ramadan
- Economic Entomology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Amira A A Abdel-Hady
- Economic Entomology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Ahmed S Hashem
- Stored Product Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-Sheikh, Egypt.
| |
Collapse
|
27
|
Huey RB, Ma L, Levy O, Kearney MR. Three questions about the eco-physiology of overwintering underground. Ecol Lett 2020; 24:170-185. [PMID: 33289263 DOI: 10.1111/ele.13636] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023]
Abstract
In cold environments ectotherms can be dormant underground for long periods. In 1941 Cowles proposed an ecological trade-off involving the depth at which ectotherms overwintered: on warm days, only shallow reptiles could detect warming soils and become active; but on cold days, they risked freezing. Cowles discovered that most reptiles at a desert site overwintered at shallow depths. To extend his study, we compiled hourly soil temperatures (5 depths, 90 sites, continental USA) and physiological data, and simulated consequences of overwintering at fixed depths. In warm localities shallow ectotherms have lowest energy costs and largest reserves in spring, but in cold localities, they risk freezing. Ectotherms shifting hourly to the coldest depth potentially reduce energy expenses, but paradoxically sometimes have higher expenses than those at fixed depths. Biophysical simulations for a desert site predict that shallow ectotherms have increased opportunities for mid-winter activity but need to move deep to digest captured food. Our simulations generate testable predictions to eco-physiological questions but rely on physiological responses to acute cold rather than to natural cooling profiles. Furthermore, natural-history data to test most predictions do not exist. Thus, our simulation approach uncovers knowledge gaps and suggests research agendas for studying ectotherms overwintering underground.
Collapse
Affiliation(s)
- Raymond B Huey
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Liang Ma
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA.,Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, 08544, USA
| | - Ofir Levy
- School of Zoology, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Michael R Kearney
- School of BioSciences, The University of Melbourne, Melbourne, Vic., 3010, Australia
| |
Collapse
|
28
|
Sheldon KS, Padash M, Carter AW, Marshall KE. Different amplitudes of temperature fluctuation induce distinct transcriptomic and metabolomic responses in the dung beetle Phanaeus vindex. J Exp Biol 2020; 223:jeb233239. [PMID: 33139393 DOI: 10.1242/jeb.233239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Most studies exploring molecular and physiological responses to temperature have focused on constant temperature treatments. To gain a better understanding of the impact of fluctuating temperatures, we investigated the effects of increased temperature variation on Phanaeus vindex dung beetles across levels of biological organization. Specifically, we hypothesized that increased temperature variation is energetically demanding. We predicted that thermal sensitivity of metabolic rate and energetic reserves would be reduced with increasing fluctuation. To test this, we examined the responses of dung beetles to constant (20°C), low fluctuation (20±5°C), or high fluctuation (20±12°C) temperature treatments using respirometry, assessment of energetic reserves and HPLC-MS-based metabolomics. We found no significant differences in metabolic rate or energetic reserves, suggesting increased fluctuations were not energetically demanding. To understand why there was no effect of increased amplitude of temperature fluctuation on energetics, we assembled and annotated a de novo transcriptome, finding non-overlapping transcriptomic and metabolomic responses of beetles exposed to different fluctuations. We found that 58 metabolites increased in abundance in both fluctuation treatments, but 15 only did so in response to high-amplitude fluctuations. We found that 120 transcripts were significantly upregulated following acclimation to any fluctuation, but 174 were upregulated only in beetles from the high-amplitude fluctuation treatment. Several differentially expressed transcripts were associated with post-translational modifications to histones that support a more open chromatin structure. Our results demonstrate that acclimation to different temperature fluctuations is distinct and may be supported by increasing transcriptional plasticity. Our results indicate for the first time that histone modifications may underlie rapid acclimation to temperature variation.
Collapse
Affiliation(s)
- Kimberly S Sheldon
- Department of Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996, USA
| | - Mojgan Padash
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Amanda W Carter
- Department of Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996, USA
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
29
|
Gobbi PC, Duarte JLP, da Silva LR, Nava DE, Fialho GS, da Cunha US, da F Duarte A. Effects of thermal shock on the survival and reproduction of Stratiolaelaps scimitus (Mesostigmata: Laelapidae). EXPERIMENTAL & APPLIED ACAROLOGY 2020; 82:493-501. [PMID: 33175293 DOI: 10.1007/s10493-020-00570-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
The responses of arthropods to thermal stress are vital in ecological studies in order to understand survival, development, and reproduction. However, this subject is poorly addressed. In the order Mesostigmata, an abundance of species lives in the soil. Among these species, Stratiolaelaps scimitus (Womersley) is a predator used in the control of pest organisms that live in the soil. Mites of this species are commercialized in several countries, including Brazil, presenting efficiency in pest control in several crops. The objective of this study was to evaluate the effect of thermal shock on S. scimitus females, as well as to monitor the temperature variation in the environment. For each temperature, 80 experimental units were assembled for different periods (0.5, 1, 2, and 4 h). Experimental units were maintained at 25 °C, after exposure of the mites. Mortality and oviposition were evaluated. The results showed a 40% reduction in the survival of mites exposed to 37 °C for 4 h, compared to the control treatment (25 °C). Oviposition was less affected at 1 h exposure to temperatures of 19 and 12 °C and thermic fluctuation was observed in the greenhouse, especially inside the slabs. Understanding temperature effects in mites and the thermic fluctuation in the environment is essential to achieve satisfactory results in biological control. It is important to observe the scenario in which predatory mites will be released as these aspects are decisive in predatory activity.
Collapse
Affiliation(s)
- Priscilla C Gobbi
- Departamento de Fitossanidade, Faculdade de Agronomia Eliseu Maciel (FAEM), Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96001-970, Brazil.
| | - Juliano L P Duarte
- Departamento de Fitossanidade, Faculdade de Agronomia Eliseu Maciel (FAEM), Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96001-970, Brazil
| | - Lucas R da Silva
- Departamento de Fitossanidade, Faculdade de Agronomia Eliseu Maciel (FAEM), Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96001-970, Brazil
| | - Dori E Nava
- Laboratório de Entomologia da Empresa Brasileira de Pesquisa Agropecuária (Embrapa Clima Temperado), Pelotas, RS, Brazil
| | - Gustavo Sessa Fialho
- Departamento de Matemática e Estatística, Matemática, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96001-970, Brazil
| | - Uemerson S da Cunha
- Departamento de Fitossanidade, Faculdade de Agronomia Eliseu Maciel (FAEM), Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96001-970, Brazil
| | - Adriane da F Duarte
- Departamento de Fitossanidade, Faculdade de Agronomia Eliseu Maciel (FAEM), Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96001-970, Brazil
| |
Collapse
|
30
|
Marshall KE, Gotthard K, Williams CM. Evolutionary impacts of winter climate change on insects. CURRENT OPINION IN INSECT SCIENCE 2020; 41:54-62. [PMID: 32711362 DOI: 10.1016/j.cois.2020.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Overwintering is a serious challenge for insects, and winters are rapidly changing as climate shifts. The capacity for phenotypic plasticity and evolutionary adaptation will determine which species profit or suffer from these changes. Here we discuss current knowledge on the potential and evidence for evolution in winter-relevant traits among insect species and populations. We conclude that the best evidence for evolutionary shifts in response to changing winters remain those related to changes in phenology, but all evidence points to cold hardiness as also having the potential to evolve in response to climate change. Predicting future population sizes and ranges relies on understanding to what extent evolution in winter-related traits is possible, and remains a serious challenge.
Collapse
Affiliation(s)
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm SE-106 91, Sweden
| | | |
Collapse
|
31
|
Amiresmaeili N, Romeis J, Collatz J. Cold tolerance of the drosophila pupal parasitoid Trichopria drosophilae. JOURNAL OF INSECT PHYSIOLOGY 2020; 125:104087. [PMID: 32634433 DOI: 10.1016/j.jinsphys.2020.104087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 05/11/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Trichopria drosophilae (Perkins) (Hymenoptera: Diapriidae) is a pupal parasitoid of drosophila flies recorded from several parts of the world. It is currently considered for augmentative biological programs to control the severe agricultural pest Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Since D. suzukii has invaded regions that experience zero and sub-zero winter temperatures, cold tolerance of the parasitoid is an important aspect to consider. We characterized low temperature tolerance and overwintering capacity of a colony of T. drosophilae collected in Northern Switzerland. We used copper-constantan thermocouples to determine the supercooling point and pre-freeze mortality. Moreover, we subjected honey-fed and unfed adult T. drosophilae as well as developing stages within their drosophila host to short- and long-term acclimation conditions and assessed the duration of their survival at low temperatures. Finally, we exposed adult and sub-adult stages to winter conditions in a semi-field experiment and evaluated their survival. We found that T. drosophilae is chill susceptible like D. suzukii, but adults froze and survived at colder temperatures than those reported for D. suzukii. Adult parasitoids could tolerate several days of exposure to sub-zero temperatures and could reproduce afterwards, whereas sub-adult stages could survive longer periods under these conditions. The provision of honey and water enhanced the survival of adults and long-term acclimation led to longer survival in all stages. The semi-field experiment supported the results of the laboratory tests. Based on these results we suggest that in Central Europe, T. drosophilae survives winters mainly in developing stages but adults are likely able to tolerate short periods of low spring temperatures.
Collapse
Affiliation(s)
- Nasim Amiresmaeili
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland; University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Jörg Romeis
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland; University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Jana Collatz
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland.
| |
Collapse
|
32
|
El-Saadi MI, Ritchie MW, Davis HE, MacMillan HA. Warm periods in repeated cold stresses protect Drosophila against ionoregulatory collapse, chilling injury, and reproductive deficits. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104055. [PMID: 32380094 DOI: 10.1016/j.jinsphys.2020.104055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
In some insects, repeated cold stresses, characterized by warm periods that interrupt a sustained cold period, have been found to yield survival benefits over continuous cold stresses, but at the cost of reproduction. During a cold stress, chill susceptible insects like Drosophila melanogaster suffer from a loss of ion and water balance, and the current model of recovery from chilling posits that re-establishment of ion homeostasis begins upon return to a warm environment, but that it takes minutes to hours for an insect to fully restore homeostasis. Following this ionoregulatory model of chill coma recovery, we predicted that the longer the duration of the warm periods between cold stresses, the better a fly will endure a subsequent chill coma event and the more likely they will be to survive. We also predicted, however, that this recovery may lead to reduced fecundity, possibly due to allocation of energy reserves away from reproduction. Here, female D.melanogaster were treated to a long continuous cold stress (25 h at 0 °C), or experienced the same total time in the cold with repeated short (15 min), or long (120 min) breaks at 22 °C. We found that warm periods in general improved survival outcomes, and individuals that recovered for more time in between cold periods had significantly lower rates of injury, faster recovery from chill coma, and produced greater, rather than fewer, offspring. These improvements in chill tolerance were associated with mitigation of ionoregulatory collapse, as flies that experienced either short or long warm periods better maintained low hemolymph [K+]. Thus, warm periods that interrupt cold periods improve cold tolerance and fertility in D. melanogaster females relative to a single sustained cold stress, potentially because this time allows for recovery of ion and water homeostasis.
Collapse
Affiliation(s)
| | | | - Hannah E Davis
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | | |
Collapse
|
33
|
Alston MA, Lee J, Moore ME, Kingsolver JG, Willett CS. The ghost of temperature past: interactive effects of previous and current thermal conditions on gene expression in Manduca sexta. J Exp Biol 2020; 223:jeb213975. [PMID: 32127377 DOI: 10.1242/jeb.213975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
Abstract
High temperatures can negatively impact the performance and survival of organisms, particularly ectotherms. While an organism's response to high temperature stress clearly depends on current thermal conditions, its response may also be affected by the temporal pattern and duration of past temperature exposures. We used RNA sequencing of Manduca sexta larvae fat body tissue to evaluate how diurnal temperature fluctuations during development affected gene expression both independently and in conjunction with subsequent heat stress. Additionally, we compared gene expression between two M. sexta populations, a lab colony and a genetically related field population that have been separated for >300 generations and differ in their thermal sensitivities. Lab-adapted larvae were predicted to show increased expression responses to both single and repeated thermal stress, whereas recurrent exposure could decrease later stress responses for field individuals. We found large differences in overall gene expression patterns between the two populations across all treatments, as well as population-specific transcriptomic responses to temperature; more differentially expressed genes were upregulated in the field compared with lab larvae. Developmental temperature fluctuations alone had minimal effects on long-term gene expression patterns, with the exception of a somewhat elevated stress response in the lab population. Fluctuating rearing conditions did alter gene expression during exposure to later heat stress, but this effect depended on both the population and the particular temperature conditions. This study contributes to increased knowledge of molecular mechanisms underlying physiological responses of organisms to temperature fluctuations, which is needed for the development of more accurate thermal performance models.
Collapse
Affiliation(s)
- Meggan A Alston
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeeyun Lee
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - M Elizabeth Moore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joel G Kingsolver
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher S Willett
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Ferguson LV, Sinclair BJ. Thermal Variability and Plasticity Drive the Outcome of a Host-Pathogen Interaction. Am Nat 2020; 195:603-615. [DOI: 10.1086/707545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Teets NM, Gantz JD, Kawarasaki Y. Rapid cold hardening: ecological relevance, physiological mechanisms and new perspectives. ACTA ACUST UNITED AC 2020; 223:223/3/jeb203448. [PMID: 32051174 DOI: 10.1242/jeb.203448] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rapid cold hardening (RCH) is a type of phenotypic plasticity that allows ectotherms to quickly enhance cold tolerance in response to brief chilling (lasting minutes to hours). In this Review, we summarize the current state of knowledge of this important phenotype and provide new directions for research. As one of the fastest adaptive responses to temperature known, RCH allows ectotherms to cope with sudden cold snaps and to optimize their performance during diurnal cooling cycles. RCH and similar phenotypes have been observed across a diversity of ectotherms, including crustaceans, terrestrial arthropods, amphibians, reptiles, and fish. In addition to its well-defined role in enhancing survival to extreme cold, RCH also protects against nonlethal cold injury by preserving essential functions following cold stress, such as locomotion, reproduction, and energy balance. The capacity for RCH varies across species and across genotypes of the same species, indicating that RCH can be shaped by selection and is likely favored in thermally variable environments. Mechanistically, RCH is distinct from other rapid stress responses in that it typically does not involve synthesis of new gene products; rather, the existing cellular machinery regulates RCH through post-translational signaling mechanisms. However, the protective mechanisms that enhance cold hardiness are largely unknown. We provide evidence that RCH can be induced by multiple triggers in addition to low temperature, and that rapidly induced tolerance and cross-tolerance to a variety of environmental stressors may be a general feature of stress responses that requires further investigation.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - J D Gantz
- Biology Department, Hendrix College, Conway, AK 72032, USA
| | - Yuta Kawarasaki
- Department of Biology, Gustavus Adolphus College, Saint Peter, MN 56082, USA
| |
Collapse
|
36
|
Li NG, Toxopeus J, Moos M, Sørensen JG, Sinclair BJ. A comparison of low temperature biology of Pieris rapae from Ontario, Canada, and Yakutia, Far Eastern Russia. Comp Biochem Physiol A Mol Integr Physiol 2020; 242:110649. [PMID: 31923628 DOI: 10.1016/j.cbpa.2020.110649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 11/27/2022]
Abstract
Low temperatures limit the distribution and abundance of ectotherms. However, many insects can survive low temperatures by employing one of two cold tolerance strategies: freeze avoidance or freeze tolerance. Very few species can employ both strategies, but those that do provide a rare opportunity to study the mechanisms that differentiate freeze tolerance and freeze avoidance. We showed that overwintering pupae of the cabbage white butterfly Pieris rapae can be freeze tolerant or freeze avoidant. Pupae from a population of P. rapae in northeastern Russia (Yakutsk) froze at c. -9.3 °C and were freeze-tolerant in 2002-2003 when overwintered outside. However, P. rapae from both Yakutsk and southern Canada (London) acclimated to milder laboratory conditions in 2014 and 2017 froze at lower temperatures (< -20 °C) and were freeze-avoidant. Summer-collected P. rapae larvae (collected in Yakutsk in 2016) were partially freeze-tolerant, and decreased the temperature at which they froze in response to starvation at mild low temperatures (4 °C) and repeated partial freezing events. By comparing similarly-acclimated P. rapae pupae from both populations, we identified molecules that may facilitate low temperature tolerance, including the hemolymph ice-binding molecules and several potential low molecular weight cryoprotectants. Pieris rapae from Yakutsk exhibited high physiological plasticity, accumulating cryoprotectants and almost doubling their hemolymph osmolality when supercooled to -15 °C for two weeks, while the London P. rapae population exhibited minimal plasticity. We hypothesize that physiological plasticity is an important adaptation to extreme low temperatures (i.e. in Yakutsk) and may facilitate the transition between freeze avoidance and freeze tolerance.
Collapse
Affiliation(s)
- Natalia G Li
- Institute of Medicine, M.K. Ammosov North Eastern Federal University, Kulakovskogo Street 36, Yakutsk, Sahka Republic (Yakutia) 677007, Russia.
| | - Jantina Toxopeus
- Department of Biology, University of Western Ontario, 1151 Richmond St N, London, ON N6A 5B7, Canada.
| | - Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice 370 05, Czech Republic.
| | - Jesper G Sørensen
- Department of Bioscience, Aarhus University, Ny Munkegade 116, Aarhus 8000, Denmark.
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, 1151 Richmond St N, London, ON N6A 5B7, Canada.
| |
Collapse
|
37
|
Nguyen AD, Brown M, Zitnay J, Cahan SH, Gotelli NJ, Arnett A, Ellison AM. Trade-Offs in Cold Resistance at the Northern Range Edge of the Common Woodland Ant Aphaenogaster picea (Formicidae). Am Nat 2019; 194:E151-E163. [PMID: 31738107 DOI: 10.1086/705939] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Geographic variation in low temperatures at poleward range margins of terrestrial species often mirrors population variation in cold resistance, suggesting that range boundaries may be set by evolutionary constraints on cold physiology. The northeastern woodland ant Aphaenogaster picea occurs up to approximately 45°N in central Maine. We combined presence/absence surveys with classification tree analysis to characterize its northern range limit and assayed two measures of cold resistance operating on different timescales to determine whether and how marginal populations adapt to environmental extremes. The range boundary of A. picea was predicted primarily by temperature, but low winter temperatures did not emerge as the primary correlate of species occurrence. Low summer temperatures and high seasonal variability predicted absence above the boundary, whereas high mean annual temperature (MAT) predicted presence in southern Maine. In contrast, assays of cold resistance across multiple sites were consistent with the hypothesis of local cold adaptation at the range edge: among populations, there was a 4-min reduction in chill coma recovery time across a 2° reduction in MAT. Baseline resistance and capacity for additional plastic cold hardening shifted in opposite directions, with hardening capacity approaching zero at the coldest sites. This trade-off between baseline resistance and cold-hardening capacity suggests that populations at range edges may adapt to colder temperatures through genetic assimilation of plastic responses, potentially constraining further adaptation and range expansion.
Collapse
|
38
|
MacMillan HA. Dissecting cause from consequence: a systematic approach to thermal limits. J Exp Biol 2019; 222:222/4/jeb191593. [DOI: 10.1242/jeb.191593] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ABSTRACT
Thermal limits mark the boundaries of ectotherm performance, and are increasingly appreciated as strong correlates and possible determinants of animal distribution patterns. The mechanisms setting the thermal limits of ectothermic animals are under active study and rigorous debate as we try to reconcile new observations in the lab and field with the knowledge gained from a long history of research on thermal adaptation. Here, I provide a perspective on our divided understanding of the mechanisms setting thermal limits of ectothermic animals. I focus primarily on the fundamental differences between high and low temperatures, and how animal form and environment can place different constraints on different taxa. Together, complexity and variation in animal form drive complexity in the interactions within and among levels of biological organization, creating a formidable barrier to determining mechanistic cause and effect at thermal limits. Progress in our understanding of thermal limits will require extensive collaboration and systematic approaches that embrace this complexity and allow us to separate the causes of failure from the physiological consequences that can quickly follow. I argue that by building integrative models that explain causal links among multiple organ systems, we can more quickly arrive at a holistic understanding of the varied challenges facing animals at extreme temperatures.
Collapse
|
39
|
Kellermann V, Chown SL, Schou MF, Aitkenhead I, Janion-Scheepers C, Clemson A, Scott MT, Sgrò CM. Comparing thermal performance curves across traits: how consistent are they? J Exp Biol 2019; 222:jeb.193433. [DOI: 10.1242/jeb.193433] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 05/08/2019] [Indexed: 12/31/2022]
Abstract
Thermal performance curves (TPCs) are intended to approximate the relationship between temperature and fitness, and are commonly integrated into species distributional models for understanding climate change responses. However, TPCs may vary across traits because selection and environmental sensitivity (plasticity) differ across traits or because the timing and duration of the temperature exposure, here termed time-scale, may alter trait variation. Yet the extent to which TPCs vary temporally and across traits is rarely considered in assessments of climate change responses. Using a common garden approach, we estimate TPCs for standard metabolic rate (SMR), and activity in Drosophila melanogaster at three test temperatures (16, 25 and 30 °C), using flies from each of six developmental temperatures (16, 18, 20, 25, 28 and 30 °C). We examined the effects of time-scale of temperature exposure (mins/hours vs days/weeks) in altering the TPC shape, position and commonly used descriptors of the TPC- thermal optimum (TOPT), thermal limits (TMIN and TMAX) and thermal breadth (TBR). In addition we collated previously published estimates of TPCs for fecundity and egg-to-adult viability in D. melanogaster. We found that the descriptors of the TPCs varied across traits (egg-to-adult viability, SMR, activity and fecundity), but variation in TPCs within these traits was small across studies when measured at the same time-scales. The time-scale at which traits were measured contributed to greater variation in TPCs than the observed variance across traits, although the relative importance of time-scale differed depending on the trait (activity vs fecundity). Variation in the TPC across traits and time-scales suggests that TPCs using single traits may not be an accurate predictor of fitness and thermal adaptation across environments.
Collapse
Affiliation(s)
- Vanessa Kellermann
- School of Biological Sciences, Monash University, Melbourne 3800 Australia
| | - Steven L. Chown
- School of Biological Sciences, Monash University, Melbourne 3800 Australia
| | | | - Ian Aitkenhead
- School of Biological Sciences, Monash University, Melbourne 3800 Australia
| | - Charlene Janion-Scheepers
- School of Biological Sciences, Monash University, Melbourne 3800 Australia
- Iziko South African Museum, Cape Town, 8001m South Africa
| | - Allannah Clemson
- School of Biological Sciences, Monash University, Melbourne 3800 Australia
| | | | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne 3800 Australia
| |
Collapse
|
40
|
Teets NM, Kawarasaki Y, Potts LJ, Philip BN, Gantz JD, Denlinger DL, Lee RE. Rapid cold hardening protects against sublethal freezing injury in an Antarctic insect. J Exp Biol 2019; 222:jeb.206011. [DOI: 10.1242/jeb.206011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/22/2019] [Indexed: 01/17/2023]
Abstract
Rapid cold hardening (RCH) is a type of beneficial phenotypic plasticity that occurs on extremely short time scales (minutes to hours) to enhance insects’ ability to cope with cold snaps and diurnal temperature fluctuations. RCH has a well-established role in extending lower lethal limits, but its ability to prevent sublethal cold injury has received less attention. The Antarctic midge, Belgica antarctica is Antarctica's only endemic insect and has a well-studied RCH response that extends freeze tolerance in laboratory conditions. However, the discriminating temperatures used in previous studies of RCH are far below those ever experienced in the field. Here, we tested the hypothesis that RCH protects against nonlethal freezing injury. Larvae of B. antarctica were exposed to either control (2°C), direct freezing (-9°C for 24 h), or RCH (-5°C for 2 h followed by -9°C for 24 h). All larvae survived both freezing treatments, but RCH larvae recovered more quickly from freezing stress and had significantly higher metabolic rates during recovery. RCH larvae also sustained less damage to fat body and midgut tissue and had lower expression of two heat shock protein transcripts (hsp60 and hsp90), which is consistent with RCH protecting against protein denaturation. The protection afforded by RCH resulted in energy savings; directly frozen larvae experienced a significant depletion in glycogen energy stores that was not observed in RCH larvae. Together, these results provide strong evidence that RCH protects against a variety of sublethal freezing injuries and allows insects to rapidly fine-tune their performance in thermally variable environments.
Collapse
Affiliation(s)
| | - Yuta Kawarasaki
- Department of Biology, Gustavus Adolphus College, Saint Peter, MN USA
| | - Leslie J. Potts
- Department of Entomology, University of Kentucky, Lexington, KY USA
| | | | - J. D. Gantz
- Department of Biology, Miami University, Oxford, OH USA
- Current address: Biology Department, Hendrix College, Conway, AR, USA
| | | | | |
Collapse
|
41
|
Colinet H, Rinehart JP, Yocum GD, Greenlee KJ. Mechanisms underpinning the beneficial effects of fluctuating thermal regimes in insect cold tolerance. J Exp Biol 2018; 221:221/14/jeb164806. [DOI: 10.1242/jeb.164806] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ABSTRACT
Insects exposed to low temperature often have high mortality or exhibit sublethal effects. A growing number of recent studies have shown beneficial effects of exposing insects to recurrent brief warm pulses during low-temperature stress (fluctuating thermal regime, FTR). The physiological underpinnings of the beneficial effects of FTR on cold survival have been extensively studied over the past few years. Profiling with various ‘-omics’ techniques has provided supporting evidence for different physiological responses between insects exposed to FTR and constant low temperature. Evidence from transcriptomic, metabolomic and lipidomic studies points to a system-wide loss of homeostasis at low temperature that can be counterbalanced by repair mechanisms under FTR. Although there has been considerable progress in understanding the physiological mechanisms underlying the beneficial effects of FTR, here we discuss how many areas still lack clarity, such as the precise role(s) of heat shock proteins, compatible solutes or the identification of regulators and key players involved in the observed homeostatic responses. FTR can be particularly beneficial in applied settings, such as for model insects used in research, integrated pest management and pollination services. We also explain how the application of FTR techniques in large-scale facilities may require overcoming some logistical and technical constraints. FTR definitively enhances survival at low temperature in insects, but before it can be widely used, we suggest that the possible fitness and energy costs of FTR must be explored more thoroughly. Although FTR is not ecologically relevant, similar processes may operate in settings where temperatures fluctuate naturally.
Collapse
Affiliation(s)
- Hervé Colinet
- Univ Rennes, CNRS, ECOBIO-UMR 6553, 263 Ave du Général Leclerc, 35042 Rennes, France
| | - Joseph P. Rinehart
- USDA-ARS Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND 58102-2765, USA
| | - George D. Yocum
- USDA-ARS Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND 58102-2765, USA
| | - Kendra J. Greenlee
- Department of Biological Sciences, PO Box 6050, Dept 2715, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
42
|
Dry stress decreases areas suitable for Neoleucinodes elegantalis (Lepidoptera: Crambidae) and affects its survival under climate predictions in South America. ECOL INFORM 2018. [DOI: 10.1016/j.ecoinf.2018.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Toxopeus J, Sinclair BJ. Mechanisms underlying insect freeze tolerance. Biol Rev Camb Philos Soc 2018; 93:1891-1914. [DOI: 10.1111/brv.12425] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Jantina Toxopeus
- Department of Biology; University of Western Ontario; 1151 Richmond Street N, London ON, N6A 5B7 Canada
| | - Brent J. Sinclair
- Department of Biology; University of Western Ontario; 1151 Richmond Street N, London ON, N6A 5B7 Canada
| |
Collapse
|
44
|
Studies on chill coma recovery in the ladybird, Harmonia axyridis: Ontogenetic profile, effect of repeated cold exposures, and capacity to predict winter survival. J Therm Biol 2018; 74:275-280. [DOI: 10.1016/j.jtherbio.2018.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
|
45
|
Bar-Ziv MA, Scharf I. Thermal acclimation is not induced by habitat-of-origin, maintenance temperature, or acute exposure to low or high temperatures in a pit-building wormlion (Vermileo sp.). J Therm Biol 2018; 74:181-186. [PMID: 29801625 DOI: 10.1016/j.jtherbio.2018.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 11/18/2022]
Abstract
Wormlions are sit-and-wait insect predators that construct pit-traps to capture arthropod prey. They require loose soil and shelter from direct sun, both common in Mediterranean cities, and explaining their high abundance in urban habitats. We studied different aspects of thermal acclimation in wormlions. We compared chill-coma recovery time (CCRT) and heat-shock recovery time (HSRT) of wormlions from urban, semi-urban and natural habitats, expecting those originating from the urban habitat to be more heat tolerant and less cold tolerant. However, no differences were detected among the three habitats. We then examined whether maintenance temperature affects CCRT and HSRT, and expected beneficial acclimation. However, CCRT was unaffected by maintenance temperature, while temperature affected HSRT in an opposite direction to our prediction: wormlions maintained under the higher temperatures took longer to recover. When testing with two successive thermal shocks, wormlions took longer to recover from both cold and heat shock after applying an initial cold shock. We therefore conclude that cold shock inflicts some damage rather than induces acclimation. Finally, both cold- and heat-shocked wormlions constructed smaller pits than wormlions of a control group. Smaller pits probably translate to a lower likelihood of capturing prey and also limit the size of the prey, indicating a concrete cost of thermal shock. In summary, we found no evidence for thermal acclimation related either to the habitat-of-origin or to maintenance temperatures, but, rather, negative effects of unfavorable temperatures.
Collapse
Affiliation(s)
- Michael A Bar-Ziv
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
46
|
Visser B, Williams CM, Hahn DA, Short CA, López-Martínez G. Hormetic benefits of prior anoxia exposure in buffering anoxia stress in a soil-pupating insect. ACTA ACUST UNITED AC 2018; 221:jeb.167825. [PMID: 29367272 DOI: 10.1242/jeb.167825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022]
Abstract
Oxygen is essential for most animals, and exposure to a complete lack of oxygen, i.e. anoxia, can result in irreparable damage to cells that can extend up to the organismal level to negatively affect performance. Although it is known that brief anoxia exposure may confer cross-tolerance to other stressors, few data exist on the biochemical and organismal consequences of repeated intermittent bouts of anoxia exposure. In nature, the Caribbean fruit fly, Anastrepha suspensa (Diptera: Tephritidae), is frequently exposed to heavy tropical rainfall while pupating in the soil, equating to multiple exposures to hypoxia or anoxia during development. Here, we tested whether prior anoxia exposures during pupal development can induce a beneficial acclimation response, and we explored the consequences of prior exposure for both whole-organism performance and correlated biochemical metrics. Pharate adults (the last developmental stage in the pupal case) were most sensitive to anoxia exposure, showing decreased survival and fertility compared with controls. These negative impacts were ameliorated by exposure to anoxia in earlier pupal developmental stages, indicating a hormetic effect of prior anoxia exposure. Anoxia exposure early in pupal development reduced the oxygen debt repaid after anoxia exposure relative to pharate adults experiencing anoxia for the first time. Lipid levels were highest in all pupal stages when exposed to prior anoxia. Prior anoxia thus benefits organismal performance and relocates resources towards lipid storage throughout pupal-adult development.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolutionary Ecology and Genetics Group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium.,Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Caroline M Williams
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA.,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Daniel A Hahn
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Clancy A Short
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Giancarlo López-Martínez
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA .,Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
47
|
Kingsolver JG, Buckley LB. Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0147. [PMID: 28483862 DOI: 10.1098/rstb.2016.0147] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2016] [Indexed: 11/12/2022] Open
Abstract
Central ideas from thermal biology, including thermal performance curves and tolerances, have been widely used to evaluate how changes in environmental means and variances generate changes in fitness, selection and microevolution in response to climate change. We summarize the opportunities and challenges for extending this approach to understanding the consequences of extreme climatic events. Using statistical tools from extreme value theory, we show how distributions of thermal extremes vary with latitude, time scale and climate change. Second, we review how performance curves and tolerances have been used to predict the fitness and evolutionary responses to climate change and climate gradients. Performance curves and tolerances change with prior thermal history and with time scale, complicating their use for predicting responses to thermal extremes. Third, we describe several recent case studies showing how infrequent extreme events can have outsized effects on the evolution of performance curves and heat tolerance. A key issue is whether thermal extremes affect reproduction or survival, and how these combine to determine overall fitness. We argue that a greater focus on tails-in the distribution of environmental extremes, and in the upper ends of performance curves-is needed to understand the consequences of extreme events.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
Collapse
Affiliation(s)
- Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
48
|
Marshall KE, Sinclair BJ. Repeated freezing induces a trade-off between cryoprotection and egg production in the goldenrod gall fly, Eurosta solidaginis. J Exp Biol 2018; 221:jeb.177956. [DOI: 10.1242/jeb.177956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/07/2018] [Indexed: 12/30/2022]
Abstract
Internal ice formation leads to wholesale changes in ionic, osmotic and pH homeostasis, energy metabolism, and mechanical damage, across a small range of temperatures, and is thus an abiotic stressor that acts at a distinct, physiologically-relevant, threshold. Insects that experience repeated freeze-thaw cycles over winter will cross this stressor threshold many times over their lifespan. Here we examine the effect of repeatedly crossing the freezing threshold on short-term physiological parameters (metabolic reserves and cryoprotectant concentration) as well as long-term fitness-related performance (survival and egg production) in the freeze-tolerant goldenrod gall fly Eurosta solidaginis. We exposed overwintering prepupae to a series of low temperatures (-10, -15, or -20 °C) with increasing numbers of freezing events (3, 6, or 10) with differing recovery periods between events (1, 5, or 10 days). Repeated freezing increased sorbitol concentration by about 50% relative to a single freezing episode, and prompted prepupae to modify long chain triacylglycerols to acetylated triacylglycerols. Long-term, repeated freezing did not significantly reduce survival, but did reduce egg production by 9.8% relative to a single freezing event. Exposure temperature did not affect any of these measures, suggesting that threshold crossing events may be more important to fitness than the intensity of stress in E. solidaginis overwintering.
Collapse
Affiliation(s)
- Katie E. Marshall
- Department of Biology, University of Western Ontario, London, Canada
- Present address: Department of Biology, University of Oklahoma, Norman, USA
| | - Brent J. Sinclair
- Department of Biology, University of Western Ontario, London, Canada
| |
Collapse
|
49
|
Singh S, Mishra G, Omkar. Plasticity in reproductive output and development in response to thermal variation in ladybird beetle, Menochilus sexmaculatus. J Therm Biol 2018; 71:180-188. [DOI: 10.1016/j.jtherbio.2017.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/14/2017] [Accepted: 11/19/2017] [Indexed: 01/21/2023]
|
50
|
Mohammadzadeh M, Izadi H. Cooling rate and starvation affect supercooling point and cold tolerance of the Khapra beetle, Trogoderma granarium Everts fourth instar larvae (Coleoptera: Dermestidae). J Therm Biol 2018; 71:24-31. [DOI: 10.1016/j.jtherbio.2017.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/10/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022]
|