1
|
Butler JM, McKinney JE, Ludington SC, Mabogunje M, Baker P, Singh D, Edwards SV, O'Connell LA. Tadpoles rely on mechanosensory stimuli for communication when visual capabilities are poor. Dev Biol 2024; 514:66-77. [PMID: 38851558 DOI: 10.1016/j.ydbio.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024]
Abstract
The ways in which animals sense the world changes throughout development. For example, young of many species have limited visual capabilities, but still make social decisions, likely based on information gathered through other sensory modalities. Poison frog tadpoles display complex social behaviors that have been suggested to rely on vision despite a century of research indicating tadpoles have poorly-developed visual systems relative to adults. Alternatively, other sensory modalities, such as the lateral line system, are functional at hatching in frogs and may guide social decisions while other sensory systems mature. Here, we examined development of the mechanosensory lateral line and visual systems in tadpoles of the mimic poison frog (Ranitomeya imitator) that use vibrational begging displays to stimulate egg feeding from their mothers. We found that tadpoles hatch with a fully developed lateral line system. While begging behavior increases with development, ablating the lateral line system inhibited begging in pre-metamorphic tadpoles, but not in metamorphic tadpoles. We also found that the increase in begging and decrease in reliance on the lateral line co-occurs with increased retinal neural activity and gene expression associated with eye development. Using the neural tracer neurobiotin, we found that axonal innervations from the eye to the brain proliferate during metamorphosis, with few retinotectal connections in recently-hatched tadpoles. We then tested visual function in a phototaxis assay and found tadpoles prefer darker environments. The strength of this preference increased with developmental stage, but eyes were not required for this behavior, possibly indicating a role for the pineal gland. Together, these data suggest that tadpoles rely on different sensory modalities for social interactions across development and that the development of sensory systems in socially complex poison frog tadpoles is similar to that of other frog species.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biology, Stanford University, United States.
| | | | | | - Moremi Mabogunje
- Department of Biology, Stanford University, United States; Foothill Community College, United States
| | - Penelope Baker
- Department of Biology, Stanford University, United States
| | - Devraj Singh
- Department of Organismic and Evolutionary Biology, Harvard University, United States; Museum of Comparative Zoology, Harvard University, United States; Department of Biology, University of Kentucky, United States
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, United States; Museum of Comparative Zoology, Harvard University, United States
| | - Lauren A O'Connell
- Department of Biology, Stanford University, United States; Wu Tsai Institute for Neuroscience, Stanford University, United States.
| |
Collapse
|
2
|
Jones AE, Maia A, Conway KW, Webb JF. The Silverjaw Minnow, Ericymba buccata: An Extraordinary Lateral Line System and its Contribution to Prey Detection. Integr Comp Biol 2024; 64:459-479. [PMID: 38992208 PMCID: PMC11406156 DOI: 10.1093/icb/icae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Fishes use their mechanosensory lateral line (LL) system to detect local water flows in different behavioral contexts, including the detection of prey. The LL system is comprised of neuromast receptor organs on the skin (superficial neuromasts) and within bony canals (canal neuromasts). Most fishes have one cranial LL canal phenotype, but the silverjaw minnow (Ericymba buccata) has two: narrow canals dorsal and caudal to the eye and widened canals ventral to the eye and along the mandible. The ventrally directed widened LL canals have been hypothesized to be an adaptation for detection of their benthic prey. Multiple morphological methods were used to describe the narrow and widened canals and canal neuromasts in detail. The primary distribution of hundreds of superficial neuromasts and taste buds ventral to the eye and on the mandible (described here for the first time) suggests additional sensory investment for detecting flow and chemical stimuli emanating from benthic prey. The hypothesis that the LL system mediates prey localization was tested by measuring five parameters in behavioral trials in which the combination of sensory modalities available to fish was manipulated (four experimental treatments). Fish detected and localized prey regardless of available sensory modalities and they were able to detect prey in the dark in the absence of LL input (LL ablation with neomycin sulfate) revealing that chemoreception was sufficient to mediate benthic prey detection, localization, and consumption. However, elimination of LL input resulted in a change in the angle of approach to live (mobile) prey even when visual input was available, suggesting that mechanosensory input contributes to the successful detection and localization of prey. The results of this study demonstrate that the extraordinary LL canal system of the silverjaw minnow, in addition to the large number of superficial neuromasts, and the presence of numerous extraoral taste buds, likely represent adaptations for multimodal integration of sensory inputs contributing to foraging behavior in this species. The morphological and behavioral results of this study both suggest that this species would be an excellent model for future comparative structural and functional studies of sensory systems in fishes.
Collapse
Affiliation(s)
- Aubree E Jones
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Anabela Maia
- Department of Biology, Rhode Island College, 600 Mount Pleasant Avenue Providence, RI 02908, USA
| | - Kevin W Conway
- Department of Ecology and Conservation Biology, Texas A&M University, 534 John Kimbrough Blvd, College Station, TX 77843, USA
| | - Jacqueline F Webb
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| |
Collapse
|
3
|
Lloyd E, Rastogi A, Holtz N, Aaronson B, Craig Albertson R, Keene AC. Ontogeny and social context regulate the circadian activity patterns of Lake Malawi cichlids. J Comp Physiol B 2024; 194:299-313. [PMID: 37910192 PMCID: PMC11233325 DOI: 10.1007/s00360-023-01523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Activity patterns tend to be highly stereotyped and critical for executing many different behaviors including foraging, social interactions, and predator avoidance. Differences in the circadian timing of locomotor activity and rest periods can facilitate habitat partitioning and the exploitation of novel niches. As a consequence, closely related species often display highly divergent activity patterns, suggesting that shifts from diurnal to nocturnal behavior, or vice versa, are critical for survival. In Africa's Lake Malawi alone, there are over 500 species of cichlids, which inhabit diverse environments and exhibit extensive phenotypic variation. We have previously identified a substantial range in activity patterns across adult Lake Malawi cichlid species, from strongly diurnal to strongly nocturnal. In many species, including fishes, ecological pressures differ dramatically across life-history stages, raising the possibility that activity patterns may change over ontogeny. To determine if rest-activity patterns change across life stages, we compared the locomotor patterns of six Lake Malawi cichlid species. While total rest and activity did not change between early juvenile and adult stages, rest-activity patterns did, with juveniles displaying distinct activity rhythms that are more robust than adults. One distinct difference between juveniles and adults is the emergence of complex social behavior. To determine whether social context is required for activity rhythms, we next measured locomotor behavior in group-housed adult fish. We found that when normal social interactions were allowed, locomotor activity patterns were restored, supporting the notion that social interactions promote circadian regulation of activity in adult fish. These findings reveal a previously unidentified link between developmental stage and social interactions in the circadian timing of cichlid activity.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX, 77840, USA
| | - Aakriti Rastogi
- Department of Biology, Texas A&M University, College Station, TX, 77840, USA
| | - Niah Holtz
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ben Aaronson
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - R Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX, 77840, USA.
| |
Collapse
|
4
|
Edgley DE, Carruthers M, Gabagambi NP, Saxon AD, Smith AM, Joyce DA, Vernaz G, Santos ME, Turner GF, Genner MJ. Lateral line system diversification during the early stages of ecological speciation in cichlid fish. BMC Ecol Evol 2024; 24:24. [PMID: 38378480 PMCID: PMC10877828 DOI: 10.1186/s12862-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND The mechanosensory lateral line system is an important sensory modality in fishes, informing multiple behaviours related to survival including finding food and navigating in dark environments. Given its ecological importance, we may expect lateral line morphology to be under disruptive selection early in the ecological speciation process. Here we quantify the lateral line system morphology of two ecomorphs of the cichlid fish Astatotilapia calliptera in crater Lake Masoko that have diverged from common ancestry within the past 1,000 years. RESULTS Based on geometric morphometric analyses of CT scans, we show that the zooplanktivorous benthic ecomorph that dominates the deeper waters of the lake has large cranial lateral line canal pores, relative to those of the nearshore invertebrate-feeding littoral ecomorph found in the shallower waters. In contrast, fluorescence imaging revealed no evidence for divergence between ecomorphs in the number of either superficial or canal neuromasts. We illustrate the magnitude of the variation we observe in Lake Masoko A. calliptera in the context of the neighbouring Lake Malawi mega-radiation that comprises over 700 species. CONCLUSIONS These results provide the first evidence of divergence in this often-overlooked sensory modality in the early stages of ecological speciation, suggesting that it may have a role in the broader adaptive radiation process.
Collapse
Affiliation(s)
- Duncan E Edgley
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Madeleine Carruthers
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Nestory P Gabagambi
- Tanzania Fisheries Research Institute, Kyela Centre, P.O. Box 98, Kyela, Mbeya, Tanzania
| | - Andrew D Saxon
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Alan M Smith
- School of Natural Sciences, University of Hull, Hull, UK
| | - Domino A Joyce
- School of Natural Sciences, University of Hull, Hull, UK
| | - Grégoire Vernaz
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
- Wellcome/Cancer Research UK, Gurdon Institute, University of Cambridge, Cambridge, UK
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Martin J Genner
- School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
5
|
Webb JF. Structural and functional evolution of the mechanosensory lateral line system of fishesa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:3526-3542. [PMID: 38171014 PMCID: PMC10908562 DOI: 10.1121/10.0022565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
The mechanosensory lateral line system is the flow sensing system present in all 34 000+ species of fishes. Its neuromast receptor organs, located on the skin or in bony canals on the head and tubed scales on the trunk, respond to the near field component of acoustic stimuli as well as short range, low frequency (0-200 Hz) water flows of biotic and abiotic origin. Here, I discuss the genesis of my research career and its focus on the structural and functional evolution of the lateral line system among a wide taxonomic range of fishes including those from different aquatic habitats (tropical lakes to coral reefs and the deep sea). I discuss the importance of investigating structure before function, using investigations in my laboratory that had unexpected outcomes, as well as the role of serendipity in the evolution of a career and in the nature of scientific discovery.
Collapse
Affiliation(s)
- Jacqueline F Webb
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
6
|
Brown AD, Hayward T, Portfors CV, Coffin AB. On the value of diverse organisms in auditory research: From fish to flies to humans. Hear Res 2023; 432:108754. [PMID: 37054531 PMCID: PMC10424633 DOI: 10.1016/j.heares.2023.108754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Historically, diverse organisms have contributed to our understanding of auditory function. In recent years, the laboratory mouse has become the prevailing non-human model in auditory research, particularly for biomedical studies. There are many questions in auditory research for which the mouse is the most appropriate (or the only) model system available. But mice cannot provide answers for all auditory problems of basic and applied importance, nor can any single model system provide a synthetic understanding of the diverse solutions that have evolved to facilitate effective detection and use of acoustic information. In this review, spurred by trends in funding and publishing and inspired by parallel observations in other domains of neuroscience, we highlight a few examples of the profound impact and lasting benefits of comparative and basic organismal research in the auditory system. We begin with the serendipitous discovery of hair cell regeneration in non-mammalian vertebrates, a finding that has fueled an ongoing search for pathways to hearing restoration in humans. We then turn to the problem of sound source localization - a fundamental task that most auditory systems have been compelled to solve despite large variation in the magnitudes and kinds of spatial acoustic cues available, begetting varied direction-detecting mechanisms. Finally, we consider the power of work in highly specialized organisms to reveal exceptional solutions to sensory problems - and the diverse returns of deep neuroethological inquiry - via the example of echolocating bats. Throughout, we consider how discoveries made possible by comparative and curiosity-driven organismal research have driven fundamental scientific, biomedical, and technological advances in the auditory field.
Collapse
Affiliation(s)
- Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St, Seattle, WA, 98105 USA; Virginia-Merrill Bloedel Hearing Research Center, University of Washington, 1701 NE Columbia Rd, Seattle, WA, 98195 USA.
| | - Tamasen Hayward
- College of Arts and Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Christine V Portfors
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Allison B Coffin
- College of Arts and Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA; School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA; Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA.
| |
Collapse
|
7
|
Santos ME, Lopes JF, Kratochwil CF. East African cichlid fishes. EvoDevo 2023; 14:1. [PMID: 36604760 PMCID: PMC9814215 DOI: 10.1186/s13227-022-00205-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Cichlid fishes are a very diverse and species-rich family of teleost fishes that inhabit lakes and rivers of India, Africa, and South and Central America. Research has largely focused on East African cichlids of the Rift Lakes Tanganyika, Malawi, and Victoria that constitute the biodiversity hotspots of cichlid fishes. Here, we give an overview of the study system, research questions, and methodologies. Research on cichlid fishes spans many disciplines including ecology, evolution, physiology, genetics, development, and behavioral biology. In this review, we focus on a range of organismal traits, including coloration phenotypes, trophic adaptations, appendages like fins and scales, sensory systems, sex, brains, and behaviors. Moreover, we discuss studies on cichlid phylogenies, plasticity, and general evolutionary patterns, ranging from convergence to speciation rates and the proximate and ultimate mechanisms underlying these processes. From a methodological viewpoint, the last decade has brought great advances in cichlid fish research, particularly through the advent of affordable deep sequencing and advances in genetic manipulations. The ability to integrate across traits and research disciplines, ranging from developmental biology to ecology and evolution, makes cichlid fishes a fascinating research system.
Collapse
Affiliation(s)
- M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | - João F Lopes
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
8
|
Scott E, Edgley DE, Smith A, Joyce DA, Genner MJ, Ioannou CC, Hauert S. Lateral line morphology, sensory perception and collective behaviour in African cichlid fish. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221478. [PMID: 36704254 PMCID: PMC9874273 DOI: 10.1098/rsos.221478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
The lateral line system of fishes provides cues for collective behaviour, such as shoaling, but it remains unclear how anatomical lateral line variation leads to behavioural differences among species. Here we studied associations between lateral line morphology and collective behaviour using two morphologically divergent species and their second-generation hybrids. We identify collective behaviours associated with variation in canal and superficial lateral line morphology, with closer proximities to neighbouring fish associated with larger canal pore sizes and fewer superficial neuromasts. A mechanistic understanding of the observed associations was provided by hydrodynamic modelling of an artificial lateral line sensor, which showed that simulated canal-based neuromasts were less susceptible to saturation during unidirectional movement than simulated superficial neuromasts, while increasing the canal pore size of the simulated lateral line sensor elevated sensitivity to vortices shed by neighbouring fish. Our results propose a mechanism behind lateral line flow sensing during collective behaviour in fishes.
Collapse
Affiliation(s)
- Elliott Scott
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Duncan E. Edgley
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Alan Smith
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK
| | - Domino A. Joyce
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK
| | - Martin J. Genner
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Sabine Hauert
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| |
Collapse
|
9
|
Scott E, Hauert S. A simple macro-scale artificial lateral line sensor for the detection of shed vortices. BIOINSPIRATION & BIOMIMETICS 2022; 17:055005. [PMID: 35896093 DOI: 10.1088/1748-3190/ac84b7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Underwater robot sensing is challenging due to the complex and noisy nature of the environment. The lateral line system in fish allows them to robustly sense their surroundings, even in turbid and turbulent environments, allowing them to perform tasks such as shoaling or foraging. Taking inspiration from the lateral line system in fish to design robot sensors could help to power underwater robots in inspection, exploration, or environmental monitoring tasks. Previous studies have designed systems that mimic both the design and the configuration of the lateral line and neuromasts, but at high cost or using complex procedures. Here, we present a simple, low cost, bio-inspired sensor, that can detect passing vortices shed from surrounding obstacles or upstream fish or robots. We demonstrate the importance of the design elements used, and show a minimum 20% reduction in residual error over sensors lacking these elements. Results were validated in reality using a prototype of the artificial lateral line sensor. These results mark an important step in providing alternate methods of control in underwater vehicles that are simultaneously inexpensive and simple to manufacture.
Collapse
Affiliation(s)
- Elliott Scott
- Department of Engineering Mathematics, University of Bristol, BS8 1TW, United Kingdom
| | - Sabine Hauert
- Department of Engineering Mathematics, University of Bristol, BS8 1TW, United Kingdom
| |
Collapse
|
10
|
Mekdara PJ, Nasimi F, Schwalbe MAB, Tytell ED. Tail Beat Synchronization during Schooling Requires a Functional Posterior Lateral Line System in Giant Danios, Devario aequipinnatus. Integr Comp Biol 2021; 61:427-441. [PMID: 33982077 DOI: 10.1093/icb/icab071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Swimming in schools has long been hypothesized to allow fish to save energy. Fish must exploit the energy from the wakes of their neighbors for maximum energy savings, a feat that requires them to both synchronize their tail movements and stay in certain positions relative to their neighbors. To maintain position in a school, we know that fish use multiple sensory systems, mainly their visual and flow sensing lateral line system. However, how fish synchronize their swimming movements in a school is still not well understood. Here, we test the hypothesis that this synchronization may depend on functional differences in the two branches of the lateral line sensory system that detects water movements close to the fish's body. The anterior branch, located on the head, encounters largely undisturbed free-stream flow, while the posterior branch, located on the trunk and tail, encounters flow that has been affected strongly by the tail movement. Thus, we hypothesize that the anterior branch may be more important for regulating position within the school, while the posterior branch may be more important for synchronizing tail movements. Our study examines functional differences in the anterior and posterior lateral line in the structure and tail synchronization of fish schools. We used a widely available aquarium fish that schools, the giant danio, Devario equipinnatus. Fish swam in a large circular tank where stereoscopic videos recordings were used to reconstruct the 3D position of each individual within the school and to track tail kinematics to quantify synchronization. For one fish in each school, we ablated using cobalt chloride either the anterior region only, the posterior region only, or the entire lateral line system. We observed that ablating any region of the lateral line system causes fish to swim in a "box" or parallel swimming formation, which was different from the diamond formation observed in normal fish. Ablating only the anterior region did not substantially reduce tail beat synchronization but ablating only the posterior region caused fish to stop synchronizing their tail beats, largely because the tail beat frequency increased dramatically. Thus, the anterior and posterior lateral line system appears to have different behavioral functions in fish. Most importantly, we showed that the posterior lateral line system played a major role in determining tail beat synchrony in schooling fish. Without synchronization, swimming efficiency decreases, which can have an impact on the fitness of the individual fish and group.
Collapse
Affiliation(s)
- Prasong J Mekdara
- Department of Biology, Tufts University, 200 Boston Ave Ste 4700, Medford, MA 02155, USA.,National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD, USA
| | - Fazila Nasimi
- Department of Biology, Tufts University, 200 Boston Ave Ste 4700, Medford, MA 02155, USA
| | - Margot A B Schwalbe
- Department of Biology, Lake Forest College, 555 N Sheridan Road, Lake Forest, IL 60045, USA
| | - Eric D Tytell
- Department of Biology, Tufts University, 200 Boston Ave Ste 4700, Medford, MA 02155, USA
| |
Collapse
|
11
|
Ecological predictors of lateral line asymmetry in stickleback (Gasterosteus aculeatus). Evol Ecol 2021. [DOI: 10.1007/s10682-021-10117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Lloyd E, Chhouk B, Conith AJ, Keene AC, Albertson RC. Diversity in rest-activity patterns among Lake Malawi cichlid fishes suggests a novel axis of habitat partitioning. J Exp Biol 2021; 224:jeb242186. [PMID: 33658242 PMCID: PMC8077532 DOI: 10.1242/jeb.242186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/11/2021] [Indexed: 12/04/2022]
Abstract
Animals display remarkable diversity in rest and activity patterns that are regulated by endogenous foraging strategies, social behaviors and predator avoidance. Alteration in the circadian timing of activity or the duration of rest-wake cycles provide a central mechanism for animals to exploit novel niches. The diversity of the >3000 cichlid species throughout the world provides a unique opportunity to examine variation in locomotor activity and rest. Lake Malawi alone is home to over 500 species of cichlids that display divergent behaviors and inhabit well-defined niches throughout the lake. These species are presumed to be diurnal, though this has never been tested systematically. Here, we measured locomotor activity across the circadian cycle in 11 Lake Malawi cichlid species. We documented surprising variability in the circadian time of locomotor activity and the duration of rest. In particular, we identified a single species, Tropheops sp. 'red cheek', that is nocturnal. Nocturnal behavior was maintained when fish were provided shelter, but not under constant darkness, suggesting that it results from acute response to light rather than an endogenous circadian rhythm. Finally, we showed that nocturnality is associated with increased eye size after correcting for evolutionary history, suggesting a link between visual processing and nighttime activity. Together, these findings identify diversity of locomotor behavior in Lake Malawi cichlids and provide a system for investigating the molecular and neural basis underlying variation in nocturnal activity.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33401, USA
| | - Brian Chhouk
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Andrew J. Conith
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Alex C. Keene
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33401, USA
| | - R. Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
13
|
Marchetto L, Barcellos LJG, Koakoski G, Soares SM, Pompermaier A, Maffi VC, Costa R, da Silva CG, Zorzi NR, Demin KA, Kalueff AV, de Alcantara Barcellos HH. Auditory environmental enrichment prevents anxiety-like behavior, but not cortisol responses, evoked by 24-h social isolation in zebrafish. Behav Brain Res 2021; 404:113169. [PMID: 33577884 DOI: 10.1016/j.bbr.2021.113169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/31/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
The zebrafish (Danio rerio) is widely used as a promising translational model organism for studying various brain disorders. Zebrafish are also commonly used in behavioral and drug screening assays utilizing individually tested (socially isolated) fish. Various sounds represent important exogenous factors that may affect fish behavior. Mounting evidence shows that musical/auditory environmental enrichment can improve welfare of laboratory animals, including fishes. Here, we show that auditory environmental enrichment mitigates anxiogenic-like effects caused by acute 24-h social isolation in adult zebrafish. Thus, auditory environmental enrichment may offer an inexpensive, feasible and simple tool to improve welfare of zebrafish stocks in laboratory facilities, reduce unwanted procedural stress, lower non-specific behavioral variance and, hence, collectively improve zebrafish data reliability and reproducibility.
Collapse
Affiliation(s)
- Letícia Marchetto
- Veterinary Medicine Integrated Residency Program, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, Brazil
| | - Leonardo J G Barcellos
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Postgraduate Program in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Veterinary Medicine Course, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Gessi Koakoski
- Veterinary Medicine Course, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Suelen M Soares
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Pompermaier
- Postgraduate Program in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Victoria C Maffi
- Veterinary Medicine Course, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Roberta Costa
- Veterinary Medicine Course, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Carolina G da Silva
- Veterinary Medicine Course, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Natalie R Zorzi
- Postgraduate Program in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Scientific Research Center for Radiology and Surgical Technologies, St. Petersburg, Russia; Biology School, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Neuroscience Program, Sirius National Technical University, Sochi, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia
| | - Heloisa H de Alcantara Barcellos
- Veterinary Medicine Integrated Residency Program, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, Brazil; Veterinary Medicine Course, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
14
|
Peixoto LAW, Pastana MNL, Ballen GA. New species of glass knifefish genus Eigenmannia (Gymnotiformes: Sternopygidae) with comments on the morphology and function of the enlarged cephalic lateral-line canals of Sternopygidae. JOURNAL OF FISH BIOLOGY 2021; 98:142-153. [PMID: 32981058 DOI: 10.1111/jfb.14564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/21/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
A new species of Eigenmannia is described from the Rio Paraná (the Grande, Paranapanema and Tietê basins). This new species is distinguished from all congeners by colouration pattern, position of the mouth, relative depth of posterodorsal expansion on infraorbitals 1 + 2, number of teeth, osteological features, number of rows of scales above lateral line (LL) and morphometric data. Comments on the widened cephalic lateral-line canals of Sternopygidae and a dichotomous key to the species of Eigenmannia from the Rio Paraná Basin are provided.
Collapse
Affiliation(s)
- Luiz A W Peixoto
- Museu de Zoologia da Universidade de São Paulo, Seção de peixes, São Paulo, Brazil
| | - Murilo N L Pastana
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Gustavo A Ballen
- Museu de Zoologia da Universidade de São Paulo, Seção de peixes, São Paulo, Brazil
| |
Collapse
|
15
|
Jung J, Serrano-Rojas SJ, Warkentin KM. Multimodal mechanosensing enables treefrog embryos to escape egg-predators. J Exp Biol 2020; 223:jeb236141. [PMID: 33188064 DOI: 10.1242/jeb.236141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/03/2020] [Indexed: 01/05/2023]
Abstract
Mechanosensory-cued hatching (MCH) is widespread, diverse and important for survival in many animals. From flatworms and insects to frogs and turtles, embryos use mechanosensory cues and signals to inform hatching timing, yet mechanisms mediating mechanosensing in ovo are largely unknown. The arboreal embryos of red-eyed treefrogs, Agalychnis callidryas, hatch prematurely to escape predation, cued by physical disturbance in snake attacks. When otoconial organs in the developing vestibular system become functional, this response strengthens, but its earlier occurrence indicates another sensor must contribute. Post-hatching, tadpoles use lateral line neuromasts to detect water motion. We ablated neuromast function with gentamicin to assess their role in A. callidryas' hatching response to disturbance. Prior to vestibular function, this nearly eliminated the hatching response to a complex simulated attack cue, egg jiggling, revealing that neuromasts mediate early MCH. Vestibular function onset increased hatching, independent of neuromast function, indicating young embryos use multiple mechanosensory systems. MCH increased developmentally. All older embryos hatched in response to egg jiggling, but neuromast function reduced response latency. In contrast, neuromast ablation had no effect on the timing or level of hatching in motion-only vibration playbacks. It appears only a subset of egg-disturbance cues stimulate neuromasts; thus, embryos in attacked clutches may receive unimodal or multimodal stimuli. Agalychnis callidryas embryos have more neuromasts than described for any other species at hatching, suggesting precocious sensory development may facilitate MCH. Our findings provide insight into the behavioral roles of two mechanosensory systems in ovo and open possibilities for exploring sensory perception across taxa in early life stages.
Collapse
Affiliation(s)
- Julie Jung
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Shirley J Serrano-Rojas
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| | - Karen M Warkentin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| |
Collapse
|
16
|
Body-generated hydrodynamic flows influence male–male contests and female mate choice in a freshwater fish. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Affiliation(s)
- Joachim G. Frommen
- Division of Behavioural Ecology Institute of Ecology and Evolution University of Bern Hinterkappelen Switzerland
- Department of Natural Sciences Manchester Metropolitan University Manchester UK
| |
Collapse
|
18
|
Short-Term Interactive Effects of Experimental Heat Waves and Turbidity Pulses on the Foraging Success of a Subtropical Invertivorous Fish. WATER 2019. [DOI: 10.3390/w11102109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sudden increases in temperature and turbidity in aquatic ecosystems are expected for different regions in the future, as a result of the more frequent extreme climatic events that are predicted. The consequences of these abrupt changes in the outcomes of predator–prey interactions are unknown. Here, we tested the effects of a heat wave and a turbidity pulse on the foraging success of a subtropical cichlid fish (Gymnogeophagus terrapurpura) on amphipods (Hyalella curvispina). We carried out a short-term experiment combining treatments of turbidity (3 and 100 nephelometric turbidity units [NTU]) and water temperature (19.2, 22.2, 25.2 and 27.0 °C), considering potential differences given by fish length. Changes in water temperature did not promote significant changes in prey consumption. Higher turbidity, in contrast, decreased prey consumption. Also, we found that fish with different body lengths consumed a similar amount of prey under clear waters, but, in turbid waters, bigger individuals were more efficient than the smaller individuals. This finding is an empirical demonstration that the effect of increased turbidity on predation rate depends upon predator body size, and it suggests that bigger body sizes may help overcome turbidity-associated limitations in finding and capturing prey. Our short-term results suggest that, if turbidity pulses and heat waves become more frequent in the future, the outcome of fish–invertebrate interaction can be affected by local characteristics such as fish population size distribution.
Collapse
|
19
|
Page RA, Bernal XE. The challenge of detecting prey: Private and social information use in predatory bats. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Ximena E. Bernal
- Smithsonian Tropical Research Institute Balboa Panamá
- Department of Biological Sciences Purdue University West Lafayette Indiana
| |
Collapse
|
20
|
Ma Z, Jiang Y, Wu P, Xu Y, Hu X, Gong Z, Zhang D. Constriction canal assisted artificial lateral line system for enhanced hydrodynamic pressure sensing. BIOINSPIRATION & BIOMIMETICS 2019; 14:066004. [PMID: 31434068 DOI: 10.1088/1748-3190/ab3d5a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the assistance of mechanosensory lateral line system, fish can perceive minute water motions in complex underwater environments. Inspired by the constriction within canal nearby canal neuromast in fish lateral line system, we proposed a novel canal artificial lateral line (CALL) device with constriction in canal nearby the sensing element. The designed CALL device consisted of a poly(vinylidene fluoride-trifluoroethylene)/polyimide cantilever as the sensing element and a polydimethylsiloxane (PDMS) microfluid canal. Two types of CALL devices, i.e., CALL with straight canal (S-CALL) and CALL with constriction canal (C-CALL), were developed and characterized employing a dipole source. Experimental results showed that the proposed C-CALL device achieved a pressure gradient detection limit of 0.64 Pa m-1, which was much lower than the S-CALL device. It indicates that the constriction in the canal nearby the sensing element could enhance the hydrodynamic pressure sensing performance of the CALL device. In addition, the constriction could modify the frequency response of the CALL device, and the C-CALL device achieved higher voltage output than S-CALL in high-frequency domain.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Institute of Bionic and Micro-Nano Systems, Beihang University, Beijing 100191, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Mogdans J. Sensory ecology of the fish lateral-line system: Morphological and physiological adaptations for the perception of hydrodynamic stimuli. JOURNAL OF FISH BIOLOGY 2019; 95:53-72. [PMID: 30873616 DOI: 10.1111/jfb.13966] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Fishes are able to detect and perceive the hydrodynamic and physical environment they inhabit and process this sensory information to guide the resultant behaviour through their mechanosensory lateral-line system. This sensory system consists of up to several thousand neuromasts distributed across the entire body of the animal. Using the lateral-line system, fishes perceive water movements of both biotic and abiotic origin. The anatomy of the lateral-line system varies greatly between and within species. It is still a matter of debate as to how different lateral-line anatomies reflect adaptations to the hydrodynamic conditions to which fishes are exposed. While there are many accounts of lateral-line system adaptations for the detection of hydrodynamic signals in distinct behavioural contexts and environments for specific fish species, there is only limited knowledge on how the environment influences intra and interspecific variations in lateral-line morphology. Fishes live in a wide range of habitats with highly diverse hydrodynamic conditions, from pools and lakes and slowly moving deep-sea currents to turbulent and fast running rivers and rough coastal surf regions. Perhaps surprisingly, detailed characterisations of the hydrodynamic properties of natural water bodies are rare. In particular, little is known about the spatio-temporal patterns of the small-scale water motions that are most relevant for many fish behaviours, making it difficult to relate environmental stimuli to sensory system morphology and function. Humans use bodies of water extensively for recreational, industrial and domestic purposes and in doing so often alter the aquatic environment, such as through the release of toxicants, the blocking of rivers by dams and acoustic noise emerging from boats and construction sites. Although the effects of anthropogenic interferences are often not well understood or quantified, it seems obvious that they change not only water quality and appearance but also, they alter hydrodynamic conditions and thus the types of hydrodynamic stimuli acting on fishes. To date, little is known about how anthropogenic influences on the aquatic environment affect the morphology and function of sensory systems in general and the lateral-line system in particular. This review starts out by briefly describing naturally occurring hydrodynamic stimuli and the morphology and neurobiology of the fish lateral-line system. In the main part, adaptations of the fish lateral-line system for the detection and analysis of water movements during various behaviours are presented. Finally, anthropogenic influences on the aquatic environment and potential effects on the fish lateral-line system are discussed.
Collapse
|
22
|
Edgley DE, Genner MJ. Adaptive Diversification of the Lateral Line System during Cichlid Fish Radiation. iScience 2019; 16:1-11. [PMID: 31146127 PMCID: PMC6542376 DOI: 10.1016/j.isci.2019.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/06/2019] [Accepted: 05/10/2019] [Indexed: 01/19/2023] Open
Abstract
The mechanosensory lateral line system is used by fishes to sense hydrodynamic stimuli in their environment. It provides information about flow regimes, proximity to substrate, and the presence and identity of prey and predators and represents a means of receiving communication signals from other fish. Thus we may expect lateral line system structures to be under strong divergent selection during adaptive radiation. Here, we used X-ray micro-computed tomography scans to quantify variation in cranial lateral line canal morphology within the adaptive radiation of Lake Malawi cichlids. We report that cranial lateral line canal morphology is strongly correlated with diet and other aspects of craniofacial morphology, including the shape of oral jaws. These results indicate an adaptive role for the lateral line system in prey detection and suggest that diversification of this system has taken an important role in the spectacular evolution of Lake Malawi's cichlid fish diversity.
Collapse
Affiliation(s)
- Duncan E Edgley
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Martin J Genner
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
23
|
Jiang Y, Ma Z, Zhang D. Flow field perception based on the fish lateral line system. BIOINSPIRATION & BIOMIMETICS 2019; 14:041001. [PMID: 30995633 DOI: 10.1088/1748-3190/ab1a8d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fish are able to perceive the surrounding weak flow and pressure variations with their mechanosensory lateral line system, which consists of a superficial lateral line for flow velocity detection and a canal lateral line for flow pressure gradient perception. Achieving a better understanding of the flow field perception algorithms of the lateral line can contribute not only to the design of highly sensitive flow sensors, but also to the development of underwater smart skin with good hydrodynamic imaging properties. In this review, we discuss highly sensitive flow-sensing mechanisms for superficial and canal neuromasts and flow field perception algorithms. Artificial lateral line systems with different transduction mechanisms are then described with special emphasis on the recent innovations in the field of polymer-based artificial flow sensors. Finally, we discuss our perspective of the technological challenges faced while improving flow sensitivity, durability, and sensing fusion schemes.
Collapse
Affiliation(s)
- Yonggang Jiang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People's Republic of China
| | | | | |
Collapse
|
24
|
Ji M, Zhang Y, Zheng X, Lin X, Liu G, Qiu J. Resolution improvement of dipole source localization for artificial lateral lines based on multiple signal classification. BIOINSPIRATION & BIOMIMETICS 2018; 14:016016. [PMID: 30523867 DOI: 10.1088/1748-3190/aaf42a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The lateral line is a critical mechanosensory organ that enables fish to perceive the surroundings accurately and rapidly. Massive efforts have been made to build an artificial lateral line system rivaling that of fish for underwater vehicles. Dipole source localization has become a standard problem for evaluating the sensing capabilities of the developed systems. In this paper we propose, for the first time, the multiple signal classification (MUSIC) method in order to achieve high-resolution dipole source localization based on spatial spectrum estimation. We also present the minimum variance distortionless response (MVDR) by making an improvement to the previous Capon's method. Experiments are conducted on a linear prototype of lateral line canal and the localization performance of these two methods are compared. The results show that the MUSIC method provides an overall localization resolution improvement of 10.4% and maintains a similar level of localization accuracy compared with the MVDR method. Further studies show that the MUSIC method has the potential of localizing two closer incoherent dipole sources with a minimum lateral separation of 20 mm, versus 70 mm for the MVDR method, at a dipole-array distance of half the array length. Both localization methods have strong robustness to the vibrational state of the dipole source. Our work provides a promising and robust way to meet the high-resolution and multi-source sensing requirements of underwater vehicles.
Collapse
|
25
|
Breviglieri CPB, Romero GQ. Prey stimuli trigger trophic interception across ecosystems. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Crasso Paulo B. Breviglieri
- Department of Animal Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo 13083-970 Brazil
| | - Gustavo Q. Romero
- Department of Animal Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo 13083-970 Brazil
| |
Collapse
|
26
|
Lloyd E, Olive C, Stahl BA, Jaggard JB, Amaral P, Duboué ER, Keene AC. Evolutionary shift towards lateral line dependent prey capture behavior in the blind Mexican cavefish. Dev Biol 2018; 441:328-337. [PMID: 29772227 PMCID: PMC6450390 DOI: 10.1016/j.ydbio.2018.04.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/13/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
Feeding strategies are dependent on multi-modal sensory processing, that integrates visual, chemosensory, and mechanoreceptive cues. In many fish species, local environments and food availability dramatically influence the evolution of sensory and morphological traits that underlie feeding. The Mexican cavefish, Astyanax mexicanus, have developed robust changes in sensory-dependent behaviors, but the impact on prey detection and feeding behavior is not known. In the absence of eyes, cavefish have evolved enhanced sensitivity of the lateral line, comprised of mechanosensory organs that sense water flow and detect prey. Here, we identify evolved differences in prey capture behavior of larval cavefish that are dependent on lateral line sensitivity. Under lighted conditions, cavefish strike Artemia prey at a wider angle than surface fish; however, this difference is diminished under dark conditions. In addition, the strike distance is greater in cavefish than surface fish, revealing an ability to capture, and likely detect, prey at greater distances. Experimental ablation of the lateral line disrupts prey capture in cavefish under both light and dark conditions, while it only impacts surface fish under dark conditions. Together, these findings identify an evolutionary shift towards a dependence on the lateral line for prey capture in cavefish, providing a model for investigating how loss of visual cues impacts multi-modal sensory behaviors.
Collapse
Affiliation(s)
- Evan Lloyd
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Courtney Olive
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Bethany A Stahl
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - James B Jaggard
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Paloma Amaral
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Erik R Duboué
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Alex C Keene
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
27
|
Mekdara PJ, Schwalbe MAB, Coughlin LL, Tytell ED. The effects of lateral line ablation and regeneration in schooling giant danios. ACTA ACUST UNITED AC 2018. [PMID: 29530974 DOI: 10.1242/jeb.175166] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fish use multiple sensory systems, including vision and their lateral line system, to maintain position and speed within a school. Although previous studies have shown that ablating the lateral line alters schooling behavior, no one has examined how the behavior recovers as the sensory system regenerates. We studied how schooling behavior changes in giant danios, Devario aequipinnatus, when their lateral line system is chemically ablated and after the sensory hair cells regenerate. We found that fish could school normally immediately after chemical ablation, but that they had trouble schooling 1-2 weeks after the chemical treatment, when the hair cells had fully regenerated. We filmed groups of giant danios with two high-speed cameras and reconstructed the three-dimensional positions of each fish within a group. One fish in the school was treated with gentamycin to ablate all hair cells. Both types of neuromasts (canal and superficial) were completely ablated after treatment, but fully regenerated after 1 week. We quantified the structure of the school using nearest neighbor distance, bearing, elevation, and the cross-correlation of velocity between each pair of fish. Treated fish maintained a normal position within the school immediately after the lateral line ablation, but could not school normally 1 or 2 weeks after treatment, even though the neuromasts had fully regenerated. By 4-8 weeks post-treatment, the treated fish could again school normally. These results demonstrate that the behavioral recovery after lateral line ablation is a longer process than the regeneration of the hair cells themselves.
Collapse
Affiliation(s)
- Prasong J Mekdara
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| | - Margot A B Schwalbe
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| | - Laura L Coughlin
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| | - Eric D Tytell
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| |
Collapse
|
28
|
Marranzino AN, Webb JF. Flow sensing in the deep sea: the lateral line system of stomiiform fishes. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zlx090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ashley N Marranzino
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Jacqueline F Webb
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
- Associate of Ichthyology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
29
|
Mojib N, Xu J, Bartolek Z, Imhoff B, McCarty NA, Shin CH, Kubanek J. Zebrafish aversive taste co-receptor is expressed in both chemo- and mechanosensory cells and plays a role in lateral line development. Sci Rep 2017; 7:13475. [PMID: 29044184 PMCID: PMC5647393 DOI: 10.1038/s41598-017-14042-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/05/2017] [Indexed: 11/21/2022] Open
Abstract
Fishes rely on both chemical and tactile senses to orient themselves to avoid predators, and to detect and taste food. This is likely achieved by highly coordinated reception of signals by mechano- and chemosensory receptors in fish. A small co-receptor from zebrafish, receptor activity modifying protein (RAMP)-like triterpene glycoside receptor (RL-TGR), was previously found to be involved in recognition of triterpene glycosides, a family of naturally occurring compounds that act as chemical defenses in various prey species. However, its localization, function, and how it impacts sensory organ development in vivo is not known. Here we show that RL-TGR is expressed in zebrafish in both i) apical microvilli of the chemosensory cells of taste buds including the epithelium of lips and olfactory epithelium, and ii) mechanosensory cells of neuromasts belonging to the lateral line system. Loss-of-function analyses of RL-TGR resulted in significantly decreased number of neuromasts in the posterior lateral line system and decreased body length, suggesting that RL-TGR is involved in deposition and migration of the neuromasts. Collectively, these results provide the first in vivo genetic evidence of sensory cell-specific expression of this unusual co-receptor and reveal its additional role in the lateral line development in zebrafish.
Collapse
Affiliation(s)
- Nazia Mojib
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jin Xu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zinka Bartolek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Barry Imhoff
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Atlanta, GA, 30322, USA
| | - Nael A McCarty
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Atlanta, GA, 30322, USA
| | - Chong Hyun Shin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Julia Kubanek
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
30
|
Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H. Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:98-116. [PMID: 28988233 DOI: 10.1159/000456646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Detection of motion is a feature essential to any living animal. In vertebrates, mechanosensory hair cells organized into the lateral line and vestibular systems are used to detect external water or head/body motion, respectively. While the neuronal components to detect these physical attributes are similar between the two sensory systems, the organizational pattern of the receptors in the periphery and the distribution of hindbrain afferent and efferent projections are adapted to the specific functions of the respective system. Here we provide a concise review comparing the functional organization of the vestibular and lateral line systems from the development of the organs to the wiring from the periphery and the first processing stages. The goal of this review is to highlight the similarities and differences to demonstrate how evolution caused a common neuronal substrate to adapt to different functions, one for the detection of external water stimuli and the generation of sensory maps and the other for the detection of self-motion and the generation of motor commands for immediate behavioral reactions.
Collapse
Affiliation(s)
- Boris P Chagnaud
- Ludwig-Maximilians-Universität München, Department Biology II, Division of Neurobiology, Martinsried-Planegg, Germany
| | | | | | | | | |
Collapse
|
31
|
Niesterok B, Krüger Y, Wieskotten S, Dehnhardt G, Hanke W. Hydrodynamic detection and localization of artificial flatfish breathing currents by harbour seals (Phoca vitulina). ACTA ACUST UNITED AC 2017; 220:174-185. [PMID: 28100802 DOI: 10.1242/jeb.148676] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022]
Abstract
Harbour seals are known to be opportunistic feeders, whose diet consists mainly of pelagic and benthic fish, such as flatfish. As flatfish are often cryptic and do not produce noise, we hypothesized that harbour seals are able to detect and localize flatfish using their hydrodynamic sensory system (vibrissae), as fish emit water currents through their gill openings (breathing currents). To test this hypothesis, we created an experimental platform where an artificial breathing current was emitted through one of eight different openings. Three seals were trained to search for the active opening and station there for 5 s. Half of the trials were conducted with the seal blindfolded with an eye mask. In blindfolded and non-blindfolded trials, all seals performed significantly better than chance. The seals crossed the artificial breathing current (being emitted into the water column at an angle of 45 deg to the ground) from different directions. There was no difference in performance when the seals approached from in front, from behind or from the side. All seals responded to the artificial breathing currents by directly moving their snout towards the opening from which the hydrodynamic stimulus was emitted. Thus, they were also able to extract directional information from the hydrodynamic stimulus. Hydrodynamic background noise and the swimming speed of the seals were also considered in this study as these are aggravating factors that seals in the wild have to face during foraging. By creating near-natural conditions, we show that harbour seals have the ability to detect a so-far overlooked type of stimulus.
Collapse
Affiliation(s)
- Benedikt Niesterok
- Institute for Biosciences, Chair of Sensory and Cognitive Ecology, Albert-Einstein-Straße 3, Rostock 18059, Germany
| | - Yvonne Krüger
- Institute for Biosciences, Chair of Sensory and Cognitive Ecology, Albert-Einstein-Straße 3, Rostock 18059, Germany
| | - Sven Wieskotten
- Institute for Biosciences, Chair of Sensory and Cognitive Ecology, Albert-Einstein-Straße 3, Rostock 18059, Germany
| | - Guido Dehnhardt
- Institute for Biosciences, Chair of Sensory and Cognitive Ecology, Albert-Einstein-Straße 3, Rostock 18059, Germany
| | - Wolf Hanke
- Institute for Biosciences, Chair of Sensory and Cognitive Ecology, Albert-Einstein-Straße 3, Rostock 18059, Germany
| |
Collapse
|
32
|
Butler JM, Maruska KP. The mechanosensory lateral line is used to assess opponents and mediate aggressive behaviors during territorial interactions in an African cichlid fish. ACTA ACUST UNITED AC 2017; 218:3284-94. [PMID: 26491195 DOI: 10.1242/jeb.125948] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fish must integrate information from multiple sensory systems to mediate adaptive behaviors. Visual, acoustic and chemosensory cues provide contextual information during social interactions, but the role of mechanosensory signals detected by the lateral line system during aggressive behaviors is unknown. The aim of this study was first to characterize the lateral line system of the African cichlid fish Astatotilapia burtoni and second to determine the role of mechanoreception during agonistic interactions. The A. burtoni lateral line system is similar to that of many other cichlid fishes, containing lines of superficial neuromasts on the head, trunk and caudal fin, and narrow canals. Astatotilapia burtoni males defend their territories from other males using aggressive behaviors that we classified as non-contact or contact. By chemically and physically ablating the lateral line system prior to forced territorial interactions, we showed that the lateral line system is necessary for mutual assessment of opponents and the use of non-contact fight behaviors. Our data suggest that the lateral line system facilitates the use of non-contact assessment and fight behaviors as a protective mechanism against physical damage. In addition to a role in prey detection, the diversity of lateral line morphology in cichlids may have also enabled the expansion of their social behavioral repertoire. To our knowledge, this is the first study to implicate the lateral line system as a mode of social communication necessary for assessment during agonistic interactions.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
33
|
Gehman ALM, Byers JE. Non-native parasite enhances susceptibility of host to native predators. Oecologia 2016; 183:919-926. [PMID: 27942863 DOI: 10.1007/s00442-016-3784-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/19/2016] [Indexed: 11/28/2022]
Abstract
Parasites often alter host physiology and behavior, which can enhance predation risk for infected hosts. Higher consumption of parasitized prey can in turn lead to a less parasitized prey population (the healthy herd hypothesis). Loxothylacus panopaei is a non-native castrating barnacle parasite on the mud crab Eurypanopeus depressus along the Atlantic coast. Through prey choice mesocosm experiments and a field tethering experiment, we investigated whether the predatory crab Callinectes sapidus and other predators preferentially feed on E. depressus infected with L. panopaei. We found that C. sapidus preferentially consumed infected E. depressus 3 to 1 over visibly uninfected E. depressus in the mesocosm experiments. Similarly, infected E. depressus were consumed 1.2 to 1 over uninfected conspecifics in field tethering trials. We evaluated a mechanism behind this skewed prey choice, specifically whether L. panopaei affects E. depressus movement, making infected prey more vulnerable to predator attack. Counter to our expectations, infected E. depressus ran faster during laboratory trials than uninfected E. depressus, suggesting that quick movement may not decrease predation risk and seems instead to make the prey more vulnerable. Ultimately, the preferential consumption of L. panopaei-infected prey by C. sapidus highlights how interactions between organisms could affect where novel parasites are able to thrive.
Collapse
Affiliation(s)
- Alyssa-Lois M Gehman
- Odum School of Ecology, University of Georgia, 140 E. Green St, Athens, GA, 30602, USA.
| | - James E Byers
- Odum School of Ecology, University of Georgia, 140 E. Green St, Athens, GA, 30602, USA
| |
Collapse
|
34
|
Butler JM, Maruska KP. Mechanosensory signaling as a potential mode of communication during social interactions in fishes. ACTA ACUST UNITED AC 2016; 219:2781-2789. [PMID: 27655819 DOI: 10.1242/jeb.133801] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Signals produced during social interactions convey crucial information about the sender's identity, quality, reproductive state and social status. Fishes can detect near-body water movements via the mechanosensory lateral line system, and this sense is used during several common fish behaviors, such as schooling, rheotaxis and predator-prey interactions. In addition, many fish behaviors, such as aggressive lateral displays and reproductive body quivers, involve fin and body motions that generate water movements that can be detected by the lateral line system of nearby fish. This mechanosensory system is well studied for its role in obstacle avoidance and detection of inadvertent hydrodynamic cues generated during schooling and predator-prey interactions; however, little research has focused on the role of mechanosensory communication during social interactions. Here, we summarize the current literature on the use of mechanosensation-mediated behaviors during agonistic and reproductive encounters, as well as during parental care. Based on these studies, we hypothesize that mechanosensory signaling is an important but often overlooked mode of communication during conspecific social interactions in many fish species, and we highlight its importance during multimodal communication. Finally, we suggest potential avenues of future research that would allow us to better understand the role of mechanosensation in fish communication.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
35
|
Becker EA, Bird NC, Webb JF. Post-embryonic development of canal and superficial neuromasts and the generation of two cranial lateral line phenotypes. J Morphol 2016; 277:1273-91. [DOI: 10.1002/jmor.20574] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 05/23/2016] [Accepted: 06/18/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Emily A. Becker
- Department of Biological Sciences; University of Rhode Island; 120 Flagg Road Kingston Rhode Island 02881
| | - Nathan C. Bird
- Department of Biological Sciences; University of Rhode Island; 120 Flagg Road Kingston Rhode Island 02881
| | - Jacqueline F. Webb
- Department of Biological Sciences; University of Rhode Island; 120 Flagg Road Kingston Rhode Island 02881
| |
Collapse
|
36
|
Butler JM, Field KE, Maruska KP. Cobalt Chloride Treatment Used to Ablate the Lateral Line System Also Impairs the Olfactory System in Three Freshwater Fishes. PLoS One 2016; 11:e0159521. [PMID: 27416112 PMCID: PMC4944935 DOI: 10.1371/journal.pone.0159521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/05/2016] [Indexed: 12/12/2022] Open
Abstract
Fishes use multimodal signals during both inter- and intra-sexual displays to convey information about their sex, reproductive state, and social status. These complex behavioral displays can include visual, auditory, olfactory, tactile, and hydrodynamic signals, and the relative role of each sensory channel in these complex multi-sensory interactions is a common focus of neuroethology. The mechanosensory lateral line system of fishes detects near-body water movements and is implicated in a variety of behaviors including schooling, rheotaxis, social communication, and prey detection. Cobalt chloride is commonly used to chemically ablate lateral line neuromasts, thereby eliminating water-movement cues to test for mechanosensory-mediated behavioral functions. However, cobalt acts as a nonspecific calcium channel antagonist and could potentially disrupt function of all superficially located sensory receptor cells, including those for chemosensing. Here, we examined whether CoCl2 treatment used to ablate the lateral line system also impairs olfaction in three freshwater fishes, the African cichlid fish Astatotilapia burtoni, goldfish Carassius auratus, and the Mexican blind cavefish Astyanax mexicanus. To examine the impact of CoCl2 on the activity of peripheral receptors, we quantified DASPEI fluorescence intensity of the olfactory epithelium from fish exposed to control and CoCl2 solutions. In addition, we examined brain activation in olfactory processing regions of A. burtoni immersed in either control or cobalt solutions. All three species exposed to CoCl2 had decreased DASPEI staining of the olfactory epithelium, and in A. burtoni, cobalt treatment caused reduced neural activation in olfactory processing regions of the brain. To our knowledge this is the first empirical evidence demonstrating that the same CoCl2 treatment used to ablate the lateral line system also impairs olfactory function. These data have important implications for the use of CoCl2 in future research and suggest that previous studies using CoCl2 should be reinterpreted in the context of both impaired mechanoreception and olfaction.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, 107 Life Sciences Bldg., Baton Rouge, LA, 70803, United States of America
| | - Karen E Field
- Department of Biological Sciences, Louisiana State University, 107 Life Sciences Bldg., Baton Rouge, LA, 70803, United States of America
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 107 Life Sciences Bldg., Baton Rouge, LA, 70803, United States of America
| |
Collapse
|
37
|
Schwalbe MAB, Sevey BJ, Webb JF. Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish. J Exp Biol 2016; 219:1050-9. [DOI: 10.1242/jeb.136150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/25/2016] [Indexed: 01/18/2023]
Abstract
ABSTRACT
The mechanosensory lateral line system of fishes detects water motions within a few body lengths of the source. Several types of artificial stimuli have been used to probe lateral line function in the laboratory, but few studies have investigated the role of flow sensing in benthic feeding teleosts. In this study, we used artificial flows emerging from a sandy substrate to assess the contribution of flow sensing to prey detection in the peacock cichlid, Aulonocara stuartgranti, which feeds on benthic invertebrates in Lake Malawi. Using a positive reinforcement protocol, we trained fish to respond to flows lacking the visual and chemical cues generated by tethered prey in prior studies with A. stuartgranti. Fish successfully responded to artificial flows at all five rates presented (characterized using digital particle image velocimetry), and showed a range of flow-sensing behaviors, including an unconditioned bite response. Immediately after lateral line inactivation, fish rarely responded to flows and the loss of vital fluorescent staining of hair cells (with 4-di-2-ASP) verified lateral line inactivation. Within 2 days post-treatment, some aspects of flow-sensing behavior returned and after 7 days, flow-sensing behavior and hair cell fluorescence both returned to pre-treatment levels, which is consistent with the reported timing of hair cell regeneration in other vertebrates. The presentation of ecologically relevant water flows to assess flow-sensing behaviors and the use of a positive reinforcement protocol are methods that present new opportunities to study the role of flow sensing in the feeding ecology of benthic feeding fishes.
Collapse
Affiliation(s)
- Margot A. B. Schwalbe
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Benjamin J. Sevey
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Jacqueline F. Webb
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| |
Collapse
|
38
|
Chemical Ototoxicity of the Fish Inner Ear and Lateral Line. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 877:419-37. [PMID: 26515324 DOI: 10.1007/978-3-319-21059-9_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hair cell-driven mechanosensory systems are crucial for successful execution of a number of behaviors in fishes, and have emerged as good models for exploring questions relevant to human hearing. This review focuses on ototoxic effects in the inner ear and lateral line system of fishes. We specifically examine studies where chemical ototoxins such as aminoglycoside antibiotics have been employed as tools to disable the lateral line. Lateral line ablation results in alterations to feeding behavior and orientation to water current in a variety of species. However, neither behavior is abolished in the presence of additional sensory cues, supporting the hypothesis that many fish behaviors are driven by multisensory integration. Within biomedical research, the larval zebrafish lateral line has become an important model system for understanding signaling mechanisms that contribute to hair cell death and for developing novel pharmacological therapies that protect hair cells from ototoxic damage. Furthermore, given that fishes robustly regenerate damaged hair cells, ototoxin studies in fishes have broadened our understanding of the molecular and genetic events in an innately regenerative system, offering potential targets for mammalian hair cell regeneration. Collectively, studies of fish mechanosensory systems have yielded insight into fish behavior and in mechanisms of hair cell death, protection, and regeneration.
Collapse
|
39
|
Zhao J, Gao J. Complete mitochondrial genome of Aulonocara stuartgranti (Flavescent peacock cichlid). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 28:279-280. [PMID: 26713354 DOI: 10.3109/19401736.2015.1118079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, the complete mitochondrial genome of the flavescent peacock cichlid Aulonocara stuartgranti was determined. The mitochondrial genome is 16 669 bp in length, and encodes 1 D-loop region, 2 ribosomal RNA genes, 13 protein-coding genes, and 22 transfer RNA genes. Average GC content of this genome is 45.8%. ATP8 and ATP6 genes overlap by nine nucleotides, ND5 and ND6 genes by four nucleotides, and ND4L and ND4 genes share six nucleotides. All coding genes use ATG as start codon with except COX1 initiating with GTG. The phylogenetic tree involving 22 available closely related species further validated the newly determined sequences and phylogeny of A. stuartgranti.
Collapse
Affiliation(s)
- Jia Zhao
- a BGI Education Center , University of Chinese Academy of Sciences , Shenzhen , China
| | - Jian Gao
- a BGI Education Center , University of Chinese Academy of Sciences , Shenzhen , China
| |
Collapse
|
40
|
Abstract
Among teleosts, cichlids are a great model for studies of evolution, behavior, diversity and speciation. Studies of cichlid sensory systems have revealed diverse sensory capabilities that vary among species. Hence, sensory systems are important for understanding cichlid behavior from proximate and ultimate points of view. Cichlids primarily rely on five sensory channels: hearing, mechanosensation, taste, vision, and olfaction, to receive information from the environment and respond accordingly. Within these sensory channels, cichlid species exhibit different adaptations to their surrounding environment, which differ in abiotic and biotic stimuli. Research on cichlid sensory capabilities and behaviors incorporates integrative approaches and relies on diverse scientific disciplines from physics to chemistry to neurobiology to understand the evolution of the cichlid sensory systems.
Collapse
Affiliation(s)
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
41
|
Clardy TR, Hilton EJ, Vogelbein WK. Morphology and ontogeny of multiple lateral-line canals in the rock prickleback, Xiphister mucosus (Cottiformes: Zoarcoidei: Stichaeidae). J Morphol 2015; 276:1218-29. [PMID: 26272463 DOI: 10.1002/jmor.20413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 11/05/2022]
Abstract
The structure and ontogeny of lateral-line canals in the Rock Prickleback, Xiphister mucosus, were studied using cleared-and-stained specimens, and the distribution and morphology of neuromasts within lateral-line canals were examined using histology. X. mucosus has seven cephalic canals in a pattern that, aside from four branches of the infraorbital canals, is similar to that of most teleostean fishes. Unlike most other teleosts, however, X. mucosus features multiple trunk lateral-line canals. These include a short median posterior extension of the supratemporal canal and three paired, branching canals located on the dorsolateral, mediolateral, and ventrolateral surfaces. The ventrolateral canal (VLC) includes a loop across the ventral surface of the abdomen. All trunk canals, as well as the branches of the infraorbitals, are supported by small, dermal, ring-like ossifications that develop independently from scales. Trunk canals develop asynchronously with the mediodorsal and dorsolateral canals (DLC) developing earliest, followed by the VLC, and, finally, by the mediolateral canal (MLC). Only the mediodorsal and DLC connect to the cephalic sensory canals. Fractal analysis shows that the complexity of the trunk lateral-line canals stabilizes when all trunk canals develop and begin to branch. Histological sections show that neuromasts are present in all cephalic canals and in the DLC and MLC of the trunk. However, no neuromasts were identified in the VLC or its abdominal loop. The VLC cannot, therefore, directly function as a part of the mechanosensory system in X. mucosus. The evolution and functional role of multiple lateral-line canals are discussed.
Collapse
Affiliation(s)
- Todd R Clardy
- Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia, 23062
| | - Eric J Hilton
- Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia, 23062
| | - Wolfgang K Vogelbein
- Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia, 23062
| |
Collapse
|
42
|
The effect of light intensity on prey detection behavior in two Lake Malawi cichlids, Aulonocara stuartgranti and Tramitichromis sp. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:341-56. [DOI: 10.1007/s00359-015-0982-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 10/23/2022]
|
43
|
Bird NC, Webb JF. Heterochrony, modularity, and the functional evolution of the mechanosensory lateral line canal system of fishes. EvoDevo 2014; 5:21. [PMID: 24959342 PMCID: PMC4066827 DOI: 10.1186/2041-9139-5-21] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/14/2014] [Indexed: 11/23/2022] Open
Abstract
Background The canals of the mechanosensory lateral line system are components of the dermatocranium, and demonstrate phenotypic variation in bony fishes. Widened lateral line canals evolved convergently in a limited number of families of teleost fishes and it had been hypothesized that they evolved from narrow canals via heterochrony and explore modularity in the lateral line system. Two species of cichlids with different canal phenotypes were used to test a hypothesis of heterochrony. Histological material prepared from ontogenetic series of Aulonocara stuartgranti (widened canals) and Tramitichromis sp. (narrow canals) was analyzed using ANCOVA to determine rates of increase in canal diameter and neuromast size (length, width) and to compare the timing of onset of critical stages in canal morphogenesis (enclosure, ossification). Results A faster rate of increase in canal diameter and neuromast width (but not length), and a delay in onset of canal morphogenesis were found in Aulonocara relative to Tramitichromis. However, rates of increase in canal diameter and neuromast size among canals, among canal portions and among canals segments reveal similar trends within both species. Conclusion The evolution of widened lateral line canals is the result of dissociated heterochrony - acceleration in the rate of increase of both canal diameter and neuromast size, and delay in the onset of canal morphogenesis, in Aulonocara (widened canals) relative to Tramitichromis (narrow canals). Common rates of increase in canal diameter and neuromast size among canal portions in different dermatocranial bones and among canal segments reflect the absence of local heterochronies, and suggest modular integration among canals in each species. Thus, canal and neuromast morphology are more strongly influenced by their identities as features of the lateral line system than by the attributes of the dermatocranial bones in which the canals are found. Rate heterochrony manifested during the larval stage ensures that the widened canal phenotype, known to be associated with benthic prey detection in adult Aulonocara, is already present before feeding commences. Heterochrony can likely explain the convergent evolution of widened lateral line canals among diverse taxa. The lateral line system provides a valuable context for novel analyses of the relationship between developmental processes and the evolution of behaviorally and ecologically relevant phenotypes in fishes.
Collapse
Affiliation(s)
- Nathan C Bird
- Current address: Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston RI 02881, USA
| | - Jacqueline F Webb
- Current address: Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston RI 02881, USA
| |
Collapse
|
44
|
Webb JF, Bird NC, Carter L, Dickson J. Comparative development and evolution of two lateral line phenotypes in lake Malawi cichlids. J Morphol 2014; 275:678-92, cover illustration. [PMID: 24469933 DOI: 10.1002/jmor.20247] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/20/2013] [Accepted: 12/08/2013] [Indexed: 11/05/2022]
Abstract
A comparison of the pattern and timing of development of cranial lateral line canals and canal neuromasts in three species of Lake Malawi cichlids, Labeotropheus fuelleborni and Metriaclima zebra (narrow lateral line canals), and Aulonocara baenschi (widened lateral line canals) was used to test the hypothesis that the evolution of widened canals (thought to be an adaptive phenotype in the lateral line system) from narrow canals is the result of heterochrony. Using histological analysis and scanning electron microscopy, this study has provided the first detailed and quantitative description of the development of widened lateral line canals in a teleost, and has demonstrated that: 1) canal neuromast number and the pattern of canal morphogenesis are conserved among species with different adult canal phenotypes, 2) heterochrony ("dissociated heterochrony" in particular) can explain the evolution of widened canals and variation in morphology between canals within a species with respect to canal diameter and neuromast size, and 3) the morphology of the lateral line canals and the dermal bones in which they are found (e.g., the mandibular canal the dentary and anguloarticular bones of the mandible) can evolve independently of each other, thus requiring the addition of another level of complexity to discussions of modularity and integration in the skull of bony fishes.
Collapse
Affiliation(s)
- Jacqueline F Webb
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02881
| | | | | | | |
Collapse
|
45
|
Schwalbe MAB, Webb JF. Sensory basis for detection of benthic prey in two Lake Malawi cichlids. ZOOLOGY 2013; 117:112-21. [PMID: 24369759 DOI: 10.1016/j.zool.2013.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/19/2013] [Accepted: 09/01/2013] [Indexed: 11/15/2022]
Abstract
The adaptive radiations of African cichlids resulted in a diversity of feeding morphologies and strategies, but the role of sensory biology in prey detection and feeding ecology remains largely unexplored. Two endemic Lake Malawi cichlid genera, Tramitichromis and Aulonocara, feed on benthic invertebrates, but differ in lateral line morphology (narrow and widened lateral line canals, respectively) and foraging strategy. The hypothesis that they use their lateral line systems differently was tested by looking at the relative contribution of the lateral line system and vision in prey detection by Tramitichromis sp. and comparing results to those from a complementary study using Aulonocara stuartgranti (Schwalbe et al., 2012). First, behavioral trials were used to assess the ability of Tramitichromis sp. to detect live (mobile) and dead (immobile) benthic prey under light and dark conditions. Second, trials were run before, immediately after, and several weeks after chemical ablation of the lateral line system to determine its role in feeding behavior. Results show that Tramitichromis sp. is a visual predator that neither locates prey in the dark nor depends on lateral line input for prey detection and is thus distinct from A. stuartgranti, which uses its lateral line or a combination of vision and lateral line to detect prey depending on light condition. Investigating how functionally distinctive differences in sensory morphology are correlated with feeding behavior in the laboratory and determining the role of sensory systems in feeding ecology will provide insights into how sensory capabilities may contribute to trophic niche segregation.
Collapse
Affiliation(s)
- Margot A B Schwalbe
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA.
| | - Jacqueline F Webb
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| |
Collapse
|
46
|
Flammang BE, Lauder GV. Pectoral fins aid in navigation of a complex environment by bluegill sunfish under sensory deprivation conditions. J Exp Biol 2013; 216:3084-9. [DOI: 10.1242/jeb.080077] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SUMMARY
Complex structured environments offer fish advantages as places of refuge and areas of greater potential prey densities, but maneuvering through these environments is a navigational challenge. To successfully navigate complex habitats, fish must have sensory input relaying information about the proximity and size of obstacles. We investigated the role of the pectoral fins as mechanosensors in bluegill sunfish swimming through obstacle courses under different sensory deprivation and flow speed conditions. Sensory deprivation was accomplished by filming in the dark to remove visual input and/or temporarily blocking lateral line input via immersion in cobalt chloride. Fish used their pectoral fins to touch obstacles as they swam slowly past them under all conditions. Loss of visual and/or lateral line sensory input resulted in an increased number of fin taps and shorter tap durations while traversing the course. Propulsive pectoral fin strokes were made in open areas between obstacle posts and fish did not use the pectoral fins to push off or change heading. Bending of the flexible pectoral fin rays may initiate an afferent sensory input, which could be an important part of the proprioceptive feedback system needed to navigate complex environments. This behavioral evidence suggests that it is possible for unspecialized pectoral fins to act in both a sensory and a propulsive capacity.
Collapse
Affiliation(s)
- Brooke E. Flammang
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - George V. Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
47
|
Sampson JA, Duston J, Croll RP. Superficial neuromasts facilitate non-visual feeding by larval striped bass (Morone saxatilis). J Exp Biol 2013; 216:3522-30. [DOI: 10.1242/jeb.087395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Summary
To investigate whether mechanoreception is used in non-visual feeding, the ontogeny of superficial neuromasts along the lateral line was described using the vital stain FM1-43FX and fluorescent microscopy. The number of neuromasts visible along one flank increased from 11 at first feeding (5 to 7 days post-hatch, dph) to >150 by the juvenile stage (27 dph). A neomycin dose response (0, 1, 2, 5 mmol l-1) was evaluated for neuromast ablation of bass age 10, 13, 17, and 20 dph. Using these same age groups, the ability of bass to catch Artemia salina prey in both dark and light tank-based feeding trials was compared between larvae with neuromasts ablated using neomycin (5 mmol l-1) and controls. Neomycin significantly reduced the incidence of feeding in the light and dark. Among larvae that fed, those in the dark treated with neomycin caught fewer Artemia (~5 prey h-1; p<0.05) than controls (16 prey h-1 at 10 dph; 72 prey h-1 at 20 dph). In the light, by contrast, neomycin treatment had no significant effect on prey capture by larvae age 13 to 20 dph, but did inhibit feeding of 10 dph larvae. Verification that neomycin was specifically ablating the hair cells of superficial neuromasts and not affecting either neuromast innervation, olfactory pits, or taste cells was achieved by a combination of staining with FM1-43FX and immunocytochemistry for tubulin and the calcium binding proteins, S100 and calretinin.
Collapse
|
48
|
Morphological Diversity, Development, and Evolution of the Mechanosensory Lateral Line System. SPRINGER HANDBOOK OF AUDITORY RESEARCH 2013. [DOI: 10.1007/2506_2013_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Functional Overlap and Nonoverlap Between Lateral Line and Auditory Systems. SPRINGER HANDBOOK OF AUDITORY RESEARCH 2013. [DOI: 10.1007/2506_2013_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Hanke W, Wieskotten S, Marshall C, Dehnhardt G. Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012. [PMID: 23180048 DOI: 10.1007/s00359-012-0778-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals' vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming.
Collapse
Affiliation(s)
- Wolf Hanke
- Institute for Biosciences, Chair of Sensory and Cognitive Ecology, Rostock University, Albert-Einstein-Strasse 3, 18059, Rostock, Germany.
| | | | | | | |
Collapse
|