1
|
Evans AJ, Naylor ER, Lujan NK, Kawano SM, Hernandez LP. Deploy the proboscis!: Functional morphology and kinematics of a novel form of extreme jaw protrusion in the hingemouth, Phractolaemus ansorgii (Gonorynchiformes). J Anat 2024; 244:929-942. [PMID: 38308591 PMCID: PMC11095310 DOI: 10.1111/joa.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Premaxillary protrusion and the performance advantages it confers are implicated in the success of diverse lineages of teleost fishes, such as Cypriniformes and Acanthomorpha. Although premaxillary protrusion has evolved independently at least five times within bony fishes, much of the functional work investigating this kinesis relates to mechanisms found only in these two clades. Few studies have characterized feeding mechanisms in less-diverse premaxilla-protruding lineages and fewer yet have investigated the distinctive anatomy underlying jaw kinesis in these lineages. Here, we integrated dissection, clearing and staining, histology, micro-CT, and high-speed videography to investigate an isolated and independent origin of jaw protrusion in the hingemouth, Phractolaemus ansorgii, which employs a complex arrangement of bones, musculature, and connective tissues to feed on benthic detritus via a deployable proboscis. Our goals were to provide an integrative account of the underlying architecture of P. ansorgii's feeding apparatus and to assess the functional consequences of this drastic deviation from the more typical teleost condition. Phractolaemus ansorgii's cranial anatomy is distinct from all other fishes in that its adducted lower jaw is caudally oriented, and it possesses a mouth at the terminal end of an elongated, tube-like proboscis that is unique in its lack of skeletal support from the oral jaws. Instead, its mouth is supported primarily by hyaline-cell cartilage and other rigid connective tissues, and features highly flexible lips that are covered in rows of keratinous unculi. Concomitant changes to the adductor musculature likely allow for the flexibility to protrude the mouth dorsally and ventrally as observed during different feeding behaviors, while the intrinsic compliance of the lips allows for more effective scraping of irregular surfaces. From our feeding videos, we find that P. ansorgii is capable of modulating the distance of protrusion, with maximum anterior protrusion exceeding 30% of head length. This represents a previously undescribed example of extreme jaw protrusion on par with many acanthomorph species. Protrusion is much slower in P. ansorgii-reaching an average speed of 2.74 cm/s-compared to acanthomorphs feeding on elusive prey or even benthivorous cypriniforms. However, this reorganization of cranial anatomy may reflect a greater need for dexterity to forage more precisely in multiple directions and on a wide variety of surface textures. Although this highly modified mechanism may have limited versatility over evolutionary timescales, it has persisted in solitude within Gonorynchiformes, representing a novel functional solution for benthic feeding in tropical West African rivers.
Collapse
Affiliation(s)
- Allyson J Evans
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Emily R Naylor
- Department of Biological Sciences, James Madison University, Harrisonburg, Virginia, USA
| | - Nathan K Lujan
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Sandy M Kawano
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - L Patricia Hernandez
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Peters JW, Duclos KK, Wilson MVH, Grande TC. Morphological Diversity and Evolution of Jaw Morphologies in Zeiform Fishes (Teleostei, Paracanthopterygii). Integr Org Biol 2024; 6:obae011. [PMID: 38741668 PMCID: PMC11090498 DOI: 10.1093/iob/obae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Zeiformes (dories, tinselfishes, and oreos) are primarily benthopelagic acanthomorph fishes, distributed between 50 and 1000 m depth on continental slopes and on flanks of oceanic islands and seamounts. Among the interesting morphological adaptations of zeiform fishes are their unique and highly protrusible jaws involving premaxillae with long ascending processes and a four-bar linkage, including mobile palatines that pivot on their posterior articulation. This adaptation for increased jaw protrusion has enabled zeiform fishes to capture elusive prey more efficiently and is arguably a major factor in their morphological diversity and evolutionary success. This study examines the evolution of zeiform jaw morphologies using 3D landmark-based multivariate morphometrics as well as phylomorphospace analysis. Results show that the descendants of the zeiform ancestor branched rapidly early in their history, retaining conservative jaw morphologies during this early branching, but subsequently strongly diverged in many of the resulting lineages. Results from this study are compared with earlier research based on overall body form, demonstrating that morphological variation within Zeiformes arose along at least two distinct trajectories: body form and jaw morphology. Variation among genera in body form is not associated with variation among the same genera in jaw morphology, and vice versa. Hypotheses to explain the apparent decoupling of body shape and jaw morphology are addressed along with avenues for further study to better understand the morphological evolution of these iconic fishes.
Collapse
Affiliation(s)
- J W Peters
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - K K Duclos
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary T2N 1N4 Alberta, Canada
| | - M V H Wilson
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - T C Grande
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
3
|
Mihalitsis M, Bellwood DR. Functional groups in piscivorous fishes. Ecol Evol 2021; 11:12765-12778. [PMID: 34594537 PMCID: PMC8462170 DOI: 10.1002/ece3.8020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023] Open
Abstract
Piscivory is a key ecological function in aquatic ecosystems, mediating energy flow within trophic networks. However, our understanding of the nature of piscivory is limited; we currently lack an empirical assessment of the dynamics of prey capture and how this differs between piscivores. We therefore conducted aquarium-based performance experiments, to test the feeding abilities of 19 piscivorous fish species. We quantified their feeding morphology, striking, capturing, and processing behavior. We identify two major functional groups: grabbers and engulfers. Grabbers are characterized by horizontal, long-distance strikes, capturing their prey tailfirst and subsequently processing their prey using their oral jaw teeth. Engulfers strike from short distances, from high angles above or below their prey, engulfing their prey and swallowing their prey whole. Based on a meta-analysis of 2,209 published in situ predator-prey relationships in marine and freshwater aquatic environments, we show resource partitioning between grabbers and engulfers. Our results provide a functional classification for piscivorous fishes delineating patterns, which transcend habitats, that may help explain size structures in fish communities.
Collapse
Affiliation(s)
- Michalis Mihalitsis
- Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQldAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- Australian Research CouncilCentre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQldAustralia
| | - David R. Bellwood
- Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQldAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- Australian Research CouncilCentre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQldAustralia
| |
Collapse
|
4
|
Hodge JR, Song Y, Wightman MA, Milkey A, Tran B, Štajner A, Roberts AS, Hemingson CR, Wainwright PC, Price SA. Constraints on the Ecomorphological Convergence of Zooplanktivorous Butterflyfishes. Integr Org Biol 2021; 3:obab014. [PMID: 34377941 PMCID: PMC8341894 DOI: 10.1093/iob/obab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Whether distantly related organisms evolve similar strategies to meet the demands of a shared ecological niche depends on their evolutionary history and the nature of form-function relationships. In fishes, the visual identification and consumption of microscopic zooplankters, selective zooplanktivory, is a distinct type of foraging often associated with a suite of morphological specializations. Previous work has identified inconsistencies in the trajectory and magnitude of morphological change following transitions to selective zooplanktivory, alluding to the diversity and importance of ancestral effects. Here we investigate whether transitions to selective zooplanktivory have influenced the morphological evolution of marine butterflyfishes (family Chaetodontidae), a group of small-prey specialists well known for several types of high-precision benthivory. Using Bayesian ancestral state estimation, we inferred the recent evolution of zooplanktivory among benthivorous ancestors that hunted small invertebrates and browsed by picking or scraping coral polyps. Traits related to the capture of prey appear to be functionally versatile, with little morphological distinction between species with benthivorous and planktivorous foraging modes. In contrast, multiple traits related to prey detection or swimming performance are evolving toward novel, zooplanktivore-specific optima. Despite a relatively short evolutionary history, general morphological indistinctiveness, and evidence of constraint on the evolution of body size, convergent evolution has closed a near significant amount of the morphological distance between zooplanktivorous species. Overall, our findings describe the extent to which the functional demands associated with selective zooplanktivory have led to generalizable morphological features among butterflyfishes and highlight the importance of ancestral effects in shaping patterns of morphological convergence.
Collapse
Affiliation(s)
- J R Hodge
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Y Song
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - M A Wightman
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA
| | - A Milkey
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - B Tran
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - A Štajner
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - A S Roberts
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - C R Hemingson
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - P C Wainwright
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - S A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
5
|
Olsen AM, Hernandez LP, Brainerd EL. Multiple Degrees of Freedom in the Fish Skull and Their Relation to Hydraulic Transport of Prey in Channel Catfish. Integr Org Biol 2021; 2:obaa031. [PMID: 33791570 PMCID: PMC7671092 DOI: 10.1093/iob/obaa031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fish perform many complex manipulation behaviors without hands or flexible muscular tongues, instead relying on more than 20 movable skeletal elements in their highly kinetic skulls. How fish use their skulls to accomplish these behaviors, however, remains unclear. Most previous mechanical models have represented the fish skull using one or more planar four-bar linkages, which have just a single degree of freedom (DoF). In contrast, truncated-cone hydrodynamic models have assumed up to five DoFs. In this study, we introduce and validate a 3D mechanical linkage model of a fish skull that incorporates the pectoral girdle and mandibular and hyoid arches. We validate this model using an in vivo motion dataset of suction feeding in channel catfish and then use this model to quantify the DoFs in the fish skull, to categorize the motion patterns of the cranial linkage during feeding, and to evaluate the association between these patterns and food motion. We find that the channel catfish skull functions as a 17-link, five-loop parallel mechanism. Despite having 19 potential DoFs, we find that seven DoFs are sufficient to describe most of the motion of the cranial linkage, consistent with the fish skull functioning as a multi-DoF, manipulation system. Channel catfish use this linkage to generate three different motion patterns (rostrocaudal wave, caudorostral wave, and compressive wave), each with its own associated food velocity profile. These results suggest that biomechanical manipulation systems must have a minimum number of DoFs to effectively control objects, whether in water or air.
Collapse
Affiliation(s)
- A M Olsen
- Department of Ecology and Evolutionary Biology, Brown University, 171 Meeting St, Box G-B 204, Providence, RI 02912, USA
| | - L P Hernandez
- Department of Biological Sciences, Science and Engineering Hall, The George Washington University, 800 22nd Street NW, Suite 6000, Washington, DC 20052, USA
| | - E L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, 171 Meeting St, Box G-B 204, Providence, RI 02912, USA
| |
Collapse
|
6
|
Mihalitsis M, Hemingson CR, Goatley CHR, Bellwood DR. The role of fishes as food: A functional perspective on predator–prey interactions. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michalis Mihalitsis
- Research Hub for Coral Reef Ecosystem Functions James Cook University Townsville QLD Australia
- College of Science and Engineering James Cook University Townsville QLD Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD Australia
| | - Christopher R. Hemingson
- Research Hub for Coral Reef Ecosystem Functions James Cook University Townsville QLD Australia
- College of Science and Engineering James Cook University Townsville QLD Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD Australia
| | - Christopher H. R. Goatley
- Function, Evolution and Anatomy Research (FEAR) Lab and Palaeoscience Research Centre School of Environmental and Rural Science University of New England Armidale Australia
- Australian Museum Research InstituteAustralian Museum Sydney NSW Australia
| | - David R. Bellwood
- Research Hub for Coral Reef Ecosystem Functions James Cook University Townsville QLD Australia
- College of Science and Engineering James Cook University Townsville QLD Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD Australia
| |
Collapse
|
7
|
Corn KA, Martinez CM, Burress ED, Wainwright PC. A Multifunction Trade-Off has Contrasting Effects on the Evolution of Form and Function. Syst Biol 2021; 70:681-693. [PMID: 33331913 DOI: 10.1093/sysbio/syaa091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023] Open
Abstract
Trade-offs caused by the use of an anatomical apparatus for more than one function are thought to be an important constraint on evolution. However, whether multifunctionality suppresses diversification of biomechanical systems is challenged by recent literature showing that traits more closely tied to trade-offs evolve more rapidly. We contrast the evolutionary dynamics of feeding mechanics and morphology between fishes that exclusively capture prey with suction and multifunctional species that augment this mechanism with biting behaviors to remove attached benthic prey. Diversification of feeding kinematic traits was, on average, over 13.5 times faster in suction feeders, consistent with constraint on biters due to mechanical trade-offs between biting and suction performance. Surprisingly, we found that the evolution of morphology contrasts directly with these differences in kinematic evolution, with significantly faster rates of evolution of head shape in biters. This system provides clear support for an often postulated, but rarely confirmed prediction that multifunctionality stifles functional diversification, while also illustrating the sometimes weak relationship between form and function. [Form-function evolution; geometric morphometrics; kinematic evolution; macroevolution; Ornstein-Uhlenbeck; RevBayes; suction feeding].
Collapse
Affiliation(s)
- Katherine A Corn
- Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA
| | - Christopher M Martinez
- Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA
| | - Edward D Burress
- Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA
| | - Peter C Wainwright
- Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA
| |
Collapse
|
8
|
Deban SM, Holzman R, Müller UK. Suction Feeding by Small Organisms: Performance Limits in Larval Vertebrates and Carnivorous Plants. Integr Comp Biol 2020; 60:852-863. [PMID: 32658970 DOI: 10.1093/icb/icaa105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Suction feeding has evolved independently in two highly disparate animal and plant systems, aquatic vertebrates and carnivorous bladderworts. We review the suction performance of animal and plant suction feeders to explore biomechanical performance limits for aquatic feeders based on morphology and kinematics, in the context of current knowledge of suction feeding. While vertebrates have the greatest diversity and size range of suction feeders, bladderworts are the smallest and fastest known suction feeders. Body size has profound effects on aquatic organismal function, including suction feeding, particularly in the intermediate flow regime that tiny organisms can experience. A minority of tiny organisms suction feed, consistent with model predictions that generating effective suction flow is less energetically efficient and also requires more flow-rate specific power at small size. Although the speed of suction flows generally increases with body and gape size, some specialized tiny plant and animal predators generate suction flows greater than those of suction feeders 100 times larger. Bladderworts generate rapid flow via high-energy and high-power elastic recoil and suction feed for nutrients (relying on photosynthesis for energy). Small animals may be limited by available muscle energy and power, although mouth protrusion can offset the performance cost of not generating high suction pressure. We hypothesize that both the high energetic costs and high power requirements of generating rapid suction flow shape the biomechanics of small suction feeders, and that plants and animals have arrived at different solutions due in part to their different energy budgets.
Collapse
Affiliation(s)
- Stephen M Deban
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave, SCA 110, Tampa, FL 33620, USA
| | - Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.,The Inter-University for Marine Sciences in Eilat, Israel
| | - Ulrike K Müller
- Department of Biology, California State University Fresno, Fresno, CA 93740, USA
| |
Collapse
|
9
|
Dial TR, Lauder GV. Longer development provides first-feeding fish time to escape hydrodynamic constraints. J Morphol 2020; 281:956-969. [PMID: 32557795 DOI: 10.1002/jmor.21224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 11/08/2022]
Abstract
What is the functional effect of prolonged development? By controlling for size, we quantify first-feeding performance and hydrodynamics of zebrafish and guppy offspring (5 ± 0.5 mm in length), which differ fivefold in developmental time and twofold in ontogenetic state. By manipulating water viscosity, we control the hydrodynamic regime, measured as Reynolds number. We predicted that if feeding performance were strictly the result of hydrodynamics, and not development, feeding performance would scale with Reynolds number. We find that guppy offspring successfully feed at much greater distances to prey (1.0 vs. 0.2 mm) and with higher capture success (90 vs. 20%) compared with zebrafish larvae, and that feeding performance was not a result of Reynolds number alone. Flow visualization shows that zebrafish larvae produce a bow wave ~0.2 mm in length, and that the flow field produced during suction does not extend beyond this bow wave. Due to well-developed oral jaw protrusion, the similar-sized suction field generated by guppy offspring extends beyond the horizon of their bow wave, leading to successful prey capture from greater distances. These findings suggest that prolonged development and increased ontogenetic state provides first-feeding fish time to escape the pervasive hydrodynamic constraints (bow wave) of being small.
Collapse
Affiliation(s)
- Terry R Dial
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Galindo D, Sweet E, DeLeon Z, Wagner M, DeLeon A, Carter C, McMenamin SK, Cooper WJ. Thyroid hormone modulation during zebrafish development recapitulates evolved diversity in danionin jaw protrusion mechanics. Evol Dev 2019; 21:231-246. [PMID: 31374588 PMCID: PMC6815664 DOI: 10.1111/ede.12299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protrusile jaws are a highly useful innovation that has been linked to extensive diversification in fish feeding ecology. Jaw protrusion can enhance the performance of multiple functions, such as suction production and capturing elusive prey. Identifying the developmental factors that alter protrusion ability will improve our understanding of fish diversification. In the zebrafish protrusion arises postmetamorphosis. Fish metamorphosis typically includes significant changes in trophic morphology, accompanies a shift in feeding niche and coincides with increased thyroid hormone production. We tested whether thyroid hormone affects the development of zebrafish feeding mechanics. We found that it affected all developmental stages examined, but that effects were most pronounced after metamorphosis. Thyroid hormone levels affected the development of jaw morphology, feeding mechanics, shape variation, and cranial ossification. Adult zebrafish utilize protrusile jaws, but an absence of thyroid hormone impaired development of the premaxillary bone, which is critical to jaw protrusion. Premaxillae from early juvenile zebrafish and hypothyroid adult zebrafish resemble those from adults in the genera Danionella, Devario, and Microdevario that show little to no jaw protrusion. Our findings suggest that evolutionary changes in how the developing skulls of danionin minnows respond to thyroid hormone may have promoted diversification into different feeding niches.
Collapse
Affiliation(s)
- Demi Galindo
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Elly Sweet
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Zoey DeLeon
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Mitchel Wagner
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Adrian DeLeon
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Casey Carter
- School of Biological Sciences, Washington State University, Pullman, Washington
| | | | - W. James Cooper
- School of Biological Sciences, Washington State University, Pullman, Washington
| |
Collapse
|
11
|
The Role of Developmental Integration and Historical Contingency in the Origin and Evolution of Cypriniform Trophic Novelties. Integr Comp Biol 2019; 59:473-488. [DOI: 10.1093/icb/icz056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AbstractWhile functional morphologists have long studied the evolution of anatomical structures, the origin of morphological novelties has received less attention. When such novelties first originate they must become incorporated into an integrated system to be rendered fully functional. Thus, developmental integration is key at the origin of morphological novelties. However, given enough evolutionary time such integration may be broken, allowing for a division of labor that is facilitated by subsequent decoupling of structures. Cypriniformes represent a diverse group of freshwater fishes characterized by several trophic novelties that include: kinethmoid-mediated premaxillary protrusion, a muscular palatal and post-lingual organ, hypertrophied lower pharyngeal jaws that masticate against the base of the neurocranium, novel pharyngeal musculature controlling movement of the hypertrophied lower pharyngeal jaws, and in a few species an incredibly complex epibranchial organ used to aggregate filtered phytoplankton. Here, we use the wealth of such trophic novelties in different cypriniform fishes to present case studies in which developmental integration allowed for the origin of morphological innovations. As proposed in case studies 1 and 2 trophic innovations may be associated with both morphological and lineage diversification. Alternatively, case studies 3 and 4 represent a situation where ecological niche was expanded but with no concomitant increase in species diversity.
Collapse
|
12
|
Gidmark NJ, Pos K, Matheson B, Ponce E, Westneat MW. Functional Morphology and Biomechanics of Feeding in Fishes. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Atukorala ADS, Bhatia V, Ratnayake R. Craniofacial skeleton of MEXICAN tetra (Astyanax mexicanus): As a bone disease model. Dev Dyn 2018; 248:153-161. [PMID: 30450697 DOI: 10.1002/dvdy.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
A small fresh water fish, the Mexican tetra (Astyanax mexicanus) is a novel animal model in evolutionary developmental biology. The existence of morphologically distinct surface and cave morphs of this species allows simultaneous comparative analysis of phenotypic changes at different life stages. The cavefish harbors many favorable constructive traits (i.e., large jaws with an increased number of teeth, neuromast cells, enlarged olfactory pits and excess storage of adipose tissues) and regressive traits (i.e., reduced eye structures and pigmentation) which are essential for cave adaptation. A wide spectrum of natural craniofacial morphologies can be observed among the different cave populations. Recently, the Mexican tetra has been identified as a human disease model. The fully sequenced genome along with modern genome editing tools has allowed researchers to generate transgenic and targeted gene knockouts with phenotypes that resemble human pathological conditions. This review will discuss the anatomy of the craniofacial skeleton of A. mexicanus with a focus on morphologically variable facial bones, jaws that house continuously replacing teeth and pharyngeal skeleton. Furthermore, the possible applications of this model animal in identifying human congenital and metabolic skeletal disorders is addressed. Developmental Dynamics 248:153-161, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Atukorallaya Devi Sewvandini Atukorala
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vikram Bhatia
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ravindra Ratnayake
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Martinez CM, McGee MD, Borstein SR, Wainwright PC. Feeding ecology underlies the evolution of cichlid jaw mobility. Evolution 2018; 72:1645-1655. [PMID: 29920668 DOI: 10.1111/evo.13518] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 12/25/2022]
Abstract
The fish feeding apparatus is among the most diverse functional systems in vertebrates. While morphological and mechanical variations of feeding systems are well studied, we know far less about the diversity of the motions that they produce. We explored patterns of feeding movements in African cichlids from Lakes Malawi and Tanganyika, asking whether the degree of kinesis is associated with dietary habits of species. We used geometric morphometrics to measure feeding kinesis as trajectories of shape change, based on 326 high-speed videos in 56 species. Cranial morphology was significantly related to feeding movements, both of which were distributed along a dietary axis associated with prey evasiveness. Small-mouthed cichlids that feed by scraping algae and detritus from rocks had low kinesis strikes, while large-mouthed species that eat large, evasive prey (fishes and shrimps) generated the greatest kinesis. Despite having higher overall kinesis, comparisons of trajectory shape (linearity) revealed that cichlids that eat mobile prey also displayed more kinematically conserved, or efficient, feeding motions. Our work indicates that prey evasiveness is strongly related to the evolution of cichlid jaw mobility, suggesting that this same relationship may explain the origins and diversity of highly kinetic jaws that characterize the super-radiation of spiny-rayed fishes.
Collapse
Affiliation(s)
| | - Matthew D McGee
- School of Biological Sciences, Monash University, 3800 Victoria, Australia
| | - Samuel R Borstein
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
15
|
Heiss E, Aerts P, Van Wassenbergh S. Aquatic-terrestrial transitions of feeding systems in vertebrates: a mechanical perspective. ACTA ACUST UNITED AC 2018; 221:221/8/jeb154427. [PMID: 29695537 DOI: 10.1242/jeb.154427] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transitions to terrestrial environments confront ancestrally aquatic animals with several mechanical and physiological problems owing to the different physical properties of water and air. As aquatic feeders generally make use of flows of water relative to the head to capture, transport and swallow food, it follows that morphological and behavioral changes were inevitably needed for the aquatic animals to successfully perform these functions on land. Here, we summarize the mechanical requirements of successful aquatic-to-terrestrial transitions in food capture, transport and swallowing by vertebrates and review how different taxa managed to fulfill these requirements. Amphibious ray-finned fishes show a variety of strategies to stably lift the anterior trunk, as well as to grab ground-based food with their jaws. However, they still need to return to the water for the intra-oral transport and swallowing process. Using the same mechanical perspective, the potential capabilities of some of the earliest tetrapods to perform terrestrial feeding are evaluated. Within tetrapods, the appearance of a mobile neck and a muscular and movable tongue can safely be regarded as key factors in the colonization of land away from amphibious habitats. Comparative studies on taxa including salamanders, which change from aquatic feeders as larvae to terrestrial feeders as adults, illustrate remodeling patterns in the hyobranchial system that can be linked to its drastic change in function during feeding. Yet, the precise evolutionary history in form and function of the hyolingual system leading to the origin(s) of a muscular and adhesive tongue remains unknown.
Collapse
Affiliation(s)
- Egon Heiss
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Erbertstr. 1, 07743, Jena, Germany
| | - Peter Aerts
- Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.,Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, B-9000, Ghent, Belgium
| | - Sam Van Wassenbergh
- Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.,Département Adaptations du Vivant, Muséum National d' Histoire Naturelle, 57 rue Cuvier, Case postale 55, 75231, Paris Cedex 5, France
| |
Collapse
|
16
|
Jacobs C, Holzman R. Conserved spatio-temporal patterns of suction-feeding flows across aquatic vertebrates: a comparative flow visualization study. J Exp Biol 2018; 221:jeb.174912. [DOI: 10.1242/jeb.174912] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/28/2018] [Indexed: 11/20/2022]
Abstract
Suction feeding is a widespread prey capture strategy among aquatic vertebrates. It is almost omnipresent across fishes, and has repeatedly evolved in other aquatic vertebrates. By rapidly expanding the mouth cavity, suction-feeders generate a fluid flow outside of their mouth, drawing prey inside. Fish and other suction feeding organisms display remarkable trophic diversity, echoed in the diversity of their skull and mouth morphologies. Yet, it is unclear how variable suction flows are across species, and whether variation in suction flows supports trophic diversity. Using a high-speed flow visualization technique, we characterized the spatio-temporal patterns in the flow fields produced during feeding in 14 species of aquatic suction feeders. We found that suction-feeding hydrodynamics are highly conserved across species. Suction flows affected only a limited volume of ∼1 gape diameter away from the mouth, and peaked around the timing of maximal mouth opening. The magnitude of flow speed increased with increasing mouth diameter and, to a lesser extent, with decreasing time to peak gape opening. Other morphological, kinematic and behavioral variables played a minor role in shaping suction-feeding dynamics. We conclude that the trophic diversity within fishes, and likely other aquatic vertebrates, is not supported by a diversity of mechanisms that modify the characteristics of suction flow. Rather, we suggest that suction feeding supports such trophic diversity due to the general lack of strong trade-offs with other mechanisms that contribute to prey capture.
Collapse
Affiliation(s)
- Corrine Jacobs
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| | - Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| |
Collapse
|
17
|
Cooper WJ, Carter CB, Conith AJ, Rice AN, Westneat MW. The evolution of jaw protrusion mechanics is tightly coupled to bentho-pelagic divergence in damselfishes (Pomacentridae). ACTA ACUST UNITED AC 2016; 220:652-666. [PMID: 27913600 DOI: 10.1242/jeb.143115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/28/2016] [Indexed: 12/29/2022]
Abstract
Most species-rich lineages of aquatic organisms have undergone divergence between forms that feed from the substrate (benthic feeding) and forms that feed from the water column (pelagic feeding). Changes in trophic niche are frequently accompanied by changes in skull mechanics, and multiple fish lineages have evolved highly specialized biomechanical configurations that allow them to protrude their upper jaws toward the prey during feeding. Damselfishes (family Pomacentridae) are an example of a species-rich lineage with multiple trophic morphologies and feeding ecologies. We sought to determine whether bentho-pelagic divergence in the damselfishes is tightly coupled to changes in jaw protrusion ability. Using high-speed video recordings and kinematic analysis, we examined feeding performance in 10 species that include three examples of convergence on herbivory, three examples of convergence on omnivory and two examples of convergence on planktivory. We also utilized morphometrics to characterize the feeding morphology of an additional 40 species that represent all 29 damselfish genera. Comparative phylogenetic analyses were then used to examine the evolution of trophic morphology and biomechanical performance. We find that pelagic-feeding damselfishes (planktivores) are strongly differentiated from extensively benthic-feeding species (omnivores and herbivores) by their jaw protrusion ability, upper jaw morphology and the functional integration of upper jaw protrusion with lower jaw abduction. Most aspects of cranial form and function that separate these two ecological groups have evolved in correlation with each other and the evolution of the functional morphology of feeding in damselfishes has involved repeated convergence in form, function and ecology.
Collapse
Affiliation(s)
- W James Cooper
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| | - Casey B Carter
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| | - Andrew J Conith
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, 204C French Hall, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
| | - Aaron N Rice
- Bioacoustics Research Program, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th St., Chicago, IL 60637, USA
| |
Collapse
|
18
|
Dirnberger JM, Love J. Seasonal Specialization and Selectivity of the Eastern Mosquitofish,Gambusia holbrooki, Toward Planktonic Prey. SOUTHEAST NAT 2016. [DOI: 10.1656/058.015.0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Johnson GD, Schnell NK. Development of the Rostrum and Upper Jaws in Squirrelfishes and Soldierfishes (Beryciformes: Holocentridae): A Unique Ontogenetic Trajectory. COPEIA 2015. [DOI: 10.1643/cg-15-260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
|
21
|
The Rise of Jaw Protrusion in Spiny-Rayed Fishes Closes the Gap on Elusive Prey. Curr Biol 2015; 25:2696-700. [DOI: 10.1016/j.cub.2015.08.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 11/22/2022]
|
22
|
Ferry L. Functional Morphology: ‘Point and Shoot’ Prey Capture in Fishes. Curr Biol 2015; 25:R982-4. [DOI: 10.1016/j.cub.2015.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Day SW, Higham TE, Holzman R, Van Wassenbergh S. Morphology, Kinematics, and Dynamics: The Mechanics of Suction Feeding in Fishes. Integr Comp Biol 2015; 55:21-35. [PMID: 25980568 DOI: 10.1093/icb/icv032] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Suction feeding is pervasive among aquatic vertebrates, and our understanding of the functional morphology and biomechanics of suction feeding has recently been advanced by combining experimental and modeling approaches. Key advances include the visualization of the patterns of flow in front of the mouth of a feeding fish, the measurement of pressure inside their mouth cavity, and the employment of analytical and computational models. Here, we review the key components of the morphology and kinematics of the suction-feeding system of anatomically generalized, adult ray-finned fishes, followed by an overview of the hydrodynamics involved. In the suction-feeding apparatus, a strong mechanistic link among morphology, kinematics, and the capture of prey is manifested through the hydrodynamic interactions between the suction flows and solid surfaces (the mouth cavity and the prey). It is therefore a powerful experimental system in which the ecology and evolution of the capture of prey can be studied based on first principals.
Collapse
Affiliation(s)
- Steven W Day
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium Steven.Day@RIT
| | - Timothy E Higham
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | - Roi Holzman
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | - Sam Van Wassenbergh
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| |
Collapse
|
24
|
Hernandez LP, Staab KL. Bottom Feeding and Beyond: How the Premaxillary Protrusion of Cypriniforms Allowed for a Novel Kind of Suction Feeding. Integr Comp Biol 2015; 55:74-84. [PMID: 25976909 DOI: 10.1093/icb/icv038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While much of the functional work on suction feeding has involved members of Acanthopterygii, an earlier cypriniform radiation led to over 3200 species filling nearly every freshwater trophic niche. Within the great majority of acanthomorph clades that have been investigated suction feeding and the underlying morphology responsible for the generation of rapid suction have been largely conserved. This conserved feeding-apparatus is often associated with increasing the force experienced by the prey item, thus making a strike on elusive prey more effective. Cypriniforms' trophic anatomy is comprised of a number of novelties used for benthic feeding, which characterized early members of this clade. The modified cypriniform structure of the oral jaws represents a situation in which a particular type of suction feeding allowed for probing the benthos with a more functionally maneuverable anatomy. Requisite evolutionary modifications included origin and elongation of a median kinethmoid, duplications of certain divisions of the muscles of the adductor mandibulae, and origin of a dorsal, intra-buccal muscular palatal organ used in winnowing detritus. The elongated kinethmoid (coupled with modified adductor muscles) allowed for a type of premaxillary protrusion that decoupled the upper and lower jaws, enabled premaxillary protrusions with a closed mouth, and facilitated benthic feeding by increasing functional flexibility. The resultant flow of fluid generated by cypriniforms is also quite flexible, with multiple instances of peak flow in a single feeding event. This greatly modified morphology allowed for a degree of kinematic maneuverability not seen within most acanthomorphs. Later cypriniform radiations into piscivorous, insectivorous, or planktivorous feeding guilds were associated with shortening of the kinethmoid and with simplified morphology of the adductor, likely involving an emphasis on ram feeding. Although this suite of morphological novelties seemingly originated within the context of benthic feeding, with minimal modifications these anatomical features were later coopted during radiations into different functional niches.
Collapse
Affiliation(s)
- L Patricia Hernandez
- *Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Suite 6000, Washington, DC 20052, USA; Department of Biology, McDaniel College, 2 College Hill, Westminster, MD 21157, USA
| | - Katie Lynn Staab
- *Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Suite 6000, Washington, DC 20052, USA; Department of Biology, McDaniel College, 2 College Hill, Westminster, MD 21157, USA
| |
Collapse
|
25
|
Holzman R, China V, Yaniv S, Zilka M. Hydrodynamic Constraints of Suction Feeding in Low Reynolds Numbers, and the Critical Period of Larval Fishes. Integr Comp Biol 2015; 55:48-61. [DOI: 10.1093/icb/icv030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Origins, Innovations, and Diversification of Suction Feeding in Vertebrates. Integr Comp Biol 2015; 55:134-45. [DOI: 10.1093/icb/icv026] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Higgins BA, Horn MH. Suction among pickers: jaw mechanics, dietary breadth and feeding behaviour in beach-spawning Leuresthes spp. compared with their relatives. JOURNAL OF FISH BIOLOGY 2014; 84:1689-1707. [PMID: 24787078 DOI: 10.1111/jfb.12385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
Jaw mechanics and dietary breadth in California grunion Leuresthes tenuis and Gulf grunion Leuresthes sardina were compared with three other members of the tribe Atherinopsini to test whether these two species have evolved a novel jaw protrusion that might be associated with feeding narrowly on abundant prey near spawning beaches. Quantitative comparison of cleared-and-stained specimens of five members of the atherinopsine clade showed that, compared with false grunion Colpichthys regis, topsmelt Atherinops affinis and jacksmelt Atherinopsis californiensis, L. tenuis and L. sardina have longer, more downwardly directed premaxillary protrusion, expanded dentary and premaxillary bones, greater lower jaw rotation and larger premaxilla-vomer separation. Leuresthes tenuis showed greater differences than L. sardina in these features. Comparison of the gut contents of L. tenuis and A. affinis with zooplankton samples collected simultaneously with these fishes in the water column within 1 km of shore showed that, as predicted, L. tenuis fed predominantly on mysid crustaceans and had a narrower diet than A. affinis. High-speed video analysis showed that L. tenuis exhibits a mean time to maximum jaw protrusion c. 2.5 times shorter than that of A. affinis. The grunion sister species, especially L. tenuis, have evolved suction feeding that may allow efficient feeding on common, evasive prey near spawning sites. The morphological traits seen in both species of Leuresthes signify a marked difference from their closest relatives in prey capture and suggest a type of jaw protrusion not yet seen in cyprinodontiforms or perciforms.
Collapse
Affiliation(s)
- B A Higgins
- Department of Biological Science, California State University, Fullerton, CA, 92831, U.S.A
| | | |
Collapse
|
28
|
Yaniv S, Elad D, Holzman R. Suction-feeding across fish life stages: Flow dynamics from larvae to adults and implications for prey capture. J Exp Biol 2014; 217:3748-57. [DOI: 10.1242/jeb.104331] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Suction-feeding is thought to be the primary mode of prey capture in most larval fishes. Similar to adult suction-feeders, larvae swim towards their prey while rapidly expanding their mouth cavity to generate an inward flow of water that draws the prey into the mouth. Although larvae are known to experience flows with lower Reynolds numbers than adults, it is unclear how the suction-induced flow field changes throughout ontogeny, and how such changes relate to prey capture performance. To address these questions, we determined mouth dimensions and opening speeds in Sparus aurata from first-feeding larvae to adults. We proceeded to develop a computational model of mouth expansion in order to analyze the scaling of suction flows under the observed parameters. Larval fish produced suction flows that were ~2 orders of magnitude slower than those of adults. Compared to adult fish, in which flow speed decays steeply with distance in front of the mouth, flow speed decayed more gradually in larval fish. This difference indicates that viscous forces in low Reynolds number flows modify the spatial distribution flow speed in front of the mouth. Consequently, simulated predator-prey encounters showed that larval fish could capture inert prey from a greater distance compared to adults. If prey attempted to escape, however, larval fish performed poorly: simulations inferred capture success in only weakly escaping prey immediately in front of the mouth. These ontogenetic changes in Reynolds number, suction-induced flow field, and feeding performance may explain a widespread ontogenetic diet shift from passive prey at early life stages to evasive prey as larvae mature.
Collapse
|
29
|
Copus JM, Gibb AC. A forceful upper jaw facilitates picking-based prey capture: biomechanics of feeding in a butterflyfish, Chaetodon trichrous. ZOOLOGY 2013; 116:336-47. [PMID: 24156977 DOI: 10.1016/j.zool.2013.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/15/2013] [Accepted: 08/18/2013] [Indexed: 11/26/2022]
Abstract
Biomechanical models of feeding mechanisms elucidate how animals capture food in the wild, which, in turn, expands our understanding of their fundamental trophic niche. However, little attention has been given to modeling the protrusible upper jaw apparatus that characterizes many teleost species. We expanded existing biomechanical models to include upper jaw forces using a generalist butterflyfish, Chaetodon trichrous (Chaetodontidae) that produces substantial upper jaw protrusion when feeding on midwater and benthic prey. Laboratory feeding trials for C. trichrous were recorded using high-speed digital imaging; from these sequences we quantified feeding performance parameters to use as inputs for the biomechanical model. According to the model outputs, the upper jaw makes a substantial contribution to the overall forces produced during mouth closing in C. trichrous. Thus, biomechanical models that only consider lower jaw closing forces will underestimate total bite force for this and likely other teleost species. We also quantified and subsequently modeled feeding events for C. trichrous consuming prey from the water column versus picking attached prey from the substrate to investigate whether there is a functional trade-off between prey capture modes. We found that individuals of C. trichrous alter their feeding behavior when consuming different prey types by changing the timing and magnitude of upper and lower jaw movements and that this behavioral modification will affect the forces produced by the jaws during prey capture by dynamically altering the lever mechanics of the jaws. In fact, the slower, lower magnitude movements produced during picking-based prey capture should produce a more forceful bite, which will facilitate feeding on benthic attached prey items, such as corals. Similarities between butterflyfishes and other teleost lineages that also employ picking-based prey capture suggest that a suite of key behavioral and morphological innovations enhances feeding success for benthic attached prey items.
Collapse
Affiliation(s)
- Joshua M Copus
- Department of Biology, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | | |
Collapse
|