1
|
Abstract
Birds can use two kinds of information from the geomagnetic field for navigation: the direction of the field lines as a compass and probably magnetic intensity as a component of the navigational ‘map’. The direction of the magnetic field appears to be sensed via radical pair processes in the eyes, with the crucial radical pairs formed by cryptochrome. It is transmitted by the optic nerve to the brain, where parts of the visual system seem to process the respective information. Magnetic intensity appears to be perceived by magnetite-based receptors in the beak region; the information is transmitted by the ophthalmic branch of the trigeminal nerve to the trigeminal ganglion and the trigeminal brainstem nuclei. Yet in spite of considerable progress in recent years, many details are still unclear, among them details of the radical pair processes and their transformation into a nervous signal, the precise location of the magnetite-based receptors and the centres in the brain where magnetic information is combined with other navigational information for the navigational processes.
Collapse
Affiliation(s)
- Roswitha Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Wolfgang Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Martini S, Begall S, Findeklee T, Schmitt M, Malkemper EP, Burda H. Dogs can be trained to find a bar magnet. PeerJ 2018; 6:e6117. [PMID: 30588405 PMCID: PMC6301327 DOI: 10.7717/peerj.6117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/13/2018] [Indexed: 11/20/2022] Open
Abstract
Magnetoreception, the ability to sense the Earth’s magnetic field (MF), is a widespread phenomenon in the animal kingdom. In 1966, the first report on a magnetosensitive vertebrate, the European robin (Erithacus rubecula), was published. After that, numerous further species of different taxa have been identified to be magnetosensitive as well. Recently, it has been demonstrated that domestic dogs (Canis lupus familiaris) prefer to align their body axis along the North–South axis during territorial marking under calm MF conditions and that they abandon this preference when the Earth’s MF is unstable. In a further study conducting a directional two-choice-test, dogs showed a spontaneous preference for the northern direction. Being designated as putatively magnetosensitive and being also known as trainable for diverse choice and search tests, dogs seem to be suitable model animals for a direct test of magnetoreception: learning to find a magnet. Using operant conditioning dogs were trained to identify the MF of a bar magnet in a three-alternative forced-choice experiment. We excluded visual cues and used control trials with food treats to test for the role of olfaction in finding the magnet. While 13 out of 16 dogs detected the magnet significantly above chance level (53–73% success rate), none of the dogs managed to do so in finding the food treat (23–40% success rate). In a replication of the experiment under strictly blinded conditions five out of six dogs detected the magnet above chance level (53–63% success rate). These experiments support the existence of a magnetic sense in domestic dogs. Whether the sense enables dogs to perceive MFs as weak as the Earth’s MF, if they use it for orientation, and by which mechanism the fields are perceived remain open questions.
Collapse
Affiliation(s)
- Sabine Martini
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | | | - Marcus Schmitt
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - E Pascal Malkemper
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Hynek Burda
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Ernst DA, Lohmann KJ. Size-dependent avoidance of a strong magnetic anomaly in Caribbean spiny lobsters. J Exp Biol 2018; 221:jeb.172205. [DOI: 10.1242/jeb.172205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/29/2017] [Indexed: 11/20/2022]
Abstract
On a global scale, the geomagnetic field varies predictably across Earth's surface, providing animals that migrate long distances with a reliable source of directional and positional information that can be used to guide their movements. In some locations, however, magnetic minerals in Earth's crust generate an additional field that enhances or diminishes the overall field, resulting in unusually steep gradients of field intensity within a limited area. How animals respond to such magnetic anomalies is unclear. The Caribbean spiny lobster, Panulirus argus, is a benthic marine invertebrate that possesses a magnetic sense and is likely to encounter magnetic anomalies during migratory movements and homing. As a first step toward investigating whether such anomalies affect the behavior of lobsters, a two-choice preference experiment was conducted in which lobsters were allowed to select one of two artificial dens, one beneath a neodymium magnet and the other beneath a non-magnetic weight of similar size and mass (control). Significantly more lobsters selected the control den, demonstrating avoidance of the magnetic anomaly. In addition, lobster size was found to be a significant predictor of den choice; lobsters that selected the anomaly den were significantly smaller as a group than those that chose the control den. Taken together, these findings provide additional evidence for magnetoreception in spiny lobsters, raise the possibility of an ontogenetic shift in how lobsters respond to magnetic fields, and suggest that magnetic anomalies might influence lobster movement in the natural environment.
Collapse
Affiliation(s)
- David A. Ernst
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kenneth J. Lohmann
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Čapek F, Průcha J, Socha V, Hart V, Burda H. Directional orientation of pheasant chicks at the drinking dish and its potential for research on avian magnetoreception. FOLIA ZOOLOGICA 2017. [DOI: 10.25225/fozo.v66.i3.a5.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- František Čapek
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Praha 6, Czech Republic
| | - Jaroslav Průcha
- Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 36 Praha 6, Czech Republic
| | - Vladimír Socha
- Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 36 Praha 6, Czech Republic
| | - Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Praha 6, Czech Republic
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Praha 6, Czech Republic
- Department of General Zoology, Faculty of Biology, University Duisburg-Essen, 451 17 Essen, Germany
| |
Collapse
|
5
|
|
6
|
Kishkinev DA, Chernetsov NS. Magnetoreception systems in birds: A review of current research. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s2079086415010041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Mora CV, Acerbi ML, Bingman VP. Conditioned discrimination of magnetic inclination in a spatial-orientation arena task by homing pigeons (Columba livia). J Exp Biol 2014; 217:4123-31. [PMID: 25278470 DOI: 10.1242/jeb.101113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
It has been well established that homing pigeons are able to use the Earth’s magnetic field to obtain directional information when returning to their loft and that their magnetic compass is based, at least in part, on the perception of magnetic inclination. Magnetic inclination has also been hypothesized in pigeons and other long-distance navigators, such as sea turtles, to play a role providing positional information as part of a map. Here we developed a behavioural paradigm which allows us to condition homing pigeons to discriminate magnetic inclination cues in a spatial-orientation arena task. Six homing pigeons were required to discriminate in a circular arena between feeders located either in a zone with a close to 0º inclination cue or in a zone with a rapidly changing inclination cue (-3º to +85º when approaching the feeder and +85º to -3º when moving away from the feeder) to obtain a food reward. The pigeons consistently performed this task above chance level. Control experiments, during which the coils were turned off or the current was running anti-parallel through the double-wound coils system, confirmed that no alternative cues were used by the birds in the discrimination task. The results show that homing pigeons can be conditioned to discriminate differences in magnetic field inclination, enabling investigation into the peripheral and central neural processing of geomagnetic inclination under controlled laboratory conditions.
Collapse
|
8
|
Detection of magnetic field intensity gradient by homing pigeons (Columba livia) in a novel "virtual magnetic map" conditioning paradigm. PLoS One 2013; 8:e72869. [PMID: 24039812 PMCID: PMC3767695 DOI: 10.1371/journal.pone.0072869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 07/21/2013] [Indexed: 11/19/2022] Open
Abstract
It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a “virtual magnetic map” during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain.
Collapse
|
9
|
Hart V, Malkemper EP, Kušta T, Begall S, Nováková P, Hanzal V, Pleskač L, Ježek M, Policht R, Husinec V, Cervený J, Burda H. Directional compass preference for landing in water birds. Front Zool 2013; 10:38. [PMID: 23835450 PMCID: PMC3710278 DOI: 10.1186/1742-9994-10-38] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/14/2013] [Indexed: 11/30/2022] Open
Abstract
Introduction Landing flight in birds is demanding on visual control of velocity, distance to target, and slope of descent. Birds flying in flocks must also keep a common course of landing in order to avoid collisions. Whereas the wind direction may provide a cue for landing, the nature of the landing direction indicator under windless conditions has been unknown. We recorded and analysed landing directions of 3,338 flocks in 14 species of water birds in eight countries. Results We show that the preferred landing direction, independently of the direction from which the birds have arrived, is along the north-south axis. We analysed the effect of the time of the year, time of the day (and thus sun position), weather (sunny versus overcast), light breeze, locality, latitude, and magnetic declination in 2,431 flocks of mallards (Anas platyrhynchos) and found no systematic effect of these factors upon the preferred direction of landing. We found that magnetic North was a better predictor for landing direction than geographic North. Conclusions In absence of any other common denominator determining the landing direction, the alignment with the magnetic field lines seems to be the most plausible if not the only explanation for the directional landing preference under windless and overcast conditions and we suggest that the magnetic field thus provides a landing direction indicator.
Collapse
Affiliation(s)
- Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wiltschko R, Wiltschko W. The magnetite-based receptors in the beak of birds and their role in avian navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 199:89-98. [PMID: 23111859 PMCID: PMC3552369 DOI: 10.1007/s00359-012-0769-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 11/01/2022]
Abstract
Iron-rich structures have been described in the beak of homing pigeons, chickens and several species of migratory birds and interpreted as magnetoreceptors. Here, we will briefly review findings associated with these receptors that throw light on their nature, their function and their role in avian navigation. Electrophysiological recordings from the ophthalmic nerve, behavioral studies and a ZENK-study indicate that the trigeminal system, the nerves innervating the beak, mediate information on magnetic changes, with the electrophysiological study suggesting that these are changes in intensity. Behavioral studies support the involvement of magnetite and the trigeminal system in magnetoreception, but clearly show that the inclination compass normally used by birds represents a separate system. However, if this compass is disrupted by certain light conditions, migrating birds show 'fixed direction' responses to the magnetic field, which originate in the receptors in the beak. Together, these findings point out that there are magnetite-based magnetoreceptors located in the upper beak close to the skin. Their natural function appears to be recording magnetic intensity and thus providing one component of the multi-factorial 'navigational map' of birds.
Collapse
Affiliation(s)
- R Wiltschko
- FB Biowissenschaften, J.W.Goethe-Universität Frankfurt, Siesmayerstraße 70, 60054, Frankfurt a.M, Germany
| | | |
Collapse
|