1
|
Li H, Meng Q, Wang W, Mo D, Dang W, Lu H. Gut Microbial Composition and Liver Metabolite Changes Induced by Ammonia Stress in Juveniles of an Invasive Freshwater Turtle. BIOLOGY 2022; 11:1315. [PMID: 36138794 PMCID: PMC9495491 DOI: 10.3390/biology11091315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
As the most common pollutant in aquaculture systems, the toxic effects of ammonia have been extensively explored in cultured fish, molluscs, and crustaceans, but have rarely been considered in turtle species. In this study, juveniles of the invasive turtle, Trachemys scripta elegans, were exposed to different ammonia levels (0, 0.3, 3.0, and 20.0 mg/L) for 30 days to evaluate the physiological, gut microbiomic, and liver metabolomic responses to ammonia in this turtle species. Except for a relatively low growth rate of turtles exposed to the highest concentration, ammonia exposure had no significant impact on the locomotor ability and gut microbial diversity of turtles. However, the composition of the microbial community could be altered, with some pathogenic bacteria being increased in ammonia-exposed turtles, which might indicate the change in their health status. Furthermore, hepatic metabolite profiles via liquid chromatography-mass spectrometry revealed extensive metabolic perturbations, despite being primarily involved in amino acid biosynthesis and metabolism. Overall, our results show that ammonia exposure causes gut dysbacteriosis and disturbs various metabolic pathways in aquatic turtle species. Considering discrepant defense mechanisms, the toxic impacts of ammonia at environmentally relevant concentrations on physiological performance might be less pronounced in turtles compared with fish and other invertebrates.
Collapse
|
2
|
Agha M, Ennen JR, Bower DS, Nowakowski AJ, Sweat SC, Todd BD. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise. Biol Rev Camb Philos Soc 2018; 93:1634-1648. [DOI: 10.1111/brv.12410] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Mickey Agha
- Department of Wildlife, Fish, and Conservation Biology; University of California; Davis, One Shields Avenue, Davis CA 95616 USA
| | - Joshua R. Ennen
- Tennessee Aquarium Conservation Institute; 175 Baylor School Road, Chattanooga TN 37405 USA
| | - Deborah S. Bower
- College of Science and Engineering; James Cook University; Townsville Queensland 4811 Australia
| | - A. Justin Nowakowski
- Department of Wildlife, Fish, and Conservation Biology; University of California; Davis, One Shields Avenue, Davis CA 95616 USA
| | - Sarah C. Sweat
- Tennessee Aquarium Conservation Institute; 175 Baylor School Road, Chattanooga TN 37405 USA
| | - Brian D. Todd
- Department of Wildlife, Fish, and Conservation Biology; University of California; Davis, One Shields Avenue, Davis CA 95616 USA
| |
Collapse
|
3
|
Poelmann RE, Gittenberger-de Groot AC, Biermans MWM, Dolfing AI, Jagessar A, van Hattum S, Hoogenboom A, Wisse LJ, Vicente-Steijn R, de Bakker MAG, Vonk FJ, Hirasawa T, Kuratani S, Richardson MK. Outflow tract septation and the aortic arch system in reptiles: lessons for understanding the mammalian heart. EvoDevo 2017; 8:9. [PMID: 28491275 PMCID: PMC5424407 DOI: 10.1186/s13227-017-0072-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiac outflow tract patterning and cell contribution are studied using an evo-devo approach to reveal insight into the development of aorto-pulmonary septation. RESULTS We studied embryonic stages of reptile hearts (lizard, turtle and crocodile) and compared these to avian and mammalian development. Immunohistochemistry allowed us to indicate where the essential cell components in the outflow tract and aortic sac were deployed, more specifically endocardial, neural crest and second heart field cells. The neural crest-derived aorto-pulmonary septum separates the pulmonary trunk from both aortae in reptiles, presenting with a left visceral and a right systemic aorta arising from the unseptated ventricle. Second heart field-derived cells function as flow dividers between both aortae and between the two pulmonary arteries. In birds, the left visceral aorta disappears early in development, while the right systemic aorta persists. This leads to a fusion of the aorto-pulmonary septum and the aortic flow divider (second heart field population) forming an avian aorto-pulmonary septal complex. In mammals, there is also a second heart field-derived aortic flow divider, albeit at a more distal site, while the aorto-pulmonary septum separates the aortic trunk from the pulmonary trunk. As in birds there is fusion with second heart field-derived cells albeit from the pulmonary flow divider as the right 6th pharyngeal arch artery disappears, resulting in a mammalian aorto-pulmonary septal complex. In crocodiles, birds and mammals, the main septal and parietal endocardial cushions receive neural crest cells that are functional in fusion and myocardialization of the outflow tract septum. Longer-lasting septation in crocodiles demonstrates a heterochrony in development. In other reptiles with no indication of incursion of neural crest cells, there is either no myocardialized outflow tract septum (lizard) or it is vestigial (turtle). Crocodiles are unique in bearing a central shunt, the foramen of Panizza, between the roots of both aortae. Finally, the soft-shell turtle investigated here exhibits a spongy histology of the developing carotid arteries supposedly related to regulation of blood flow during pharyngeal excretion in this species. CONCLUSIONS This is the first time that is shown that an interplay of second heart field-derived flow dividers with a neural crest-derived cell population is a variable but common, denominator across all species studied for vascular patterning and outflow tract septation. The observed differences in normal development of reptiles may have impact on the understanding of development of human congenital outflow tract malformations.
Collapse
Affiliation(s)
- Robert E Poelmann
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands.,Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| | | | - Marcel W M Biermans
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| | - Anne I Dolfing
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| | - Armand Jagessar
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| | - Sam van Hattum
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| | - Amanda Hoogenboom
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| | - Lambertus J Wisse
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden, The Netherlands
| | - Rebecca Vicente-Steijn
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden, The Netherlands
| | - Merijn A G de Bakker
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| | - Freek J Vonk
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands.,Naturalis Biodiversity Center, Darwinweg 2, Leiden, The Netherlands
| | - Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Michael K Richardson
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| |
Collapse
|
4
|
Ip YK, Lee SML, Wong WP, Chew SF. The Chinese soft-shelled turtle, Pelodiscus sinensis, decreases nitrogenous excretion, reduces urea synthesis and suppresses ammonia production during emersion. ACTA ACUST UNITED AC 2013; 216:1650-7. [PMID: 23348951 DOI: 10.1242/jeb.078972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of this study was to examine the effects of 6 days of emersion on nitrogen metabolism and excretion in the Chinese soft-shelled turtle, Pelodiscus sinensis. Despite having a soft shell with a cutaneous surface that is known to be water permeable, P. sinensis lost only ~2% of body mass and was able to maintain its hematocrit and plasma osmolality, [Na(+)] and [Cl(-)] during 6 days of emersion. During emersion, it ameliorated water loss by reducing urine output, which led to a reduction (by 29-76%) in ammonia excretion. In comparison, there was a more prominent reduction (by 82-99%) in urea excretion during emersion due to a lack of water to flush the buccopharyngeal epithelium, which is known to be the major route of urea excretion. Consequently, emersion resulted in an apparent shift from ureotely to ammonotely in P. sinensis. Although urea concentration increased in several tissues, the excess urea accumulated could only account for 13-22% of the deficit in urea excretion. Hence, it can be concluded that a decrease (~80%) in urea synthesis occurred in P. sinensis during the 6 days of emersion. Indeed, emersion led to significant decreases in the activity of some ornithine-urea cycle enzymes (argininosuccinate synthetase/argininosuccinate lyase and arginase) from the liver of P. sinensis. As a decrease in urea synthesis occurred without the accumulation of ammonia and total free amino acids, it can be deduced that ammonia production through amino acid catabolism was suppressed with a proportional reduction in proteolysis in P. sinensis during emersion. Indeed, calculated results revealed that there could be a prominent decrease (~88%) in ammonia production in turtles after 6 days of emersion. In summary, despite being ureogenic and ureotelic in water, P. sinensis adopted a reduction in ammonia production, instead of increased urea synthesis, as the major strategy to ameliorate ammonia toxicity and problems associated with dehydration during terrestrial exposure.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Science, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.
| | | | | | | |
Collapse
|