1
|
Abildtrup Nielsen N, Dawson SM, Torres Ortiz S, Wahlberg M, Martin MJ. Hector's dolphins (Cephalorhynchus hectori) produce both narrowband high-frequency and broadband acoustic signals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:1437-1450. [PMID: 38364047 DOI: 10.1121/10.0024820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
Odontocetes produce clicks for echolocation and communication. Most odontocetes are thought to produce either broadband (BB) or narrowband high-frequency (NBHF) clicks. Here, we show that the click repertoire of Hector's dolphin (Cephalorhynchus hectori) comprises highly stereotypical NBHF clicks and far more variable broadband clicks, with some that are intermediate between these two categories. Both NBHF and broadband clicks were made in trains, buzzes, and burst-pulses. Most clicks within click trains were typical NBHF clicks, which had a median centroid frequency of 130.3 kHz (median -10 dB bandwidth = 29.8 kHz). Some, however, while having only marginally lower centroid frequency (median = 123.8 kHz), had significant energy below 100 kHz and approximately double the bandwidth (median -10 dB bandwidth = 69.8 kHz); we refer to these as broadband. Broadband clicks in buzzes and burst-pulses had lower median centroid frequencies (120.7 and 121.8 kHz, respectively) compared to NBHF buzzes and burst-pulses (129.5 and 130.3 kHz, respectively). Source levels of NBHF clicks, estimated by using a drone to measure ranges from a single hydrophone and by computing time-of-arrival differences at a vertical hydrophone array, ranged from 116 to 171 dB re 1 μPa at 1 m, whereas source levels of broadband clicks, obtained from array data only, ranged from 138 to 184 dB re 1 μPa at 1 m. Our findings challenge the grouping of toothed whales as either NBHF or broadband species.
Collapse
Affiliation(s)
- Nicoline Abildtrup Nielsen
- Marine Biological Research Center, Department of Biology, University of Southern Denmark, 5300 Kerteminde, Denmark
| | - Stephen M Dawson
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - Sara Torres Ortiz
- Marine Biological Research Center, Department of Biology, University of Southern Denmark, 5300 Kerteminde, Denmark
| | - Magnus Wahlberg
- Marine Biological Research Center, Department of Biology, University of Southern Denmark, 5300 Kerteminde, Denmark
| | - Morgan J Martin
- Center for Marine Acoustics, Bureau of Ocean Energy Management, Sterling, Virginia 20166, USA
| |
Collapse
|
2
|
Mishima Y, Matsuo I, Karasawa Y, Ishii M, Morisaka T. Directional and amplitude characteristics of pulsed call sequences in captive free-swimming Pacific white-sided dolphins (Lagenorhynchus obliquidens). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2974-2987. [PMID: 37947396 DOI: 10.1121/10.0022377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
We investigated the directional properties and gain control of a pulsed call sequence that functions as a contact call in Pacific white-sided dolphins (Lagenorhynchus obliquidens). The pulsed call sequences were stereotyped patterns composed of three or more pulsed call elements and were collected from two dolphins, separated into adjacent pools, and allowed to swim freely. Eight hydrophones and an overhead camera were used to determine the positions and directions of the participants. The mean peak frequency and source levels were 8.4 ± 4.4 (standard deviation)-18.7 ± 12.7 kHz and 160.8 ± 3.8 to 176.4 ± 7.9 dB re 1 μPa (peak-to-peak), respectively, depending on the element types. The elements were omnidirectional, with mean directivity index of 0.9 ± 3.4 dB. The dolphins produced sequences, regardless of their relative position and direction to the lattice, leading to the adjacent pool where the conspecific was housed. They increased the amplitude by 6.5 ± 4.6 dB as the distance from the caller to an arbitrary point in the adjacent pool doubled. These results suggest that callers broadcast pulsed call sequences in a wide direction to reach dispersed conspecifics. However, they can adjust the acoustic active space by controlling the source levels.
Collapse
Affiliation(s)
- Yuka Mishima
- Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Ikuo Matsuo
- Department of Information Science, Tohoku Gakuin University, 2-1-1 Tenjinzawa, Izumi-ku, Sendai, 981-3193, Japan
| | - Yuu Karasawa
- Izu Mito Sea Paradise, 3-1, Nagahama, Uchiura, Numazu-shi, Shizuoka, 410-0295, Japan
| | - Marina Ishii
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Tadamichi Morisaka
- Cetacean Research Center, Graduate School of Bioresources, Mie University, 1577, Kurimamachiya-cho, Tsu-shi, Mie, 514-8507, Japan
| |
Collapse
|
3
|
Elmegaard SL, Teilmann J, Rojano-Doñate L, Brennecke D, Mikkelsen L, Balle JD, Gosewinkel U, Kyhn LA, Tønnesen P, Wahlberg M, Ruser A, Siebert U, Madsen PT. Wild harbour porpoises startle and flee at low received levels from acoustic harassment device. Sci Rep 2023; 13:16691. [PMID: 37794093 PMCID: PMC10550999 DOI: 10.1038/s41598-023-43453-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/24/2023] [Indexed: 10/06/2023] Open
Abstract
Acoustic Harassment Devices (AHD) are widely used to deter marine mammals from aquaculture depredation, and from pile driving operations that may otherwise cause hearing damage. However, little is known about the behavioural and physiological effects of these devices. Here, we investigate the physiological and behavioural responses of harbour porpoises (Phocoena phocoena) to a commercial AHD in Danish waters. Six porpoises were tagged with suction-cup-attached DTAGs recording sound, 3D-movement, and GPS (n = 3) or electrocardiogram (n = 2). They were then exposed to AHDs for 15 min, with initial received levels (RL) ranging from 98 to 132 dB re 1 µPa (rms-fast, 125 ms) and initial exposure ranges of 0.9-7 km. All animals reacted by displaying a mixture of acoustic startle responses, fleeing, altered echolocation behaviour, and by demonstrating unusual tachycardia while diving. Moreover, during the 15-min exposures, half of the animals received cumulative sound doses close to published thresholds for temporary auditory threshold shifts. We conclude that AHD exposure at many km can evoke both startle, flight and cardiac responses which may impact blood-gas management, breath-hold capability, energy balance, stress level and risk of by-catch. We posit that current AHDs are too powerful for mitigation use to prevent hearing damage of porpoises from offshore construction.
Collapse
Affiliation(s)
- Siri L Elmegaard
- Zoophysiology, Dept. of Biology, Aarhus University, 8000, Aarhus, Denmark.
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark.
| | - Jonas Teilmann
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Laia Rojano-Doñate
- Zoophysiology, Dept. of Biology, Aarhus University, 8000, Aarhus, Denmark
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Dennis Brennecke
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| | - Lonnie Mikkelsen
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
- Norwegian Polar Institute, 9296, Tromsø, Norway
| | - Jeppe D Balle
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Ulrich Gosewinkel
- Environmental Microbiology, Dept. of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Line A Kyhn
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Pernille Tønnesen
- Zoophysiology, Dept. of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Magnus Wahlberg
- Marine Biological Research Centre, Dept. of Biology, University of Southern Denmark, 5300, Kerteminde, Denmark
| | - Andreas Ruser
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| | | |
Collapse
|
4
|
Moss CF, Ortiz ST, Wahlberg M. Adaptive echolocation behavior of bats and toothed whales in dynamic soundscapes. J Exp Biol 2023; 226:jeb245450. [PMID: 37161774 PMCID: PMC10184770 DOI: 10.1242/jeb.245450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Journal of Experimental Biology has a long history of reporting research discoveries on animal echolocation, the subject of this Centenary Review. Echolocating animals emit intense sound pulses and process echoes to localize objects in dynamic soundscapes. More than 1100 species of bats and 70 species of toothed whales rely on echolocation to operate in aerial and aquatic environments, respectively. The need to mitigate acoustic clutter and ambient noise is common to both aerial and aquatic echolocating animals, resulting in convergence of many echolocation features, such as directional sound emission and hearing, and decreased pulse intervals and sound intensity during target approach. The physics of sound transmission in air and underwater constrains the production, detection and localization of sonar signals, resulting in differences in response times to initiate prey interception by aerial and aquatic echolocating animals. Anti-predator behavioral responses of prey pursued by echolocating animals affect behavioral foraging strategies in air and underwater. For example, many insect prey can detect and react to bat echolocation sounds, whereas most fish and squid are unresponsive to toothed whale signals, but can instead sense water movements generated by an approaching predator. These differences have implications for how bats and toothed whales hunt using echolocation. Here, we consider the behaviors used by echolocating mammals to (1) track and intercept moving prey equipped with predator detectors, (2) interrogate dynamic sonar scenes and (3) exploit visual and passive acoustic stimuli. Similarities and differences in animal sonar behaviors underwater and in air point to open research questions that are ripe for exploration.
Collapse
Affiliation(s)
- Cynthia F. Moss
- Johns Hopkins University, Departments of Psychological and Brain Sciences, Neuroscience and Mechanical Engineering, 3400 N. Charles St., Baltimore, MD 21218, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sara Torres Ortiz
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| | - Magnus Wahlberg
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| |
Collapse
|
5
|
Wei C, Houser D, Erbe C, Mátrai E, Ketten DR, Finneran JJ. Does rotation increase the acoustic field of view? Comparative models based on CT data of a live dolphin versus a dead dolphin. BIOINSPIRATION & BIOMIMETICS 2023; 18:035006. [PMID: 36917857 DOI: 10.1088/1748-3190/acc43d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Rotational behaviour has been observed when dolphins track or detect targets, however, its role in echolocation is unknown. We used computed tomography data of one live and one recently deceased bottlenose dolphin, together with measurements of the acoustic properties of head tissues, to perform acoustic property reconstruction. The anatomical configuration and acoustic properties of the main forehead structures between the live and deceased dolphins were compared. Finite element analysis (FEA) was applied to simulate the generation and propagation of echolocation clicks, to compute their waveforms and spectra in both near- and far-fields, and to derive echolocation beam patterns. Modelling results from both the live and deceased dolphins were in good agreement with click recordings from other, live, echolocating individuals. FEA was also used to estimate the acoustic scene experienced by a dolphin rotating 180° about its longitudinal axis to detect fish in the far-field at elevation angles of -20° to 20°. The results suggest that the rotational behaviour provides a wider insonification area and a wider receiving area. Thus, it may provide compensation for the dolphin's relatively narrow biosonar beam, asymmetries in sound reception, and constraints on the pointing direction that are limited by head movement. The results also have implications for examining the accuracy of FEA in acoustic simulations using recently deceased specimens.
Collapse
Affiliation(s)
- Chong Wei
- Centre for Marine Science and Technology, Curtin University, Perth, WA 6102, Australia
| | - Dorian Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, CA 92106, United States of America
| | - Christine Erbe
- Centre for Marine Science and Technology, Curtin University, Perth, WA 6102, Australia
| | - Eszter Mátrai
- Research Department, Ocean Park, Hong Kong, People's Republic of China
| | - Darlene R Ketten
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States of America
| | - James J Finneran
- United States Navy Marine Mammal Program, Naval Information Warfare Center Pacific Code 56710, 53560 Hull Street, San Diego, CA 92152, United States of America
| |
Collapse
|
6
|
Skeels S, von der Emde G, Burt de Perera T. Mormyrid fish as models for investigating sensory-motor integration: A behavioural perspective. J Zool (1987) 2023; 319:243-253. [PMID: 38515784 PMCID: PMC10953462 DOI: 10.1111/jzo.13046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 02/04/2023]
Abstract
Animals possess senses which gather information from their environment. They can tune into important aspects of this information and decide on the most appropriate response, requiring coordination of their sensory and motor systems. This interaction is bidirectional. Animals can actively shape their perception with self-driven motion, altering sensory flow to maximise the environmental information they are able to extract. Mormyrid fish are excellent candidates for studying sensory-motor interactions, because they possess a unique sensory system (the active electric sense) and exhibit notable behaviours that seem to be associated with electrosensing. This review will take a behavioural approach to unpicking this relationship, using active electrolocation as an example where body movements and sensing capabilities are highly related and can be assessed in tandem. Active electrolocation is the process where individuals will generate and detect low-voltage electric fields to locate and recognise nearby objects. We will focus on research in the mormyrid Gnathonemus petersii (G. petersii), given the extensive study of this species, particularly its object recognition abilities. By studying object detection and recognition, we can assess the potential benefits of self-driven movements to enhance selection of biologically relevant information. Finally, these findings are highly relevant to understanding the involvement of movement in shaping the sensory experience of animals that use other sensory modalities. Understanding the overlap between sensory and motor systems will give insight into how different species have become adapted to their environments.
Collapse
Affiliation(s)
- S. Skeels
- Department of BiologyUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
7
|
Bakkeren C, Ladegaard M, Hansen KA, Wahlberg M, Madsen PT, Rojano-Doñate L. Visual deprivation induces a stronger dive response in a harbor porpoise. iScience 2023; 26:106204. [PMID: 36876128 PMCID: PMC9982314 DOI: 10.1016/j.isci.2023.106204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The dive response allows marine mammals to perform prolonged breath-hold dives to access rich marine prey resources. Via dynamic adjustments of peripheral vasoconstriction and bradycardia, oxygen consumption can be tailored to breath-hold duration, depth, exercise, and even expectations during dives. By investigating the heart rate of a trained harbor porpoise during a two-alternative forced choice task, where the animal is either acoustically masked or blindfolded, we test the hypothesis that sensory deprivation will lead to a stronger dive response to conserve oxygen when facing a more uncertain and smaller sensory umwelt. We show that the porpoise halves its diving heart rate (from 55 to 25 bpm) when blindfolded but presents no change in heart rate during masking of its echolocation. Therefore, visual stimuli may matter more to echolocating toothed whales than previously assumed, and sensory deprivation can be a major driver of the dive response, possibly as an anti-predator measure.
Collapse
Affiliation(s)
- Ciska Bakkeren
- Zoophysiology, Department of Biology, Aarhus University, Building 1131, C. F. Møllers Allé 3, DK-8000 Aarhus C, Denmark
| | - Michael Ladegaard
- Zoophysiology, Department of Biology, Aarhus University, Building 1131, C. F. Møllers Allé 3, DK-8000 Aarhus C, Denmark
| | - Kirstin Anderson Hansen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Fjord&Bælt, Margrethes Plads 1, 5300 Kerteminde, Denmark
| | - Magnus Wahlberg
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Peter Teglberg Madsen
- Zoophysiology, Department of Biology, Aarhus University, Building 1131, C. F. Møllers Allé 3, DK-8000 Aarhus C, Denmark
| | - Laia Rojano-Doñate
- Zoophysiology, Department of Biology, Aarhus University, Building 1131, C. F. Møllers Allé 3, DK-8000 Aarhus C, Denmark
| |
Collapse
|
8
|
The Distinctive Forehead Cleft of the Risso's Dolphin ( Grampus griseus) Hardly Affects Biosonar Beam Formation. Animals (Basel) 2022; 12:ani12243472. [PMID: 36552392 PMCID: PMC9774579 DOI: 10.3390/ani12243472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The Risso's dolphin (Grampus griseus) has a distinctive vertical crease (or cleft) along the anterior surface of the forehead. Previous studies have speculated that the cleft may contribute to biosonar beam formation. To explore this, we constructed 2D finite element models based on computer tomography data of the head of a naturally deceased Risso's dolphin. The simulated acoustic near-field signals, far-field signals, and transmission beam patterns were compared to corresponding measurements from a live, echolocating Risso's dolphin. To investigate the effect of the cleft, we filled the cleft with neighboring soft tissues in our model, creating a hypothetical "cleftless" forehead, as found in other odontocetes. We compared the acoustic pressure field and the beam pattern between the clefted and cleftless cases. Our results suggest that the cleft plays an insignificant role in forehead biosonar sound propagation and far-field beam formation. Furthermore, the cleft was not responsible for the bimodal click spectrum recorded and reported from this species.
Collapse
|
9
|
Branstetter BK, Brietenstein R, Goya G, Tormey M, Wu T, Finneran JJ. Spatial acuity of the bottlenose dolphin (Tursiops truncatus) biosonar system with a bat and human comparison. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3847. [PMID: 35778192 DOI: 10.1121/10.0011676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Horizontal angular resolution was measured in two bottlenose dolphins using a two-alternative forced-choice, biosonar target discrimination paradigm. The task required a stationary dolphin positioned in a hoop to discriminate two physical targets at a range of 4 m. The angle separating the targets was manipulated to estimate an angular discrimination threshold of 1.5°. In a second experiment, a similar two-target biosonar discrimination task was conducted with one free-swimming dolphin, to test whether its emission beam was a critical factor in discriminating the targets. The spatial separation between two targets was manipulated to measure a discrimination threshold of 6.7 cm. There was a relationship between differences in acoustic signals received at each target and the dolphin's performance. The results of the angular resolution experiment were in good agreement with measures of the minimum audible angle of both dolphins and humans and remarkably similar to measures of angular difference discrimination in echolocating dolphins, bats, and humans. The results suggest that horizontal auditory spatial acuity may be a common feature of the mammalian auditory system rather than a specialized feature exclusive to echolocating auditory predators.
Collapse
Affiliation(s)
- Brian K Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106, USA
| | - Rachel Brietenstein
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106, USA
| | - Gavin Goya
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106, USA
| | - Megan Tormey
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106, USA
| | - Teri Wu
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106, USA
| | - James J Finneran
- United States Navy Marine Mammal Program, Naval Information Warfare Center Pacific, San Diego, California 92152, USA
| |
Collapse
|
10
|
Leu AA, Hildebrand JA, Rice A, Baumann-Pickering S, Frasier KE. Echolocation click discrimination for three killer whale ecotypes in the Northeastern Pacific. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3197. [PMID: 35649922 DOI: 10.1121/10.0010450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Three killer whale ecotypes are found in the Northeastern Pacific: residents, transients, and offshores. These ecotypes can be discriminated in passive acoustic data based on distinct pulsed call repertoires. Killer whale acoustic encounters for which ecotypes were assigned based on pulsed call matching were used to characterize the ecotype-specific echolocation clicks. Recordings were made using seafloor-mounted sensors at shallow (∼120 m) and deep (∼1400 m) monitoring locations off the coast of Washington state. All ecotypes' echolocation clicks were characterized by energy peaks between 12 and 19 kHz, however, resident clicks featured sub peaks at 13.7 and 18.8 kHz, while offshore clicks had a single peak at 14.3 kHz. Transient clicks were rare and were characterized by lower peak frequencies (12.8 kHz). Modal inter-click intervals (ICIs) were consistent but indistinguishable for resident and offshore killer whale encounters at the shallow site (0.21-0.22 s). Offshore ICIs were longer and more variable at the deep site, and no modal ICI was apparent for the transient ecotype. Resident and offshore killer whale ecotype may be identified and distinguished in large passive acoustic datasets based on properties of their echolocation clicks, however, transient echolocation may be unsuitable in isolation as a cue for monitoring applications.
Collapse
Affiliation(s)
- Amanda A Leu
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| | - John A Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| | - Ally Rice
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| | - Simone Baumann-Pickering
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| | - Kaitlin E Frasier
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
11
|
Paitach RL, Amundin M, Teixeira G, Cremer MJ. Echolocation variability of franciscana dolphins (Pontoporia blainvillei) between estuarine and open-sea habitats, with insights into foraging patterns. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:3987. [PMID: 34852630 DOI: 10.1121/10.0007277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Environmental and ecological factors can trigger changes in the acoustic repertoire of cetaceans. This study documents the first use of a well-established passive acoustic monitoring device (C-POD) to analyze echolocation sounds and behavior of franciscana dolphins in different habitats: estuary [Babitonga Bay (BB)] and open sea [Itapirubá Beach (IB)]. A total of 10 924 click trains were recorded in BB and 6 093 in IB. An inter-click interval < 10 ms (so called "feeding buzzes") was used as a proxy for foraging activity. The main difference in the acoustic parameters between the two habitats was related to the frequency spectrum, with higher maximum and lower modal and minimum click frequencies in BB, and a train frequency range of 17 kHz, against 10 kHz in IB. Also, the click emission rate (clicks/s) was almost 20% higher in BB. Both studied habitats showed a high proportion of feeding buzzes (BB = 68%; IB = 58%), but with a higher probability of occurrence in BB (p < 0.001) and at night (p < 0.001) in both habitats. The C-PODs showed great potential to monitor occurrence, bioacoustics parameters, and echolocation behavior of franciscana dolphins. Longer-term temporal and spatial monitoring are necessary for elucidating several issues raised in this study.
Collapse
Affiliation(s)
- Renan L Paitach
- Post-Graduate Program in Ecology, Department of Ecology and Zoology, Federal University of Santa Catarina, s/n, Bloco E, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Mats Amundin
- Kolmarden Wildlife Park, SE-618 92 Kolmarden, Sweden
| | - Gabriel Teixeira
- Post-Graduate Program in Ecology, Department of Ecology and Zoology, Federal University of Santa Catarina, s/n, Bloco E, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Marta J Cremer
- Post-Graduate Program in Ecology, Department of Ecology and Zoology, Federal University of Santa Catarina, s/n, Bloco E, 88040-900 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
12
|
Vance H, Madsen PT, Aguilar de Soto N, Wisniewska DM, Ladegaard M, Hooker S, Johnson M. Echolocating toothed whales use ultra-fast echo-kinetic responses to track evasive prey. eLife 2021; 10:68825. [PMID: 34696826 PMCID: PMC8547948 DOI: 10.7554/elife.68825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/11/2021] [Indexed: 11/13/2022] Open
Abstract
Visual predators rely on fast-acting optokinetic responses to track and capture agile prey. Most toothed whales, however, rely on echolocation for hunting and have converged on biosonar clicking rates reaching 500/s during prey pursuits. If echoes are processed on a click-by-click basis, as assumed, neural responses 100× faster than those in vision are required to keep pace with this information flow. Using high-resolution biologging of wild predator-prey interactions, we show that toothed whales adjust clicking rates to track prey movement within 50–200 ms of prey escape responses. Hypothesising that these stereotyped biosonar adjustments are elicited by sudden prey accelerations, we measured echo-kinetic responses from trained harbour porpoises to a moving target and found similar latencies. High biosonar sampling rates are, therefore, not supported by extreme speeds of neural processing and muscular responses. Instead, the neurokinetic response times in echolocation are similar to those of tracking responses in vision, suggesting a common neural underpinning. In the animal world, split-second decisions determine whether a predator eats, or its prey survives. There is a strong evolutionary advantage to fast reacting brains and bodies. For example, the eye muscles of hunting cheetahs must lock on to a gazelle and keep track of it, no matter how quickly or unpredictably it moves. In fact, in monkeys and primates, these muscles can react to sudden movements in as little as 50 milliseconds – faster than the blink of an eye. But what about animals that do not rely on vision to hunt? To find food at night or in the deep ocean, whales and porpoises make short ultrasonic sounds, or ‘clicks’, and then listen for returning echoes. As they close in on a prey, they need to click faster to get quicker updates on its location. What is unclear is how fast they react to the echoes. Just before a kill, a harbour porpoise can click over 500 times a second: if they wait for the echo from one click before making the next one, they would need responses 100 times faster than human eyes. Exploring this topic is difficult, as it requires tracking predator and prey at the same time. Vance et al. took up the challenge by building sound and movement recorders that attach to whales with suction cups. These were used on two different hunters: deep-diving beaked whales and shallow-hunting harbour porpoises. Both species adapted their click rate depending on how far they were from their prey, but their response times were similar to visual responses in monkeys and humans. This means that whales and porpoises do not act on each echo before clicking again: instead, they respond to groups of tens of clicks at a time. This suggests that their brains may be wired in much the same way as the ones of visual animals. In the ocean, increased human activity creates a dangerous noise pollution that disrupts the delicate hunting mechanism of whales and porpoises. Better understanding how these animals find their food may therefore help conservation efforts.
Collapse
Affiliation(s)
- Heather Vance
- Sea Mammal Research Unit, University of St Andrews, St Andrews, United Kingdom
| | - Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Natacha Aguilar de Soto
- BIOECOMAC, Department of Animal Biology, Edaphology and Geology, University of La Laguna, La Laguna, Spain
| | | | - Michael Ladegaard
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Sascha Hooker
- Sea Mammal Research Unit, University of St Andrews, St Andrews, United Kingdom
| | - Mark Johnson
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Wright BM, Deecke VB, Ellis GM, Trites AW, Ford JKB. Behavioral context of echolocation and prey-handling sounds produced by killer whales ( Orcinus orca) during pursuit and capture of Pacific salmon ( Oncorhynchus spp.). MARINE MAMMAL SCIENCE 2021; 37:1428-1453. [PMID: 34690418 PMCID: PMC8519075 DOI: 10.1111/mms.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 06/13/2023]
Abstract
Availability of preferred salmonid prey and a sufficiently quiet acoustic environment in which to forage are critical to the survival of resident killer whales (Orcinus orca) in the northeastern Pacific. Although piscivorous killer whales rely on echolocation to locate and track prey, the relationship between echolocation, movement, and prey capture during foraging by wild individuals is poorly understood. We used acoustic biologging tags to relate echolocation behavior to prey pursuit and capture during successful feeding dives by fish-eating killer whales in coastal British Columbia, Canada. The significantly higher incidence and rate of echolocation prior to fish captures compared to afterward confirms its importance in prey detection and tracking. Extremely rapid click sequences (buzzes) were produced before or concurrent with captures of salmon at depths typically exceeding 50 m, and were likely used by killer whales for close-range prey targeting, as in other odontocetes. Distinctive crunching and tearing sounds indicative of prey-handling behavior occurred at relatively shallow depths following fish captures, matching concurrent observations that whales surfaced with fish prior to consumption and often shared prey. Buzzes and prey-handling sounds are potentially useful acoustic signals for estimating foraging efficiency and determining if resident killer whales are meeting their energetic requirements.
Collapse
Affiliation(s)
- Brianna M. Wright
- Pacific Biological StationFisheries and Oceans CanadaNanaimoBritish ColumbiaCanada
- Marine Mammal Research Unit, Institute for the Oceans and FisheriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Volker B. Deecke
- Institute of Science, Natural Resources and Outdoor StudiesUniversity of CumbriaAmblesideCumbriaUnited Kingdom
| | - Graeme M. Ellis
- Pacific Biological StationFisheries and Oceans CanadaNanaimoBritish ColumbiaCanada
| | - Andrew W. Trites
- Marine Mammal Research Unit, Institute for the Oceans and FisheriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - John K. B. Ford
- Pacific Biological StationFisheries and Oceans CanadaNanaimoBritish ColumbiaCanada
- Marine Mammal Research Unit, Institute for the Oceans and FisheriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
14
|
Zahn MJ, Laidre KL, Stilz P, Rasmussen MH, Koblitz JC. Vertical sonar beam width and scanning behavior of wild belugas (Delphinapterus leucas) in West Greenland. PLoS One 2021; 16:e0257054. [PMID: 34499678 PMCID: PMC8428689 DOI: 10.1371/journal.pone.0257054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/22/2021] [Indexed: 11/18/2022] Open
Abstract
Echolocation signals of wild beluga whales (Delphinapterus leucas) were recorded in 2013 using a vertical, linear 16-hydrophone array at two locations in the pack ice of Baffin Bay, West Greenland. Individual whales were localized for 4:42 minutes of 1:04 hours of recordings. Clicks centered on the recording equipment (i.e. on-axis clicks) were isolated to calculate sonar parameters. We report the first sonar beam estimate of in situ recordings of wild belugas with an average -3 dB asymmetrical vertical beam width of 5.4°, showing a wider ventral beam. This narrow beam width is consistent with estimates from captive belugas; however, our results indicate that beluga sonar beams may not be symmetrical and may differ in wild and captive contexts. The mean apparent source level for on-axis clicks was 212 dB pp re 1 μPa and whales were shown to vertically scan the array from 120 meters distance. Our findings support the hypothesis that highly directional sonar beams and high source levels are an evolutionary adaptation for Arctic odontocetes to reduce unwanted surface echoes from sea ice (i.e., acoustic clutter) and effectively navigate through leads in the pack ice (e.g., find breathing holes). These results provide the first baseline beluga sonar metrics from free-ranging animals using a hydrophone array and are important for acoustic programs throughout the Arctic, particularly for acoustic classification between belugas and narwhals (Monodon monoceros).
Collapse
Affiliation(s)
- Marie J Zahn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - Kristin L Laidre
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America.,Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, United States of America
| | - Peter Stilz
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| | | | - Jens C Koblitz
- Max Planck Institute of Animal Behavior, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
15
|
Malinka CE, Rojano-Doñate L, Madsen PT. Directional biosonar beams allow echolocating harbour porpoises to actively discriminate and intercept closely spaced targets. J Exp Biol 2021; 224:271830. [PMID: 34387665 DOI: 10.1242/jeb.242779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Echolocating toothed whales face the problem that high sound speeds in water mean that echoes from closely spaced targets will arrive at time delays within their reported auditory integration time of some 264 µs. Here, we test the hypothesis that echolocating harbour porpoises cannot resolve and discriminate targets within a clutter interference zone given by their integration time. To do this, we trained two harbour porpoises (Phocoena phocoena) to actively approach and choose between two spherical targets at four varying inter-target distances (13.5, 27, 56 and 108 cm) in a two-alternative forced-choice task. The free-swimming, blindfolded porpoises were tagged with a sound and movement tag (DTAG4) to record their echoic scene and acoustic outputs. The known ranges between targets and the porpoise, combined with the sound levels received on target-mounted hydrophones revealed how the porpoises controlled their acoustic gaze. When targets were close together, the discrimination task was more difficult because of smaller echo time delays and lower echo level ratios between the targets. Under these conditions, buzzes were longer and started from farther away, source levels were reduced at short ranges, and the porpoises clicked faster, scanned across the targets more, and delayed making their discrimination decision until closer to the target. We conclude that harbour porpoises can resolve and discriminate closely spaced targets, suggesting a clutter rejection zone much shorter than their auditory integration time, and that such clutter rejection is greatly aided by spatial filtering with their directional biosonar beam.
Collapse
Affiliation(s)
- Chloe E Malinka
- Zoophysiology, Department of Biology, Aarhus University, Aarhus 8000, Denmark
| | - Laia Rojano-Doñate
- Zoophysiology, Department of Biology, Aarhus University, Aarhus 8000, Denmark
| | - Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
16
|
Malinka CE, Tønnesen P, Dunn CA, Claridge DE, Gridley T, Elwen SH, Teglberg Madsen P. Echolocation click parameters and biosonar behaviour of the dwarf sperm whale ( Kogia sima). J Exp Biol 2021; 224:224/6/jeb240689. [PMID: 33771935 DOI: 10.1242/jeb.240689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022]
Abstract
Dwarf sperm whales (Kogia sima) are small toothed whales that produce narrow-band high-frequency (NBHF) echolocation clicks. Such NBHF clicks, subject to high levels of acoustic absorption, are usually produced by small, shallow-diving odontocetes, such as porpoises, in keeping with their short-range echolocation and fast click rates. Here, we sought to address the problem of how the little-studied and deep-diving Kogia can hunt with NBHF clicks in the deep sea. Specifically, we tested the hypotheses that Kogia produce NBHF clicks with longer inter-click intervals (ICIs), higher directionality and higher source levels (SLs) compared with other NBHF species. We did this by deploying an autonomous deep-water vertical hydrophone array in the Bahamas, where no other NBHF species are present, and by taking opportunistic recordings of a close-range Kogia sima in a South African harbour. Parameters from on-axis clicks (n=46) in the deep revealed very narrow-band clicks (root mean squared bandwidth, BWRMS, of 3±1 kHz), with SLs of up to 197 dB re. 1 µPa peak-to-peak (μPapp) at 1 m, and a half-power beamwidth of 8.8 deg. Their ICIs (mode of 245 ms) were much longer than those of porpoises (<100 ms), suggesting an inspection range that is longer than detection ranges of single prey, perhaps to facilitate auditory streaming of a complex echo scene. On-axis clicks in the shallow harbour (n=870) had ICIs and SLs in keeping with source parameters of other NBHF cetaceans. Thus, in the deep, dwarf sperm whales use a directional, but short-range echolocation system with moderate SLs, suggesting a reliable mesopelagic prey habitat.
Collapse
Affiliation(s)
- Chloe E Malinka
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Pernille Tønnesen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Charlotte A Dunn
- Bahamas Marine Mammal Research Organisation (BMMRO), Sandy Point, Abaco, Bahamas.,Sea Mammal Research Unit, University of St Andrews, St Andrews KY16 8LB, UK
| | - Diane E Claridge
- Bahamas Marine Mammal Research Organisation (BMMRO), Sandy Point, Abaco, Bahamas.,Sea Mammal Research Unit, University of St Andrews, St Andrews KY16 8LB, UK
| | - Tess Gridley
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7605, South Africa.,Sea Search Research and Conservation, Muizenberg, Cape Town 7945, South Africa
| | - Simon H Elwen
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7605, South Africa.,Sea Search Research and Conservation, Muizenberg, Cape Town 7945, South Africa
| | | |
Collapse
|
17
|
Odenthal L, Doussot C, Meyer S, Bertrand OJN. Analysing Head-Thorax Choreography During Free-Flights in Bumblebees. Front Behav Neurosci 2021; 14:610029. [PMID: 33510626 PMCID: PMC7835495 DOI: 10.3389/fnbeh.2020.610029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Animals coordinate their various body parts, sometimes in elaborate manners to swim, walk, climb, fly, and navigate their environment. The coordination of body parts is essential to behaviors such as, chasing, escaping, landing, and the extraction of relevant information. For example, by shaping the movement of the head and body in an active and controlled manner, flying insects structure their flights to facilitate the acquisition of distance information. They condense their turns into a short period of time (the saccade) interspaced by a relatively long translation (the intersaccade). However, due to technological limitations, the precise coordination of the head and thorax during insects' free-flight remains unclear. Here, we propose methods to analyse the orientation of the head and thorax of bumblebees Bombus terrestris, to segregate the trajectories of flying insects into saccades and intersaccades by using supervised machine learning (ML) techniques, and finally to analyse the coordination between head and thorax by using artificial neural networks (ANN). The segregation of flights into saccades and intersaccades by ML, based on the thorax angular velocities, decreased the misclassification by 12% compared to classically used methods. Our results demonstrate how machine learning techniques can be used to improve the analyses of insect flight structures and to learn about the complexity of head-body coordination. We anticipate our assay to be a starting point for more sophisticated experiments and analysis on freely flying insects. For example, the coordination of head and body movements during collision avoidance, chasing behavior, or negotiation of gaps could be investigated by monitoring the head and thorax orientation of freely flying insects within and across behavioral tasks, and in different species.
Collapse
Affiliation(s)
| | | | - Stefan Meyer
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | | |
Collapse
|
18
|
Tønnesen P, Oliveira C, Johnson M, Madsen PT. The long-range echo scene of the sperm whale biosonar. Biol Lett 2020; 16:20200134. [PMID: 32750270 DOI: 10.1098/rsbl.2020.0134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sperm whales use their gigantic nose to produce the most powerful sounds in the animal kingdom, presumably to echolocate deep-sea prey at long ranges and possibly to debilitate prey. To test these hypotheses, we deployed sound recording tags (DTAG-4) on the tip of the nose of three sperm whales. One of these recordings yielded over 6000 echo streams from organisms detected up to 144 m ahead of the whale, supporting a long-range prey detection function of the sperm whale biosonar. The whale navigated this complex acoustic scene by maintaining a stable, long-range acoustic gaze suggesting continual resource evaluation. Less than 10% of the echoic organisms recorded by the tag were targeted for capture and only 18% of the buzzes were emitted within the 50 m depth interval of maximum organism encounter rate, demonstrating echo-guided prey selection. Buzzes were initiated more than 20 m from the prey, showing that sperm whales do not debilitate their prey with sound, but trade echo levels for reduced forward masking and rapid updates on prey location in keeping with the lower manoeuvrability of these large predators. We conclude that the powerful biosonar of sperm whales enables long-range echolocation and selection of prey, but not acoustic debilitation.
Collapse
Affiliation(s)
- Pernille Tønnesen
- Zoophysiology, Department of Biiology, Aarhus University, 8000 Aarhus, Denmark
| | - Cláudia Oliveira
- Okeanos R&D Centre and IMAR - Institute of Marine Research, University of the Azores, 9901-862 Horta, Portugal
| | - Mark Johnson
- Zoophysiology, Department of Biiology, Aarhus University, 8000 Aarhus, Denmark.,Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St. Andrews, Fife KY16 8LB, UK
| | | |
Collapse
|
19
|
Macaulay JDJ, Malinka CE, Gillespie D, Madsen PT. High resolution three-dimensional beam radiation pattern of harbour porpoise clicks with implications for passive acoustic monitoring. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:4175. [PMID: 32611133 DOI: 10.1121/10.0001376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The source properties and radiation patterns of animal vocalisations define, along with propagation and noise conditions, the active space in which these vocalisations can be detected by conspecifics, predators, prey, and by passive acoustic monitoring (PAM). This study reports the 4π (360° horizontal and vertical) beam profile of a free-swimming, trained harbour porpoise measured using a 27-element hydrophone array. The forward echolocation beam is highly directional, as predicted by a piston model, and is consistent with previous measurements. However, at off-axis angles greater than ±30°, the beam attenuates more rapidly than the piston model and no side lobes are present. A diffuse back beam is also present with levels about -30 dB relative to the source level. In PAM, up to 50% of detections can be from portions of the beam profile with distorted click spectra, although this drops substantially for higher detection thresholds. Simulations of the probability of acoustically detecting a harbour porpoise show that a traditional piston model can underestimate the probability of detection compared to the actual three-dimensional radiation pattern documented here. This highlights the importance of empirical 4π measurements of beam profiles of toothed whales, both to improve understanding of toothed whale biology and to inform PAM.
Collapse
Affiliation(s)
- Jamie D J Macaulay
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of Saint Andrews, East Sands, Saint Andrews, Fife, KY16 9LB, United Kingdom
| | - Chloe E Malinka
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Douglas Gillespie
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of Saint Andrews, East Sands, Saint Andrews, Fife, KY16 9LB, United Kingdom
| | - Peter T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Gong Z, Dong L, Caruso F, Lin M, Liu M, Dong J, Li S. Echolocation signals of free-ranging pantropical spotted dolphins (Stenella attenuata) in the South China Sea. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:3480. [PMID: 31255156 DOI: 10.1121/1.5111742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Echolocation signals of free-ranging pantropical spotted dolphins (Stenella attenuata) in the western Pacific Ocean have not been studied much. This paper aims to describe the characteristics of echolocation signals of S. attenuata in the northern South China Sea. A six-arm star array with 13 hydrophones was used and a total of 131 on-axis clicks were identified to analyze the acoustic features of the echolocation signals of dolphins. The mean center frequency was 89 ± 13 kHz, with mean peak-to-peak sound source levels of 190 ± 6 dB re: 1 μPa @ 1 m. The mean -3 dB bandwidth and root-mean-square bandwidth were 62 ± 15 kHz and 26 ± 3 kHz, respectively, with mean -10 dB duration of 18 ± 4 μs and root-mean-square duration of 6 ± 2 μs. The results showed that click parameters of S. attenuata in the northern South China Sea are different from those of clicks of the species in Hawaii waters. The differences in click parameters may be due to both behavioral context and/or environmental adaptation of S. attenuata in different habitats.
Collapse
Affiliation(s)
- Zining Gong
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Lijun Dong
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Francesco Caruso
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Mingli Lin
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Mingming Liu
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Jianchen Dong
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Songhai Li
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| |
Collapse
|
21
|
Smith AB, Pacini AF, Nachtigall PE, Laule GE, Aragones LV, Magno C, Suarez LJA. Transmission beam pattern and dynamics of a spinner dolphin (Stenella longirostris). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:3595. [PMID: 31255135 DOI: 10.1121/1.5111347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Toothed whales possess a sophisticated biosonar system by which ultrasonic clicks are projected in a highly directional transmission beam. Beam directivity is an important biosonar characteristic that reduces acoustic clutter and increases the acoustic detection range. This study measured click characteristics and the transmission beam pattern from a small odontocete, the spinner dolphin (Stenella longirostis). A formerly stranded individual was rehabilitated and trained to station underwater in front of a 16-element hydrophone array. On-axis clicks showed a mean duration of 20.1 μs, with mean peak and centroid frequencies of 58 and 64 kHz [standard deviation (s.d.) ±30 and ±12 kHz], respectively. Clicks were projected in an oval, vertically compressed beam, with mean vertical and horizontal beamwidths of 14.5° (s.d. ± 3.9) and 16.3° (s.d. ± 4.6), respectively. Directivity indices ranged from 14.9 to 27.4 dB, with a mean of 21.7 dB, although this likely represents a broader beam than what is normally produced by wild individuals. A click subset with characteristics more similar to those described for wild individuals exhibited a mean directivity index of 23.3 dB. Although one of the broadest transmission beams described for a dolphin, it is similar to other small bodied odontocetes.
Collapse
Affiliation(s)
- Adam B Smith
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawaii 96744, USA
| | - Aude F Pacini
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawaii 96744, USA
| | - Paul E Nachtigall
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawaii 96744, USA
| | - Gail E Laule
- Ocean Adventure, Camayan Wharf, West Ilanin Forest, Subic Bay Freeport Zone, Philippines
| | - Lemnuel V Aragones
- Institute of Environmental Science and Meteorology, University of the Philippines, Diliman, Quezon City, Philippines
| | - Carlo Magno
- Ocean Adventure, Camayan Wharf, West Ilanin Forest, Subic Bay Freeport Zone, Philippines
| | - Leo J A Suarez
- Ocean Adventure, Camayan Wharf, West Ilanin Forest, Subic Bay Freeport Zone, Philippines
| |
Collapse
|
22
|
Ladegaard M, Mulsow J, Houser DS, Jensen FH, Johnson M, Madsen PT, Finneran JJ. Dolphin echolocation behaviour during active long-range target approaches. ACTA ACUST UNITED AC 2019; 222:jeb.189217. [PMID: 30478155 DOI: 10.1242/jeb.189217] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/22/2018] [Indexed: 11/20/2022]
Abstract
Echolocating toothed whales generally adjust click intensity and rate according to target range to ensure that echoes from targets of interest arrive before a subsequent click is produced, presumably facilitating range estimation from the delay between clicks and returning echoes. However, this click-echo-click paradigm for the dolphin biosonar is mostly based on experiments with stationary animals echolocating fixed targets at ranges below ∼120 m. Therefore, we trained two bottlenose dolphins instrumented with a sound recording tag to approach a target from ranges up to 400 m and either touch the target (subject TRO) or detect a target orientation change (subject SAY). We show that free-swimming dolphins dynamically increase interclick interval (ICI) out to target ranges of ∼100 m. TRO consistently kept ICIs above the two-way travel time (TWTT) for target ranges shorter than ∼100 m, whereas SAY switched between clicking at ICIs above and below the TWTT for target ranges down to ∼25 m. Source levels changed on average by 17log10(target range), but with considerable variation for individual slopes (4.1 standard deviations for by-trial random effects), demonstrating that dolphins do not adopt a fixed automatic gain control matched to target range. At target ranges exceeding ∼100 m, both dolphins frequently switched to click packet production in which interpacket intervals exceeded the TWTT, but ICIs were shorter than the TWTT. We conclude that the click-echo-click paradigm is not a fixed echolocation strategy in dolphins, and we demonstrate the first use of click packets for free-swimming dolphins when solving an echolocation task.
Collapse
Affiliation(s)
- Michael Ladegaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, CA 92106, USA
| | - Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, CA 92106, USA
| | | | - Mark Johnson
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark.,Sea Mammal Research Unit, St Andrews KY16 8LB, UK
| | - Peter Teglberg Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus, Denmark
| | - James J Finneran
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, CA 92152, USA
| |
Collapse
|
23
|
Ladegaard M, Madsen PT. Context-dependent biosonar adjustments during active target approaches in echolocating harbour porpoises. J Exp Biol 2019; 222:jeb.206169. [DOI: 10.1242/jeb.206169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/16/2019] [Indexed: 11/20/2022]
Abstract
Echolocating mammals generally target individual prey items by transitioning through the biosonar phases of search (slow-rate, high-amplitude outputs), approach (gradually increasing rate and decreasing output amplitude) and buzzing (high-rate, low-amplitude outputs). The range to the main target of interest is often considered the key or sole driver of such biosonar adjustments of acoustic gaze. However, the actively-generated auditory scene of an echolocator is invariably comprised of a large number of other reflectors and noise sources that likely also impact the biosonar strategies and source parameters implemented by an echolocating animal in time and space. In toothed whales the importance of context on biosonar adjustments is largely unknown. To address this, we trained two harbour porpoises to actively approach the same sound recording target over the same approach distance in two highly different environments; a PVC-lined pool and a semi-natural net pen in a harbour, while blind-folded and wearing a sound recording tag (DTAG-4). We show that the approaching porpoises used considerably shorter interclick intervals (ICI) in the pool than in the net pen, except during the buzz phase where slightly longer ICIs were used in the pool. We further show that average click source levels were 4-7 dB higher in the net pen. Because of the very low-level in-band ambient noise in both environments, we posit that the porpoises adapted their echolocation strategy to the different reverberation levels between the two settings. We demonstrate that harbour porpoises use different echolocation strategies and biosonar parameters in two different environments for solving an otherwise identical target approach task and thus highlight that biosonar adjustments are both range and context-dependent.
Collapse
Affiliation(s)
- Michael Ladegaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Peter Teglberg Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
24
|
Isojunno S, Miller PJO. Movement and Biosonar Behavior During Prey Encounters Indicate That Male Sperm Whales Switch Foraging Strategy With Depth. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Wei C, Au WWL, Ketten DR, Song Z, Zhang Y. Biosonar signal propagation in the harbor porpoise's (Phocoena phocoena) head: The role of various structures in the formation of the vertical beam. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4179. [PMID: 28618799 DOI: 10.1121/1.4983663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Harbor porpoises (Phocoena phocoena) use narrow band echolocation signals for detecting and locating prey and for spatial orientation. In this study, acoustic impedance values of tissues in the porpoise's head were calculated from computer tomography (CT) scan and the corresponding Hounsfield Units. A two-dimensional finite element model of the acoustic impedance was constructed based on CT scan data to simulate the acoustic propagation through the animal's head. The far field transmission beam pattern in the vertical plane and the waveforms of the receiving points around the forehead were compared with prior measurement results, the simulation results were qualitatively consistent with the measurement results. The role of the main structures in the head such as the air sacs, melon and skull in the acoustic propagation was investigated. The results showed that air sacs and skull are the major components to form the vertical beam. Additionally, both beam patterns and sound pressure of the sound waves through four positions deep inside the melon were demonstrated to show the role of the melon in the biosonar sound propagation processes in the vertical plane.
Collapse
Affiliation(s)
- Chong Wei
- Hawaii Institute of Marine Biology, University of Hawaii, 46-007 Lilipuna Road, Kaneohe, Hawaii 96744, USA
| | - Whitlow W L Au
- Hawaii Institute of Marine Biology, University of Hawaii, 46-007 Lilipuna Road, Kaneohe, Hawaii 96744, USA
| | - Darlene R Ketten
- Department of Otology and Laryngology, Harvard Medical School, Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Zhongchang Song
- College of Ocean and Earth Sciences, Xiamen University, Xiping Building, Xiangan South Road, Xiamen, 361100, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Zengcuoan West Road, Xiamen, 361005, People's Republic of China
| |
Collapse
|
26
|
Dunn CA, Tyack P, Miller PJO, Rendell L. Short first click intervals in echolocation trains of three species of deep diving odontocetes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:900. [PMID: 28253668 DOI: 10.1121/1.4976084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
All odontocetes produce echolocation clicks as part of their vocal repertoire. In this paper the authors analysed inter-click-intervals in recordings from suction cup tags with a focus on the first inter-click interval of each click train. The authors refer to shorter first inter-click intervals as short first intervals (SFIs). The authors found that the context of SFI occurrence varies across three deep-diving species. In Blainville's beaked whales, 87% of click trains that were preceded by a terminal buzz started with SFIs. In Cuvier's beaked whales, only sub-adult animals produced notable amounts of SFIs. In contrast, sperm whales were much more likely to produce SFIs on the first click train of a dive. While the physiological and/or behavioural reasons for SFI click production are unknown, species differences in their production could provide a window into the evolution of odontocete echolocation.
Collapse
Affiliation(s)
- Charlotte A Dunn
- Bahamas Marine Mammal Research Organisation, P.O. Box AB-20714, Marsh Harbour, Abaco, Bahamas
| | - Peter Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Fife KY16 8LB, Scotland
| | - Patrick J O Miller
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Fife KY16 8LB, Scotland
| | - Luke Rendell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Fife KY16 8LB, Scotland
| |
Collapse
|
27
|
Ladegaard M, Jensen FH, Beedholm K, da Silva VMF, Madsen PT. Amazon river dolphins (Inia geoffrensis) modify biosonar output level and directivity during prey interception in the wild. J Exp Biol 2017; 220:2654-2665. [DOI: 10.1242/jeb.159913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/08/2017] [Indexed: 11/20/2022]
Abstract
Toothed whales have evolved to live in extremely different habitats and yet they all rely strongly on echolocation for finding and catching prey. Such biosonar based foraging involves distinct phases of searching for, approaching, and capturing prey, where echolocating animals gradually adjust sonar output to actively shape the flow of sensory information. Measuring those outputs in absolute levels requires hydrophone arrays centred on the biosonar beam axis, but this has never been done for wild toothed whales approaching and capturing prey. Rather, field studies make the assumption that toothed whales will adjust their biosonar in the same manner to arrays as they will when approaching prey. To test this assumption, we recorded wild botos (Inia geoffrensis) as they approached and captured dead fish tethered to a hydrophone in front of a star-shaped seven-hydrophone array. We demonstrate that botos gradually decrease interclick intervals and output levels during prey approaches, using stronger adjustment magnitudes than extrapolated from previous boto array data. Prey interceptions are characterised by high click rates, but although botos buzz during prey capture, they do so at lower click rates than marine toothed whales, resulting in a much more gradual transition from approach phase to buzzing. We also demonstrate for the first time that wild toothed whales broaden biosonar beamwidth when closing in on prey, as it is also seen in captive toothed whales and in bats, thus resulting in a larger ensonified volume around the prey, likely aiding prey tracking by decreasing the risk of prey evading ensonification.
Collapse
Affiliation(s)
- Michael Ladegaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | | | - Kristian Beedholm
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | | | - Peter Teglberg Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
28
|
Koblitz JC, Stilz P, Rasmussen MH, Laidre KL. Highly Directional Sonar Beam of Narwhals (Monodon monoceros) Measured with a Vertical 16 Hydrophone Array. PLoS One 2016; 11:e0162069. [PMID: 27828956 PMCID: PMC5102362 DOI: 10.1371/journal.pone.0162069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022] Open
Abstract
Recordings of narwhal (Monodon monoceros) echolocation signals were made using a linear 16 hydrophone array in the pack ice of Baffin Bay, West Greenland in 2013 at eleven sites. An average -3 dB beam width of 5.0° makes the narwhal click the most directional biosonar signal reported for any species to date. The beam shows a dorsal-ventral asymmetry with a narrower beam above the beam axis. This may be an evolutionary advantage for toothed whales to reduce echoes from the water surface or sea ice surface. Source level measurements show narwhal click intensities of up to 222 dB pp re 1 μPa, with a mean apparent source level of 215 dB pp re 1 μPa. During ascents and descents the narwhals perform scanning in the vertical plane with their sonar beam. This study provides valuable information for reference sonar parameters of narwhals and for the use of acoustic monitoring in the Arctic.
Collapse
Affiliation(s)
| | | | | | - Kristin L. Laidre
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, United States of America
- * E-mail: (JCK); (KLL)
| |
Collapse
|
29
|
Ladegaard M, Jensen FH, de Freitas M, Ferreira da Silva VM, Madsen PT. Amazon river dolphins (Inia geoffrensis) use a high-frequency short-range biosonar. ACTA ACUST UNITED AC 2016; 218:3091-101. [PMID: 26447198 DOI: 10.1242/jeb.120501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Toothed whales produce echolocation clicks with source parameters related to body size; however, it may be equally important to consider the influence of habitat, as suggested by studies on echolocating bats. A few toothed whale species have fully adapted to river systems, where sonar operation is likely to result in higher clutter and reverberation levels than those experienced by most toothed whales at sea because of the shallow water and dense vegetation. To test the hypothesis that habitat shapes the evolution of toothed whale biosonar parameters by promoting simpler auditory scenes to interpret in acoustically complex habitats, echolocation clicks of wild Amazon river dolphins were recorded using a vertical seven-hydrophone array. We identified 404 on-axis biosonar clicks having a mean SLpp of 190.3 ± 6.1 dB re. 1 µPa, mean SLEFD of 132.1 ± 6.0 dB re. 1 µPa(2)s, mean Fc of 101.2 ± 10.5 kHz, mean BWRMS of 29.3 ± 4.3 kHz and mean ICI of 35.1 ± 17.9 ms. Piston fit modelling resulted in an estimated half-power beamwidth of 10.2 deg (95% CI: 9.6-10.5 deg) and directivity index of 25.2 dB (95% CI: 24.9-25.7 dB). These results support the hypothesis that river-dwelling toothed whales operate their biosonars at lower amplitude and higher sampling rates than similar-sized marine species without sacrificing high directivity, in order to provide high update rates in acoustically complex habitats and simplify auditory scenes through reduced clutter and reverberation levels. We conclude that habitat, along with body size, is an important evolutionary driver of source parameters in toothed whale biosonars.
Collapse
Affiliation(s)
- Michael Ladegaard
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus 8000, Denmark
| | - Frants Havmand Jensen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Mafalda de Freitas
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus 8000, Denmark
| | | | - Peter Teglberg Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus 8000, Denmark Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
30
|
Beetz MJ, Hechavarría JC, Kössl M. Cortical neurons of bats respond best to echoes from nearest targets when listening to natural biosonar multi-echo streams. Sci Rep 2016; 6:35991. [PMID: 27786252 PMCID: PMC5081524 DOI: 10.1038/srep35991] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/10/2016] [Indexed: 11/09/2022] Open
Abstract
Bats orientate in darkness by listening to echoes from their biosonar calls, a behaviour known as echolocation. Recent studies showed that cortical neurons respond in a highly selective manner when stimulated with natural echolocation sequences that contain echoes from single targets. However, it remains unknown how cortical neurons process echolocation sequences containing echo information from multiple objects. In the present study, we used echolocation sequences containing echoes from three, two or one object separated in the space depth as stimuli to study neuronal activity in the bat auditory cortex. Neuronal activity was recorded with multi-electrode arrays placed in the dorsal auditory cortex, where neurons tuned to target-distance are found. Our results show that target-distance encoding neurons are mostly selective to echoes coming from the closest object, and that the representation of echo information from distant objects is selectively suppressed. This suppression extends over a large part of the dorsal auditory cortex and may override possible parallel processing of multiple objects. The presented data suggest that global cortical suppression might establish a cortical "default mode" that allows selectively focusing on close obstacle even without active attention from the animals.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
| | - Julio C. Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
| |
Collapse
|
31
|
Yamada Y, Hiryu S, Watanabe Y. Species-specific control of acoustic gaze by echolocating bats, Rhinolophus ferrumequinum nippon and Pipistrellus abramus, during flight. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:791-801. [PMID: 27566319 PMCID: PMC5061877 DOI: 10.1007/s00359-016-1121-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/13/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022]
Abstract
Based on the characteristics of the ultrasounds they produce, echolocating bats can be categorized into two main types: broadband FM (frequency modulated) and narrowband CF (constant frequency) echolocators. In this study, we recorded the echolocation behavior of a broadband FM (Pipistrellus abramus) and a narrowband CF echolocator species (Rhinolophus ferrumequinum nippon) while they explored an unfamiliar space in a laboratory chamber. During flight, P. abramus smoothly shifted its acoustic gaze in relation to its flight direction, whereas R. ferrumequinum nippon frequently shifted its acoustic gaze from side to side. The distribution of the acoustic gazes of R. ferrumequinum nippon was twice as wide as that of P. abramus. Furthermore, R. ferrumequinum nippon produced double pulses twice as often as P. abramus. Because R. ferrumequinum nippon has a horizontal beam width (−6 dB off-axis angle) half as wide (±20.8 ± 6.0°) as that of P. abramus (±38.3 ± 6.0°), it appears to double the width of its acoustical field of view by shifting its acoustic gaze further off-axis and emitting direction-shifted double pulses. These results suggest that broadband FM and narrowband CF bats actively control their acoustic gazes in a species-specific manner based on the acoustic features of their echolocation signals.
Collapse
Affiliation(s)
- Yasufumi Yamada
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0321, Japan
| | - Shizuko Hiryu
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0321, Japan. .,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Yoshiaki Watanabe
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0321, Japan
| |
Collapse
|
32
|
Arranz P, DeRuiter SL, Stimpert AK, Neves S, Friedlaender AS, Goldbogen JA, Visser F, Calambokidis J, Southall BL, Tyack PL. Discrimination of fast click-series produced by tagged Risso's dolphins (Grampus griseus) for echolocation or communication. ACTA ACUST UNITED AC 2016; 219:2898-2907. [PMID: 27401759 DOI: 10.1242/jeb.144295] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/05/2016] [Indexed: 11/20/2022]
Abstract
Early studies that categorized odontocete pulsed sounds had few means of discriminating signals used for biosonar-based foraging from those used for communication. This capability to identify the function of sounds is important for understanding and interpreting behavior; it is also essential for monitoring and mitigating potential disturbance from human activities. Archival tags were placed on free-ranging Grampus griseus to quantify and discriminate between pulsed sounds used for echolocation-based foraging and those used for communication. Two types of rapid click-series pulsed sounds, buzzes and burst pulses, were identified as produced by the tagged dolphins and classified using a Gaussian mixture model based on their duration, association with jerk (i.e. rapid change of acceleration) and temporal association with click trains. Buzzes followed regular echolocation clicks and coincided with a strong jerk signal from accelerometers on the tag. They consisted of series averaging 359±210 clicks (mean±s.d.) with an increasing repetition rate and relatively low amplitude. Burst pulses consisted of relatively short click series averaging 45±54 clicks with decreasing repetition rate and longer inter-click interval that were less likely to be associated with regular echolocation and the jerk signal. These results suggest that the longer, relatively lower amplitude, jerk-associated buzzes are used in this species to capture prey, mostly during the bottom phase of foraging dives, as seen in other odontocetes. In contrast, the shorter, isolated burst pulses that are generally emitted by the dolphins while at or near the surface are used outside of a direct, known foraging context.
Collapse
Affiliation(s)
- P Arranz
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews KY16 8LB, UK
| | - S L DeRuiter
- Centre for Research into Ecological and Environmental Modelling, School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9LZ, UK Department of Mathematics and Statistics, Calvin College, Grand Rapids, MI 49546, USA
| | - A K Stimpert
- Vertebrate Ecology Lab, Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA
| | - S Neves
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews KY16 8LB, UK
| | - A S Friedlaender
- Department of Fisheries and Wildlife, Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, OR 97635, USA
| | - J A Goldbogen
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - F Visser
- Kelp Marine Research, Hoorn 1624 CJ, The Netherlands Institute of Biology, Leiden University, Leiden 2311, The Netherlands
| | | | - B L Southall
- Southall Environmental Associates, Aptos, CA 95003, USA University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - P L Tyack
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews KY16 8LB, UK
| |
Collapse
|
33
|
Fais A, Johnson M, Wilson M, Aguilar Soto N, Madsen PT. Sperm whale predator-prey interactions involve chasing and buzzing, but no acoustic stunning. Sci Rep 2016; 6:28562. [PMID: 27340122 PMCID: PMC4919788 DOI: 10.1038/srep28562] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/07/2016] [Indexed: 11/09/2022] Open
Abstract
The sperm whale carries a hypertrophied nose that generates powerful clicks for long-range echolocation. However, it remains a conundrum how this bizarrely shaped apex predator catches its prey. Several hypotheses have been advanced to propose both active and passive means to acquire prey, including acoustic debilitation of prey with very powerful clicks. Here we test these hypotheses by using sound and movement recording tags in a fine-scale study of buzz sequences to relate the acoustic behaviour of sperm whales with changes in acceleration in their head region during prey capture attempts. We show that in the terminal buzz phase, sperm whales reduce inter-click intervals and estimated source levels by 1-2 orders of magnitude. As a result, received levels at the prey are more than an order of magnitude below levels required for debilitation, precluding acoustic stunning to facilitate prey capture. Rather, buzzing involves high-frequency, low amplitude clicks well suited to provide high-resolution biosonar updates during the last stages of capture. The high temporal resolution helps to guide motor patterns during occasionally prolonged chases in which prey are eventually subdued with the aid of fast jaw movements and/or buccal suction as indicated by acceleration transients (jerks) near the end of buzzes.
Collapse
Affiliation(s)
- A Fais
- BIOECOMAC. Dept. of Animal Biology, La Laguna University, Spain.,Zoophysiology, Department of Bioscience, Aarhus University, Denmark
| | - M Johnson
- Scottish Ocean Institute, University of St. Andrews, Scotland
| | - M Wilson
- Zoophysiology, Department of Bioscience, Aarhus University, Denmark.,Institute of Biology, University of Southern Denmark, Denmark
| | - N Aguilar Soto
- BIOECOMAC. Dept. of Animal Biology, La Laguna University, Spain.,CREEM, University of St. Andrews, Scotland
| | - P T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Denmark.,Murdoch University Cetacean Research Unit, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
34
|
Oliveira C, Wahlberg M, Silva MA, Johnson M, Antunes R, Wisniewska DM, Fais A, Gonçalves J, Madsen PT. Sperm whale codas may encode individuality as well as clan identity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:2860. [PMID: 27250178 DOI: 10.1121/1.4949478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sperm whales produce codas for communication that can be grouped into different types according to their temporal patterns. Codas have led researchers to propose that sperm whales belong to distinct cultural clans, but it is presently unclear if they also convey individual information. Coda clicks comprise a series of pulses and the delay between pulses is a function of organ size, and therefore body size, and so is one potential source of individual information. Another potential individual-specific parameter could be the inter-click intervals within codas. To test whether these parameters provide reliable individual cues, stereo-hydrophone acoustic tags (Dtags) were attached to five sperm whales of the Azores, recording a total of 802 codas. A discriminant function analysis was used to distinguish 288 5 Regular codas from four of the sperm whales and 183 3 Regular codas from two sperm whales. The results suggest that codas have consistent individual features in their inter-click intervals and inter-pulse intervals which may contribute to individual identification. Additionally, two whales produced different coda types in distinct foraging dive phases. Codas may therefore be used by sperm whales to convey information of identity as well as activity within a social group to a larger extent than previously assumed.
Collapse
Affiliation(s)
- Cláudia Oliveira
- Marine and Environmental Sciences Centre and Institute of Marine Research, Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal
| | - Magnus Wahlberg
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Mónica A Silva
- Marine and Environmental Sciences Centre and Institute of Marine Research, Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal
| | - Mark Johnson
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Fife KY16 8LB, United Kingdom
| | - Ricardo Antunes
- Ocean Giants Program, Global Conservation Programs, Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, New York 10460, USA
| | - Danuta M Wisniewska
- Zoophysiology, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| | - Andrea Fais
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - João Gonçalves
- Marine and Environmental Sciences Centre and Institute of Marine Research, Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal
| | - Peter T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| |
Collapse
|
35
|
Casas J, Steinmann T. Predator-induced flow disturbances alert prey, from the onset of an attack. Proc Biol Sci 2015; 281:rspb.2014.1083. [PMID: 25030986 DOI: 10.1098/rspb.2014.1083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many prey species, from soil arthropods to fish, perceive the approach of predators, allowing them to escape just in time. Thus, prey capture is as important to predators as prey finding. We extend an existing framework for understanding the conjoint trajectories of predator and prey after encounters, by estimating the ratio of predator attack and prey danger perception distances, and apply it to wolf spiders attacking wood crickets. Disturbances to air flow upstream from running spiders, which are sensed by crickets, were assessed by computational fluid dynamics with the finite-elements method for a much simplified spider model: body size, speed and ground effect were all required to obtain a faithful representation of the aerodynamic signature of the spider, with the legs making only a minor contribution. The relationship between attack speed and the maximal distance at which the cricket can perceive the danger is parabolic; it splits the space defined by these two variables into regions differing in their values for this ratio. For this biological interaction, the ratio is no greater than one, implying immediate perception of the danger, from the onset of attack. Particular attention should be paid to the ecomechanical aspects of interactions with such small ratio, because of the high degree of bidirectional coupling of the behaviour of the two protagonists. This conclusion applies to several other predator-prey systems with sensory ecologies based on flow sensing, in air and water.
Collapse
Affiliation(s)
- Jérôme Casas
- Institut Universitaire de France IUF and Institut de Recherche sur la Biologie de l'Insecte, University of Tours, IRBI UMR CNRS 7261, Av. Monge, 37200 Tours, France
| | - Thomas Steinmann
- Institut Universitaire de France IUF and Institut de Recherche sur la Biologie de l'Insecte, University of Tours, IRBI UMR CNRS 7261, Av. Monge, 37200 Tours, France
| |
Collapse
|
36
|
Harbour porpoises react to low levels of high frequency vessel noise. Sci Rep 2015; 5:11083. [PMID: 26095689 PMCID: PMC4476045 DOI: 10.1038/srep11083] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/13/2015] [Indexed: 11/17/2022] Open
Abstract
Cetaceans rely critically on sound for navigation, foraging and communication and are therefore potentially affected by increasing noise levels from human activities at sea. Shipping is the main contributor of anthropogenic noise underwater, but studies of shipping noise effects have primarily considered baleen whales due to their good hearing at low frequencies, where ships produce most noise power. Conversely, the possible effects of vessel noise on small toothed whales have been largely ignored due to their poor low-frequency hearing. Prompted by recent findings of energy at medium- to high-frequencies in vessel noise, we conducted an exposure study where the behaviour of four porpoises (Phocoena phocoena) in a net-pen was logged while they were exposed to 133 vessel passages. Using a multivariate generalised linear mixed-effects model, we show that low levels of high frequency components in vessel noise elicit strong, stereotyped behavioural responses in porpoises. Such low levels will routinely be experienced by porpoises in the wild at ranges of more than 1000 meters from vessels, suggesting that vessel noise is a, so far, largely overlooked, but substantial source of disturbance in shallow water areas with high densities of both porpoises and vessels.
Collapse
|
37
|
de Freitas M, Jensen FH, Tyne J, Bejder L, Madsen PT. Echolocation parameters of Australian humpback dolphins (Sousa sahulensis) and Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the wild. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:3033-41. [PMID: 26093395 DOI: 10.1121/1.4921277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Echolocation is a key sensory modality for toothed whale orientation, navigation, and foraging. However, a more comparative understanding of the biosonar properties of toothed whales is necessary to understand behavioral and evolutionary adaptions. To address this, two free-ranging sympatric delphinid species, Australian humpback dolphins (Sousa sahulensis) and Indo-Pacific bottlenose dolphins (Tursiops aduncus), were studied. Biosonar clicks from both species were recorded within the same stretch of coastal habitat in Exmouth Gulf, Western Australia, using a vertical seven element hydrophone array. S. sahulensis used biosonar clicks with a mean source level of 199 ± 3 dB re 1 μPa peak-peak (pp), mean centroid frequency of 106 ± 11 kHz, and emitted at interclick intervals (ICIs) of 79 ± 33 ms. These parameters were similar to click parameters of sympatric T. aduncus, characterized by mean source levels of 204 ± 4 dB re 1 μPa pp, centroid frequency of 112 ± 9 kHz, and ICIs of 73 ± 29 ms. These properties are comparable to those of other similar sized delphinids and suggest that biosonar parameters are independent of sympatric delphinids and possibly driven by body size. The dynamic biosonar behavior of these delphinids may have, consequently, allowed for adaptations to local environments through high levels of control over sonar beam properties.
Collapse
Affiliation(s)
- Mafalda de Freitas
- Zoophysiology, Department of Bioscience, Aarhus University, Building 1131, C.F. Moellers Alle 3, DK-8000 Aarhus C, Denmark
| | - Frants H Jensen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Julian Tyne
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
| | - Lars Bejder
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
| | - Peter T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Building 1131, C.F. Moellers Alle 3, DK-8000 Aarhus C, Denmark
| |
Collapse
|
38
|
Wisniewska DM, Ratcliffe JM, Beedholm K, Christensen CB, Johnson M, Koblitz JC, Wahlberg M, Madsen PT. Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena). eLife 2015; 4:e05651. [PMID: 25793440 PMCID: PMC4413254 DOI: 10.7554/elife.05651] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/19/2015] [Indexed: 12/03/2022] Open
Abstract
Toothed whales use sonar to detect, locate, and track prey. They adjust emitted sound intensity, auditory sensitivity and click rate to target range, and terminate prey pursuits with high-repetition-rate, low-intensity buzzes. However, their narrow acoustic field of view (FOV) is considered stable throughout target approach, which could facilitate prey escape at close-range. Here, we show that, like some bats, harbour porpoises can broaden their biosonar beam during the terminal phase of attack but, unlike bats, maintain the ability to change beamwidth within this phase. Based on video, MRI, and acoustic-tag recordings, we propose this flexibility is modulated by the melon and implemented to accommodate dynamic spatial relationships with prey and acoustic complexity of surroundings. Despite independent evolution and different means of sound generation and transmission, whales and bats adaptively change their FOV, suggesting that beamwidth flexibility has been an important driver in the evolution of echolocation for prey tracking. DOI:http://dx.doi.org/10.7554/eLife.05651.001 Bats and toothed whales such as porpoises have independently evolved the same solution for hunting prey when it is hard to see. Bats hunt in the dark with little light to allow them to see the insects they chase. Porpoises hunt in murky water where different ocean environments can quickly obscure fish from view. So, both bats and porpoises evolved to emit a beam of sound and then track their prey based on the echoes of that sound bouncing off the prey and other objects. This process is called echolocation. A narrow beam of sound can help a porpoise or bat track distant prey. But as either animal closes in on its prey such a narrow sound beam can be a disadvantage because prey can easily escape to one side. Scientists recently found that bats can widen their sound beam as they close in on prey by changing the frequency—or pitch—of the signal they emit or by adjusting how they open their mouth. Porpoises, by contrast, create their echolocation clicks by forcing air through a structure in their blowhole called the phonic lips. The sound is transmitted through a fatty structure on the front of their head known as the melon, which gives these animals their characteristic round-headed look, before being transmitted into the sea. Porpoises would also likely benefit from widening their echolocation beam as they approach prey, but it was not clear if and how they could do this. Wisniewska et al. used 48 tightly spaced underwater microphones to record the clicks emitted by three captive porpoises as they approached a target or a fish. This revealed that in the last stage of their approach, the porpoises could triple the area their sound beam covered, giving them a ‘wide angle view’ as they closed in. This widening of the sound beam occurred during a very rapid series of echolocation signals called a buzz, which porpoises and bats perform at the end of a pursuit. Unlike bats, porpoises are able to continue to change the width of their sound beam throughout the buzz. Wisniewska et al. also present a video that shows that the shape of the porpoise's melon changes rapidly during a buzz, which may explain the widening beam. Furthermore, images obtained using a technique called magnetic resonance imaging (MRI) revealed that a porpoise has a network of facial muscles that are capable of producing these beam-widening melon distortions. As both bats and porpoises have evolved the capability to adjust the width of their sound beam, this ability is likely to be crucial for hunting effectively using echolocation. DOI:http://dx.doi.org/10.7554/eLife.05651.002
Collapse
Affiliation(s)
| | - John M Ratcliffe
- Sound and Behaviour Group, Institute of Biology, University of Southern Denmark, Odense, Denmark
| | - Kristian Beedholm
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | | | - Mark Johnson
- Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Jens C Koblitz
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| | - Magnus Wahlberg
- Sound and Behaviour Group, Institute of Biology, University of Southern Denmark, Odense, Denmark
| | - Peter T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
39
|
Sperm whale echolocation behaviour reveals a directed, prior-based search strategy informed by prey distribution. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1877-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Jensen FH, Wahlberg M, Beedholm K, Johnson M, Soto NA, Madsen PT. Single-click beam patterns suggest dynamic changes to the field of view of echolocating Atlantic spotted dolphins (Stenella frontalis) in the wild. J Exp Biol 2015; 218:1314-24. [DOI: 10.1242/jeb.116285] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
Abstract
Echolocating animals exercise an extensive control over the spectral and temporal properties of their biosonar signals to facilitate perception of their actively generated auditory scene when homing in on prey. The intensity and directionality of the biosonar beam defines the field of view of echolocating animals by affecting the acoustic detection range and angular coverage. However, the spatial relationship between an echolocating predator and its prey changes rapidly, resulting in different biosonar requirements throughout prey pursuit and capture. Here we measured single click beam patterns using a parametric fit procedure to test whether free-ranging Atlantic spotted dolphins (Stenella frontalis) modify their biosonar beamwidth. We recorded echolocation clicks using a linear array of receivers and estimated the beamwidth of individual clicks using a parametric spectral fit, cross-validated with well-established composite beam pattern estimates. The dolphins apparently increased the biosonar beamwidth, to a large degree without changing the signal frequency, when they approached the recording array. This is comparable to bats that also expand their field of view during prey capture, but achieve this by decreasing biosonar frequency. This behaviour may serve to decrease the risk that rapid escape movements of prey take them outside the biosonar beam of the predator. It is likely that shared sensory requirements have resulted in bats and toothed whales expanding their acoustic field of view at close range to increase the likelihood of successfully acquiring prey using echolocation, representing a case of convergent evolution of echolocation behaviour between these two taxa.
Collapse
Affiliation(s)
- Frants H. Jensen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Magnus Wahlberg
- Fjord&Bælt, Margrethes Plads 1, 5300 Kerteminde, Denmark
- Marine Biological Research Center, University of Southern Denmark, Hindsholmsvej 11, 5300 Kerteminde, Denmark
| | - Kristian Beedholm
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Mark Johnson
- Scottish Oceans Institute, University of St. Andrews, Fife, KY16 8LB, United Kingdom
| | - Natacha Aguilar Soto
- Scottish Oceans Institute, University of St. Andrews, Fife, KY16 8LB, United Kingdom
- BIOECOMAC, Dept. Animal Biology, International Campus of Excellence, La Laguna University, La Laguna 38206, Tenerife, Spain
| | - Peter T. Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
41
|
Wisniewska DM, Johnson M, Nachtigall PE, Madsen PT. Buzzing during biosonar-based interception of prey in the delphinids Tursiops truncatus and Pseudorca crassidens. ACTA ACUST UNITED AC 2014; 217:4279-82. [PMID: 25394631 DOI: 10.1242/jeb.113415] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Echolocating bats and toothed whales probe their environment with ultrasonic sound pulses, using returning echoes to navigate and find prey in a process that appears to have resulted from a remarkable convergence of the two taxa. Here, we report the first detailed quantification of echolocation behaviour during prey capture in the most studied delphinid species, a false killer whale and a bottlenose dolphin. Using acoustic DTAGs, we demonstrate that just prior to prey interception these delphinids change their acoustic gaze dramatically by reducing inter-click intervals and output >10-fold in a high repetition rate, low output buzz. Buzz click rates of 250-500 Hz for large but agile animals suggest that sampling rates during capture are scaled with the whale's manoeuvrability. These observations support the growing notion that fast sonar sampling accompanied by a low output level is critical for high rate feedback to inform motor patterns during prey interception in all echolocating toothed whales.
Collapse
Affiliation(s)
- Danuta M Wisniewska
- Marine Mammal Research, Bioscience, Aarhus University, Roskilde DK-4000, Denmark. Zoophysiology, Bioscience, Aarhus University, Aarhus DK-8000, Denmark.
| | - Mark Johnson
- Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
| | | | - Peter T Madsen
- Zoophysiology, Bioscience, Aarhus University, Aarhus DK-8000, Denmark
| |
Collapse
|
42
|
|
43
|
Finneran JJ, Mulsow J, Houser DS. Auditory evoked potentials in a bottlenose dolphin during moderate-range echolocation tasks. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:4532. [PMID: 25669263 DOI: 10.1121/1.4826179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Studies with echolocating odontocetes have suggested that forms of automatic gain control mediate auditory electrophysiological responses to target-related echoes. This study used a phantom echo generator and auditory evoked potential measurements to examine automatic gain control in a bottlenose dolphin. Auditory evoked potentials to outgoing clicks and incoming echoes were recorded for simulated ranges from 2.5 to 80 m. When geometric spreading loss was simulated, echo-evoked potential amplitudes were essentially constant up to 14 m and progressively decreased with increasing range. When the echo levels were held constant relative to clicks, echo-evoked potential amplitudes increased with increasing range up to 80 m. These results suggest that automatic gain control maintains distance-independent echo-evoked potential amplitudes at close range, but does not fully compensate for attenuation due to spreading loss at longer ranges. The automatic gain control process appears to arise from an interaction of transmitter and receiver based processes, resulting in a short-range region of distance-independent echo-evoked potential amplitudes for relevant targets, and a longer-range region in which echo-evoked potential amplitudes are reduced.
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106
| | - Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106
| |
Collapse
|
44
|
Madsen PT, Lammers M, Wisniewska D, Beedholm K. Nasal sound production in echolocating delphinids (Tursiops truncatus and Pseudorca crassidens) is dynamic, but unilateral: clicking on the right side and whistling on the left side. J Exp Biol 2013; 216:4091-102. [DOI: 10.1242/jeb.091306] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Toothed whales produce sound in their nasal complex by pneumatic actuation of phonic lip pairs within the blowhole. It has been hypothesized that dual actuation of the phonic lip pairs can generate two pulses that merge to form a single echolocation click with a higher source level, broader bandwidth and larger potential for beam steering than if produced by a single pair of phonic lips. Here, we test that hypothesis by measuring the sound production of five echolocating delphinids using hydrophones around the animals and imbedded in on-animal suction cups. We show that the studied animals click with their right pair of phonic lips and whistle with their left pair. We demonstrate that, with just a single pair of phonic lips, they can change the click energy levels over five orders of magnitude, change the click centroid frequencies over more than two octaves, and modulate the sound radiation from the melon for beam steering. We conclude that all of the click dynamics ascribed to dual actuation of two phonic lip pairs can be achieved with actuation of just the right pair of phonic lips, and we propose that the large dynamic range of source outputs is achieved by highly controlled modulation of the pneumatic driving pressure, the tension of the phonic lip labia and the conformation of the fatty melon and associated air sacs.
Collapse
Affiliation(s)
- Peter T. Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Marc Lammers
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, Kailua, HI 96734, USA
| | - Danuta Wisniewska
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Kristian Beedholm
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
45
|
Madsen PT, Surlykke A. Functional Convergence in Bat and Toothed Whale Biosonars. Physiology (Bethesda) 2013; 28:276-83. [DOI: 10.1152/physiol.00008.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Echolocating bats and toothed whales hunt and navigate by emission of sound pulses and analysis of returning echoes to form a self-generated auditory scene. Here, we demonstrate a striking functional convergence in the way these two groups of mammals independently evolved the capability to sense with sound in air and water.
Collapse
Affiliation(s)
- P. T. Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark; and
| | - A. Surlykke
- Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
46
|
Kyhn LA, Tougaard J, Beedholm K, Jensen FH, Ashe E, Williams R, Madsen PT. Clicking in a killer whale habitat: narrow-band, high-frequency biosonar clicks of harbour porpoise (Phocoena phocoena) and Dall's porpoise (Phocoenoides dalli). PLoS One 2013; 8:e63763. [PMID: 23723996 PMCID: PMC3665716 DOI: 10.1371/journal.pone.0063763] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/05/2013] [Indexed: 11/29/2022] Open
Abstract
Odontocetes produce a range of different echolocation clicks but four groups in different families have converged on producing the same stereotyped narrow band high frequency (NBHF) click. In microchiropteran bats, sympatric species have evolved the use of different acoustic niches and subtly different echolocation signals to avoid competition among species. In this study, we examined whether similar adaptations are at play among sympatric porpoise species that use NBHF echolocation clicks. We used a six-element hydrophone array to record harbour and Dall’s porpoises in British Columbia (BC), Canada, and harbour porpoises in Denmark. The click source properties of all porpoise groups were remarkably similar and had an average directivity index of 25 dB. Yet there was a small, but consistent and significant 4 kHz difference in centroid frequency between sympatric Dall’s (137±3 kHz) and Canadian harbour porpoises (141±2 kHz). Danish harbour porpoise clicks (136±3 kHz) were more similar to Dall’s porpoise than to their conspecifics in Canada. We suggest that the spectral differences in echolocation clicks between the sympatric porpoises are consistent with evolution of a prezygotic isolating barrier (i.e., character displacement) to avoid hybridization of sympatric species. In practical terms, these spectral differences have immediate application to passive acoustic monitoring.
Collapse
Affiliation(s)
- Line A Kyhn
- Department of Bioscience, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
47
|
Madsen PT, de Soto NA, Arranz P, Johnson M. Echolocation in Blainville’s beaked whales (Mesoplodon densirostris). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:451-69. [DOI: 10.1007/s00359-013-0824-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
|
48
|
Knight K. PORPOISES ADJUST CLICKS TO GAZE. J Exp Biol 2012. [DOI: 10.1242/jeb.082768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|