1
|
Hedenström A. Effects of wing damage and moult gaps on vertebrate flight performance. J Exp Biol 2023; 226:307304. [PMID: 37132410 DOI: 10.1242/jeb.227355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vertebrates capable of powered flight rely on wings, muscles that drive their flapping and sensory inputs to the brain allowing for control of the motor output. In birds, the wings are formed of arrangements of adjacent flight feathers (remiges), whereas the wings of bats consist of double-layered skin membrane stretched out between the forelimb skeleton, body and legs. Bird feathers become worn from use and brittle from UV exposure, which leads to loss of function; to compensate, they are renewed (moulted) at regular intervals. Bird feathers and the wings of bats can be damaged by accident. Wing damage and loss of wing surface due to moult almost invariably cause reduced flight performance in measures such as take-off angle and speed. During moult in birds, this is partially counteracted by concurrent mass loss and enlarged flight muscles. Bats have sensory hairs covering their wing surface that provide feedback information about flow; thus, wing damage affects flight speed and turning ability. Bats also have thin, thread-like muscles, distributed within the wing membrane and, if these are damaged, the control of wing camber is lost. Here, I review the effects of wing damage and moult on flight performance in birds, and the consequences of wing damage in bats. I also discuss studies of life-history trade-offs that make use of experimental trimming of flight feathers as a way to handicap parent birds feeding their young.
Collapse
Affiliation(s)
- Anders Hedenström
- Department of Biology, Animal Flight Lab, SE-223 62 Ecology Building, Lund University, 22362 Lund, Sweden
| |
Collapse
|
2
|
Toshkova N, Zlatkov B, Fakirova A, Zhelyazkova V, Simov N. First record of Psorergatoides Fain, 1959 (Acari, Cheyletoidea, Psorergatidae) for the Balkan Peninsula with description of the cutaneous lesions on the wing membrane of its hosts Myotismyotis (Borkhausen, 1797) and Myotisblythii (Tomes, 1857) (Chiroptera, Vespertilionidae). Biodivers Data J 2022; 10:e89514. [PMID: 36761606 PMCID: PMC9848588 DOI: 10.3897/bdj.10.e89514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 11/12/2022] Open
Abstract
Healthy wing membranes are essential for bats. They are critical for maintaining the water balance and, during hibernation, they protect the bat's body from dehydration. Assessing the state of the membrane visually is an easy and effective way to monitor a bat's health and discover abnormal structures and infections in wild bat populations. During pre- and post-hibernation surveys of bats' wings, we identified the presence of skin mites, Psorergatoideskerivoulae (Fain, 1959). The parasite causes cutaneous lesions on the wing membranes of the greater moused-eared bat, Myotismyotis (Borkhausen, 1797) and the lesser moused-eared bat, Myotisblythii (Tomes, 1857). The lesser mouse-eared bat is a new host for this parasite. Our study is the first to describe the histopathology of the infection on the wings of the greater and lesser mouse-eared bats. To our knowledge, this is the southernmost record of this parasite and the first mention of the genus Psorergatoides for the Balkans.
Collapse
Affiliation(s)
- Nia Toshkova
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, BulgariaNational Museum of Natural History, Bulgarian Academy of SciencesSofiaBulgaria,Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, BulgariaInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of SciencesSofiaBulgaria
| | - Boyan Zlatkov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, BulgariaInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of SciencesSofiaBulgaria
| | - Albena Fakirova
- Department of Pathology, Military Medical Academy, Sofia, BulgariaDepartment of Pathology, Military Medical AcademySofiaBulgaria
| | - Violeta Zhelyazkova
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, BulgariaNational Museum of Natural History, Bulgarian Academy of SciencesSofiaBulgaria,Centre de recherche des Cordeleirs, Paris, FranceCentre de recherche des CordeleirsParisFrance
| | - Nikolay Simov
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, BulgariaNational Museum of Natural History, Bulgarian Academy of SciencesSofiaBulgaria
| |
Collapse
|
3
|
Wehmann HN, Engels T, Lehmann FO. Flight activity and age cause wing damage in house flies. J Exp Biol 2021; 225:273949. [PMID: 34904650 DOI: 10.1242/jeb.242872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022]
Abstract
Wing damage attenuates aerial performance in many flying animals such as birds, bats and insects. Especially insect wings are fragile and light in order to reduce inertial power requirements for flight at elevated wing flapping frequencies. There is a continuing debate on the factors causing wing damage in insects including collisions with objects, mechanical stress during flight activity, and aging. This experimental study is engaged with the reasons and significance of wing damage for flight in the house fly Musca domestica. We determined natural wing area loss under two housing conditions and recorded flight activity and flight ability throughout the animals' lifetime. Our data show that wing damage occurs on average after 6 h of flight, is sex-specific, and depends on housing conditions. Statistical tests show that both physiological age and flight activity have similar significance as predictors for wing damage. Tests on freely flying flies showed that minimum wing area for active flight is approximately 10-34% below the initial area and requires a left-right wing area asymmetry of less than approximately 25%. Our findings broadly confirm predictions from simple aerodynamic theory based on mean wing velocity and area, and are also consistent with previous wing damage measurements in other insect species.
Collapse
Affiliation(s)
| | - Thomas Engels
- Department of Animal Physiology, University of Rostock, Germany
| | | |
Collapse
|
4
|
Sangavi D, Murugan CM, Mahandran V, Marimuthu G, Thiruchenthil Nathan P. Adaptive foraging tactics of greater short-nosed fruit bats on a spiny shrub and its effect on seed dispersal. J ETHOL 2021. [DOI: 10.1007/s10164-021-00711-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Kihlström K, Aiello B, Warrant E, Sponberg S, Stöckl A. Wing damage affects flight kinematics but not flower tracking performance in hummingbird hawkmoths. J Exp Biol 2021; 224:jeb.236240. [DOI: 10.1242/jeb.236240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/13/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Wing integrity is crucial to the many insect species that spend distinct portions of their life in flight. How insects cope with the consequences of wing damage is therefore a central question when studying how robust flight performance is possible with such fragile chitinous wings. It has been shown in a variety of insect species that the loss in lift-force production resulting from wing damage is generally compensated by an increase in wing beat frequency rather than amplitude. The consequences of wing damage for flight performance, however, are less well understood, and vary considerably between species and behavioural tasks. One hypothesis reconciling the varying results is that wing damage might affect fast flight manoeuvres with high acceleration, but not slower ones. To test this hypothesis, we investigated the effect of wing damage on the manoeuvrability of hummingbird hawkmoths (Macroglossum stellatarum) tracking a motorised flower. This assay allowed us to sample a range of movements at different temporal frequencies, and thus assess whether wing damage affected faster or slower flight manoeuvres. We show that hummingbird hawkmoths compensate for the loss in lift force mainly by increasing wing beat amplitude, yet with a significant contribution of wing beat frequency. We did not observe any effects of wing damage on flight manoeuvrability at either high or low temporal frequencies.
Collapse
Affiliation(s)
- Klara Kihlström
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Brett Aiello
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Simon Sponberg
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anna Stöckl
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Khayat ROS, Grant RA, Ryan H, Melling LM, Dougill G, Killick DR, Shaw KJ. Investigating cat predation as the cause of bat wing tears using forensic DNA analysis. Ecol Evol 2020; 10:8368-8378. [PMID: 32788986 PMCID: PMC7417221 DOI: 10.1002/ece3.6544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 11/05/2022] Open
Abstract
Cat predation upon bat species has been reported to have significant effects on bat populations in both rural and urban areas. The majority of research in this area has focussed on observational data from bat rehabilitators documenting injuries, and cat owners, when domestic cats present prey. However, this has the potential to underestimate the number of bats killed or injured by cats. Here, we use forensic DNA analysis techniques to analyze swabs taken from injured bats in the United Kingdom, mainly including Pipistrellus pipistrellus (40 out of 72 specimens). Using quantitative PCR, cat DNA was found in two-thirds of samples submitted by bat rehabilitators. Of these samples, short tandem repeat analysis produced partial DNA profiles for approximately one-third of samples, which could be used to link predation events to individual cats. The use of genetic analysis can complement observational data and potentially provide additional information to give a more accurate estimation of cat predation.
Collapse
Affiliation(s)
- Rana O. S. Khayat
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
- Department of BiologyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Robyn A. Grant
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | | | - Louise M. Melling
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Gary Dougill
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - David R. Killick
- Institute of Infection, Veterinary and Ecological SciencesUniversity of Liverpool, LeahurstLiverpoolUK
| | - Kirsty J. Shaw
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
7
|
Bandouchova H, Zukal J, Linhart P, Berkova H, Brichta J, Kovacova V, Kubickova A, Abdelsalam EEE, Bartonička T, Zajíčková R, Pikula J. Low seasonal variation in greater mouse-eared bat (Myotis myotis) blood parameters. PLoS One 2020; 15:e0234784. [PMID: 32634149 PMCID: PMC7340307 DOI: 10.1371/journal.pone.0234784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 06/02/2020] [Indexed: 11/19/2022] Open
Abstract
The greater mouse-eared bat (Myotis myotis) is a flagship species for the protection of hibernation and summer maternity roosts in the Western Palearctic region. A range of pathogenic agents is known to put pressure on populations, including the white-nose syndrome fungus, for which the species shows the highest prevalence and infection intensity of all European bat species. Here, we perform analysis of blood parameters characteristic for the species during its natural annual life cycle in order to establish reference values. Despite sexual dimorphism and some univariate differences, the overall multivariate pattern suggests low seasonal variation with homeostatic mechanisms effectively regulating haematology and blood biochemistry ranges. Overall, the species displayed a high haematocrit and haemoglobin content and high concentration of urea, while blood glucose levels in swarming and hibernating bats ranged from hypo- to normoglycaemic. Unlike blood pH, concentrations of electrolytes were wide ranging. To conclude, baseline data for blood physiology are a useful tool for providing suitable medical care in rescue centres, for studying population health in bats adapting to environmental change, and for understanding bat responses to stressors of conservation and/or zoonotic importance.
Collapse
Affiliation(s)
- Hana Bandouchova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Petr Linhart
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Hana Berkova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Brichta
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Veronika Kovacova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Aneta Kubickova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Ehdaa E. E. Abdelsalam
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Renata Zajíčková
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
8
|
Rajabi H, Dirks JH, Gorb SN. Insect wing damage: causes, consequences and compensatory mechanisms. J Exp Biol 2020; 223:223/9/jeb215194. [DOI: 10.1242/jeb.215194] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
ABSTRACT
The evolution of wings has played a key role in the success of insect species, allowing them to diversify to fill many niches. Insect wings are complex multifunctional structures, which not only have to withstand aerodynamic forces but also need to resist excessive stresses caused by accidental collisions. This Commentary provides a summary of the literature on damage-reducing morphological adaptations in wings, covering natural causes of wing collisions, their impact on the structural integrity of wings and associated consequences for both insect flight performance and life expectancy. Data from the literature and our own observations suggest that insects have evolved strategies that (i) reduce the likelihood of wing damage and (ii) allow them to cope with damage when it occurs: damage-related fractures are minimized because wings evolved to be damage tolerant and, in the case of wing damage, insects compensate for the reduced aerodynamic efficiency with dedicated changes in flight kinematics.
Collapse
Affiliation(s)
- Hamed Rajabi
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| | - Jan-Henning Dirks
- Biomimetics-Innovation-Centre, Hochschule Bremen–City University of Applied Sciences, 28199 Bremen, Germany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| |
Collapse
|
9
|
Fuller NW, McGuire LP, Pannkuk EL, Blute T, Haase CG, Mayberry HW, Risch TS, Willis CKR. Disease recovery in bats affected by white-nose syndrome. J Exp Biol 2020; 223:jeb211912. [PMID: 32054681 DOI: 10.1242/jeb.211912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
Processes associated with recovery of survivors are understudied components of wildlife infectious diseases. White-nose syndrome (WNS) in bats provides an opportunity to study recovery of disease survivors, understand implications of recovery for individual energetics, and assess the role of survivors in pathogen transmission. We documented temporal patterns of recovery from WNS in little brown bats (Myotis lucifugus) following hibernation to test the hypotheses that: (1) recovery of wing structure from WNS matches a rapid time scale (i.e. approximately 30 days) suggested by data from free-ranging bats; (2) torpor expression plays a role in recovery; (3) wing physiological function returns to normal alongside structural recovery; and (4) pathogen loads decline quickly during recovery. We collected naturally infected bats at the end of hibernation, brought them into captivity, and quantified recovery over 40 days by monitoring body mass, wing damage, thermoregulation, histopathology of wing biopsies, skin surface lipids and fungal load. Most metrics returned to normal within 30 days, although wing damage was still detectable at the end of the study. Torpor expression declined overall throughout the study, but bats expressed relatively shallow torpor bouts - with a plateau in minimum skin temperature - during intensive healing between approximately days 8 and 15. Pathogen loads were nearly undetectable after the first week of the study, but some bats were still detectably infected at day 40. Our results suggest that healing bats face a severe energetic imbalance during early recovery from direct costs of healing and reduced foraging efficiency. Management of WNS should not rely solely on actions during winter, but should also aim to support energy balance of recovering bats during spring and summer.
Collapse
Affiliation(s)
- Nathan W Fuller
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX 79409, USA
| | - Liam P McGuire
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX 79409, USA
| | - Evan L Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Todd Blute
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Catherine G Haase
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Heather W Mayberry
- Department of Ecology and Evolutionary Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6
| | - Thomas S Risch
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 847, Jonesboro, AR 72467, USA
| | - Craig K R Willis
- Department of Biology and Centre for Forest Inter-Disciplinary Research (C-FIR), University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, Canada R3B 2E9
| |
Collapse
|
10
|
Núñez SF, López-Baucells A, Rocha R, Farneda FZ, Bobrowiec PED, Palmeirim JM, Meyer CFJ. Echolocation and Stratum Preference: Key Trait Correlates of Vulnerability of Insectivorous Bats to Tropical Forest Fragmentation. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00373] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Monteiro LR, Mellado B, Nogueira MR, de Morais-Jr MM. Individual asymmetry as a predictor of fitness in the bat Carollia perspicillata. J Evol Biol 2019; 32:1207-1229. [PMID: 31420901 DOI: 10.1111/jeb.13522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/08/2019] [Accepted: 08/09/2019] [Indexed: 11/26/2022]
Abstract
The measurement of fitness in wild populations is a challenging task, and a number of proxies have been proposed with different degrees of success. Developmental instability/stability (DI) is an organismal property associated with variance in bilateral asymmetry (fluctuating asymmetry-FA) and a correlated effect on fitness. This study provides evidence to corroborate the hypothesis that asymmetry partly reflects DI and is correlated with a reduction in fitness measured by survival and reproduction in bats. We studied two colonies of the bat Carollia perspicillata in southeastern Brazil over 5 years, marking and recapturing individuals. Gaussian mixture models for signed Forearm Asymmetry (ForA) distribution indicated that ~20% of asymmetry variation was due to DI heterogeneity among individuals. ForA, body condition (Scaled Mass Index-SMI) and Forearm Length (ForL) were used as predictors of survival probability in Cormack-Jolly-Seber models. Asymmetry was negatively associated with survival, whereas SMI and ForL were positively associated. The male C. perspicillata defend sites within the roost that are favoured by female harems, but there are mating opportunities for bachelor males, leading to both territorial disputes and sperm competition. As predicted by sexual selection, ForA was negatively associated with relative Testicle Length, a measure of reproductive potential. In females, ForA was negatively associated with the probability of two pregnancies (as opposed to one) in a given breeding season. The effect magnitudes and directions of associations suggest that asymmetry, even though not perfectly reflecting DI variation, is a useful predictor for fitness components in C. perspicillata.
Collapse
Affiliation(s)
- Leandro R Monteiro
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Breno Mellado
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Marcelo R Nogueira
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Marcio M de Morais-Jr
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
12
|
Khayat ROS, Shaw KJ, Dougill G, Melling LM, Ferris GR, Cooper G, Grant RA. Characterizing wing tears in common pipistrelles ( Pipistrellus pipistrellus): investigating tear distribution, wing strength, and possible causes. J Mammal 2019; 100:1282-1294. [PMID: 31379390 PMCID: PMC6660809 DOI: 10.1093/jmammal/gyz081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Abstract
Bats have large, thin wings that are particularly susceptible to tearing. Anatomical specializations, such as fiber reinforcement, strengthen the wing and increase its resistance to puncture, and an extensive vasculature system across the wing also promotes healing. We investigated whether tear positioning is associated with anatomy in common pipistrelles (Pipistrellus pipistrellus). Wing anatomy was described using histological techniques, imaging, and material testing. Tear information, including type, position, time in rehabilitation, and possible causes, was collected from rehabilitators of injured bats across the United Kingdom. Results suggest that the position of the plagiopatagium (the most proximal wing section to the body), rather than its anatomy, influenced the number, location, and orientation of wing tears. While material testing did not identify the plagiopatagium as being significantly weaker than the chiropatagium (the more distal sections of the wing), the plagiopatagium tended to have the most tears. The position of the tears, close to the body and toward the trailing edge, suggests that they are caused by predator attacks, such as from a cat (Felis catus), rather than collisions. Consistent with this, 38% of P. pipistrellus individuals had confirmed wing tears caused by cats, with an additional 38% identified by rehabilitators as due to suspected cat attacks. The plagiopatagium had the lowest number of blood vessels and highest amounts of elastin fibers, suggesting that healing may take longer in this section. Further investigations into the causes of tears, and their effect on flight capabilities, will help to improve bat rehabilitation.
Collapse
Affiliation(s)
- Rana Osama S Khayat
- School of Science and the Environment, John Dalton Building, Manchester Metropolitan University, Manchester, United Kingdom
| | - Kirsty J Shaw
- School of Science and the Environment, John Dalton Building, Manchester Metropolitan University, Manchester, United Kingdom
| | - Gary Dougill
- School of Science and the Environment, John Dalton Building, Manchester Metropolitan University, Manchester, United Kingdom
| | - Louise M Melling
- School of Science and the Environment, John Dalton Building, Manchester Metropolitan University, Manchester, United Kingdom
| | - Glenn R Ferris
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Glen Cooper
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| | - Robyn A Grant
- School of Science and the Environment, John Dalton Building, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
13
|
Cichocki J, Warchałowski M, Ważna A, Gottfried I, Bator–Kocoł A, Gottfried T, Kościelska A, Bojarski J, Pietraszko–Warchałowska M, Gabryś G. Frequent or scarce? Damage to flight-enabling body parts in bats (Chiroptera). PLoS One 2019; 14:e0219783. [PMID: 31329631 PMCID: PMC6645484 DOI: 10.1371/journal.pone.0219783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/01/2019] [Indexed: 11/18/2022] Open
Abstract
Bat wings are characterized by high endurance, and these mammals have developed a number of adaptations that protect them from falling into obstacles and potential injuries. However, in bat populations, there are individuals with visible fresh or healed injuries to the flight-enabling body parts. The aim of this research was to determine the differences in the occurrence of wing membrane damages among species of bats that differ in ecology and behavior. The study was conducted in southern and western Poland in the years 2000-2016 and included 3,525 individuals of six species: lesser horseshoe bat Rhinolopus hipposideros, Daubenton's bat Myotis daubentonii, Natterer's bat Myotis nattereri, greater mouse-eared bat Myotis myotis, western barbastelle Barbastella barbastellus, and brown long-eared bat Plecotus auritus. In all, 2.9% of the bats studied showed damage to the flight-enabling body parts. Natterer's bat was the species with the highest number of injured individuals (21.74%). The lowest number of injured individuals (0.3%) was found in the brown long-eared bat. The most frequently observed type of damage was loss of an edge of the wing membrane (29.3%). The bat species studied differed significantly in the occurrence and location of flight enabling body parts damages. Certain behavioral and ecological factors like foraging mode, foraging habitats and habitat types of bat species determine the number of wing and tail membrane damages.
Collapse
Affiliation(s)
- Jan Cichocki
- Department of Zoology, University of Zielona Góra, Zielona Góra, Poland
| | | | - Agnieszka Ważna
- Department of Zoology, University of Zielona Góra, Zielona Góra, Poland
| | - Iwona Gottfried
- Department of Behavioural Ecology, University of Wrocław, Wrocław, Poland
| | - Anna Bator–Kocoł
- Department of Zoology, University of Zielona Góra, Zielona Góra, Poland
| | - Tomasz Gottfried
- Polish Society of Wildlife Friends “pro Natura”, Wrocław, Poland
| | | | - Jacek Bojarski
- Center for Applied Mathematics and Computer Science, Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Zielona Góra, Poland
| | | | - Grzegorz Gabryś
- Department of Zoology, University of Zielona Góra, Zielona Góra, Poland
| |
Collapse
|
14
|
Zamora‐Camacho FJ, Aragón P. Failed predator attacks have detrimental effects on antipredatory capabilities through developmental plasticity inPelobates cultripestoads. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Pedro Aragón
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
| |
Collapse
|
15
|
Greville LJ, Ceballos-Vasquez A, Valdizón-Rodríguez R, Caldwell JR, Faure PA. Wound healing in wing membranes of the Egyptian fruit bat (Rousettus aegyptiacus) and big brown bat (Eptesicus fuscus). J Mammal 2018. [DOI: 10.1093/jmammal/gyy050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lucas J Greville
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | | | | | - John R Caldwell
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
16
|
Bandouchova H, Bartonička T, Berkova H, Brichta J, Kokurewicz T, Kovacova V, Linhart P, Piacek V, Pikula J, Zahradníková A, Zukal J. Alterations in the health of hibernating bats under pathogen pressure. Sci Rep 2018; 8:6067. [PMID: 29666436 PMCID: PMC5904171 DOI: 10.1038/s41598-018-24461-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
In underground hibernacula temperate northern hemisphere bats are exposed to Pseudogymnoascus destructans, the fungal agent of white-nose syndrome. While pathological and epidemiological data suggest that Palearctic bats tolerate this infection, we lack knowledge about bat health under pathogen pressure. Here we report blood profiles, along with body mass index (BMI), infection intensity and hibernation temperature, in greater mouse-eared bats (Myotis myotis). We sampled three European hibernacula that differ in geomorphology and microclimatic conditions. Skin lesion counts differed between contralateral wings of a bat, suggesting variable exposure to the fungus. Analysis of blood parameters suggests a threshold of ca. 300 skin lesions on both wings, combined with poor hibernation conditions, may distinguish healthy bats from those with homeostatic disruption. Physiological effects manifested as mild metabolic acidosis, decreased glucose and peripheral blood eosinophilia which were strongly locality-dependent. Hibernating bats displaying blood homeostasis disruption had 2 °C lower body surface temperatures. A shallow BMI loss slope with increasing pathogen load suggested a high degree of infection tolerance. European greater mouse-eared bats generally survive P. destructans invasion, despite some health deterioration at higher infection intensities (dependant on hibernation conditions). Conservation measures should minimise additional stressors to conserve constrained body reserves of bats during hibernation.
Collapse
Affiliation(s)
- Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Hana Berkova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomasz Kokurewicz
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic. .,CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
17
|
Fernández MJ, Driver ME, Hedrick TL. Asymmetry costs: effects of wing damage on hovering flight performance in the hawkmoth Manduca sexta. ACTA ACUST UNITED AC 2017; 220:3649-3656. [PMID: 28794226 DOI: 10.1242/jeb.153494] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 08/04/2017] [Indexed: 11/20/2022]
Abstract
Flight performance is fundamental to the fitness of flying organisms. Whilst airborne, flying organisms face unavoidable wing wear and wing area loss. Many studies have tried to quantify the consequences of wing area loss to flight performance with varied results, suggesting that not all types of damage are equal and different species may have different means to compensate for some forms of wing damage with little to no cost. Here, we investigated the cost of control during hovering flight with damaged wings, specifically wings with asymmetric and symmetric reductions in area, by measuring maximum load lifting capacity and the metabolic power of hovering flight in hawkmoths (Manduca sexta). We found that while asymmetric and symmetric reductions are both costly in terms of maximum load lifting and hovering efficiency, asymmetric reductions are approximately twice as costly in terms of wing area lost. The moths also did not modulate flapping frequency and amplitude as predicted by a hovering flight model, suggesting that the ability to do so, possibly tied to asynchronous versus synchronous flight muscles, underlies the varied responses found in different wing clipping experiments.
Collapse
Affiliation(s)
| | - Marion E Driver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Pikula J, Amelon SK, Bandouchova H, Bartonička T, Berkova H, Brichta J, Hooper S, Kokurewicz T, Kolarik M, Köllner B, Kovacova V, Linhart P, Piacek V, Turner GG, Zukal J, Martínková N. White-nose syndrome pathology grading in Nearctic and Palearctic bats. PLoS One 2017; 12:e0180435. [PMID: 28767673 PMCID: PMC5540284 DOI: 10.1371/journal.pone.0180435] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/26/2017] [Indexed: 11/18/2022] Open
Abstract
While white-nose syndrome (WNS) has decimated hibernating bat populations in the Nearctic, species from the Palearctic appear to cope better with the fungal skin infection causing WNS. This has encouraged multiple hypotheses on the mechanisms leading to differential survival of species exposed to the same pathogen. To facilitate intercontinental comparisons, we proposed a novel pathogenesis-based grading scheme consistent with WNS diagnosis histopathology criteria. UV light-guided collection was used to obtain single biopsies from Nearctic and Palearctic bat wing membranes non-lethally. The proposed scheme scores eleven grades associated with WNS on histopathology. Given weights reflective of grade severity, the sum of findings from an individual results in weighted cumulative WNS pathology score. The probability of finding fungal skin colonisation and single, multiple or confluent cupping erosions increased with increase in Pseudogymnoascus destructans load. Increasing fungal load mimicked progression of skin infection from epidermal surface colonisation to deep dermal invasion. Similarly, the number of UV-fluorescent lesions increased with increasing weighted cumulative WNS pathology score, demonstrating congruence between WNS-associated tissue damage and extent of UV fluorescence. In a case report, we demonstrated that UV-fluorescence disappears within two weeks of euthermy. Change in fluorescence was coupled with a reduction in weighted cumulative WNS pathology score, whereby both methods lost diagnostic utility. While weighted cumulative WNS pathology scores were greater in the Nearctic than Palearctic, values for Nearctic bats were within the range of those for Palearctic species. Accumulation of wing damage probably influences mortality in affected bats, as demonstrated by a fatal case of Myotis daubentonii with natural WNS infection and healing in Myotis myotis. The proposed semi-quantitative pathology score provided good agreement between experienced raters, showing it to be a powerful and widely applicable tool for defining WNS severity.
Collapse
Affiliation(s)
- Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- CEITEC—Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- * E-mail:
| | - Sybill K. Amelon
- United States Department of Agriculture Forest Service, Northern Research Station, Columbia, Missouri, United States of America
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Hana Berkova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Sarah Hooper
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Tomasz Kokurewicz
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Miroslav Kolarik
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Bernd Köllner
- Institute of Immunology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Gregory G. Turner
- Pennsylvania Game Commission, Harrisburg, Pennsylvania, United States of America
| | - Jan Zukal
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| |
Collapse
|
19
|
Chin DD, Matloff LY, Stowers AK, Tucci ER, Lentink D. Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates. J R Soc Interface 2017; 14:20170240. [PMID: 28592663 PMCID: PMC5493806 DOI: 10.1098/rsif.2017.0240] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022] Open
Abstract
Harnessing flight strategies refined by millions of years of evolution can help expedite the design of more efficient, manoeuvrable and robust flying robots. This review synthesizes recent advances and highlights remaining gaps in our understanding of how bird and bat wing adaptations enable effective flight. Included in this discussion is an evaluation of how current robotic analogues measure up to their biological sources of inspiration. Studies of vertebrate wings have revealed skeletal systems well suited for enduring the loads required during flight, but the mechanisms that drive coordinated motions between bones and connected integuments remain ill-described. Similarly, vertebrate flight muscles have adapted to sustain increased wing loading, but a lack of in vivo studies limits our understanding of specific muscular functions. Forelimb adaptations diverge at the integument level, but both bird feathers and bat membranes yield aerodynamic surfaces with a level of robustness unparalleled by engineered wings. These morphological adaptations enable a diverse range of kinematics tuned for different flight speeds and manoeuvres. By integrating vertebrate flight specializations-particularly those that enable greater robustness and adaptability-into the design and control of robotic wings, engineers can begin narrowing the wide margin that currently exists between flying robots and vertebrates. In turn, these robotic wings can help biologists create experiments that would be impossible in vivo.
Collapse
Affiliation(s)
- Diana D Chin
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Laura Y Matloff
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Amanda Kay Stowers
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Emily R Tucci
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - David Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Muijres FT, Iwasaki NA, Elzinga MJ, Melis JM, Dickinson MH. Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics. Interface Focus 2017; 7:20160103. [PMID: 28163885 DOI: 10.1098/rsfs.2016.0103] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage.
Collapse
Affiliation(s)
- Florian T Muijres
- Experimental Zoology Group, Wageningen University and Research, Wageningen, The Netherlands; Department of Biology, University of Washington, Seattle, WA, USA
| | - Nicole A Iwasaki
- Department of Biology, University of Washington , Seattle, WA , USA
| | | | - Johan M Melis
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA; Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
| | - Michael H Dickinson
- Department of Biology, University of Washington, Seattle, WA, USA; Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
21
|
Schmieder DA, Benítez HA, Borissov IM, Fruciano C. Bat Species Comparisons Based on External Morphology: A Test of Traditional versus Geometric Morphometric Approaches. PLoS One 2015; 10:e0127043. [PMID: 25965335 PMCID: PMC4428882 DOI: 10.1371/journal.pone.0127043] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/11/2015] [Indexed: 11/19/2022] Open
Abstract
External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species--in this case European horseshoe bats (Rhinolophidae, Chiroptera)--based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.
Collapse
Affiliation(s)
- Daniela A. Schmieder
- Sensory Ecology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
- Conservation Biology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Hugo A. Benítez
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Ivailo M. Borissov
- Sensory Ecology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
- Department of Zoology, University of Tel Aviv, Tel Aviv, Israel
| | - Carmelo Fruciano
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Biological, Zoological and Environmental Sciences, University of Catania, Catania, Italy
| |
Collapse
|
22
|
Ceballos-Vasquez A, Caldwell JR, Faure PA. Seasonal and reproductive effects on wound healing in the flight membranes of captive big brown bats. Biol Open 2014; 4:95-103. [PMID: 25527646 PMCID: PMC4295170 DOI: 10.1242/bio.201410264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The flight membranes of bats serve a number of physiological functions important for survival. Although flight membrane injuries are commonly observed in wild-caught bats, in most cases the damage heals completely. Previous studies examining wound healing in the flight membranes of bats have not taken into consideration energy constraints that could influence healing times. Wound healing results in increased energy demands, therefore we hypothesized that wound healing times would be slower during periods of energy conservation and/or energy output. In this study we used an 8 mm diameter circular punch tool to biopsy the wing membranes of healthy adult female big brown bats (Eptesicus fuscus) from a captive research colony to test the hypothesis that healing times will vary with seasonal temperature changes between the summer and winter seasons, and with reproductive condition between lactating and non-reproductive females. As expected, membrane biopsies took significantly longer to heal during the winter when bats were hibernating compared to the summer when bats were active. Surprisingly, no difference in healing time was observed between lactating and non-reproductive females. The wings of most bats fully healed, although some individuals showed wound expansion demonstrating that impaired healing is occasionally observed in otherwise healthy subjects.
Collapse
Affiliation(s)
| | - John R Caldwell
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
23
|
Schmieder DA, Zsebők S, Siemers BM. The tail plays a major role in the differing manoeuvrability of two sibling species of mouse-eared bats (Myotis myotis and Myotis blythii). CAN J ZOOL 2014. [DOI: 10.1139/cjz-2014-0104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two sympatrically occurring bat species, the greater mouse-eared bat (Myotis myotis (Borkhausen, 1797)) and the lesser mouse-eared bat (Myotis blythii (Tomes, 1857)) (Chiroptera, Vespertillionidae), share numerous similarities in morphology, roosting behaviour, and echolocation and are often difficult to distinguish. However, despite these similarities, their foraging behaviour is noticeably different. Our aim was to examine the extent to which these different foraging strategies reflect morphological adaptation. We assessed whether the morphology of the wing, body, and tail differed between M. myotis and M. blythii. In addition, in a laboratory experiment involving an obstacle course, we compared differences in manoeuvrability by relating them to our morphological measurements. The two species differed in their overall size, wing-tip shape, and tail-to-body length ratio. The generally smaller sized M. blythii performed better in the obstacle course and was therefore considered to be more manoeuvrable. Although differences in wing-tip shape were observed, we found the most important characteristic affecting manoeuvrability in both species to be the tail-to-body length ratio. Additionally, when we compared two bats with injured wing membranes with unharmed bats of the same species, we found no difference in manoeuvrability, even when the wing shape was asymmetric. We therefore postulate that morphometric differences between the two species in their overall size and, more importantly, in their tail-to-body length ratio are the main physical characteristics providing proof of adaptation to different foraging and feeding strategies.
Collapse
Affiliation(s)
- Daniela A. Schmieder
- Sensory Ecology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
- International Max Planck Research School (IMPRS) for Organismal Biology, University Konstanz, Konstanz, Germany
- Conservation Biology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Sándor Zsebők
- Sensory Ecology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
- Université Paris Sud, Centre de Neurosciences Paris Sud, UMR 8195, Orsay, France
| | - Björn M. Siemers
- Sensory Ecology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|