2
|
Crampton WGR. Electroreception, electrogenesis and electric signal evolution. JOURNAL OF FISH BIOLOGY 2019; 95:92-134. [PMID: 30729523 DOI: 10.1111/jfb.13922] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by c. 16% of fish species, an animal uses low-frequency-tuned ampullary electroreceptors to detect microvolt-range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak (< 1 V) electric-organ discharge (EOD) and detecting distortions in the EOD-associated field using high-frequency-tuned tuberous electroreceptors. Tuberous electroreceptors also detect the EODs of neighbouring fishes, facilitating electrocommunication. Several other groups of elasmobranchs and teleosts generate weak (< 10 V) or strong (> 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic-electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non-adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal-receptor matching.
Collapse
|
3
|
Pinch M, Güth R, Samanta MP, Chaidez A, Unguez GA. The myogenic electric organ of Sternopygus macrurus: a non-contractile tissue with a skeletal muscle transcriptome. PeerJ 2016; 4:e1828. [PMID: 27114860 PMCID: PMC4841239 DOI: 10.7717/peerj.1828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 02/29/2016] [Indexed: 12/13/2022] Open
Abstract
In most electric fish species, the electric organ (EO) derives from striated muscle cells that suppress many muscle properties. In the gymnotiform Sternopygus macrurus, mature electrocytes, the current-producing cells of the EO, do not contain sarcomeres, yet they continue to make some cytoskeletal and sarcomeric proteins and the muscle transcription factors (MTFs) that induce their expression. In order to more comprehensively examine the transcriptional regulation of genes associated with the formation and maintenance of the contractile sarcomere complex, results from expression analysis using qRT-PCR were informed by deep RNA sequencing of transcriptomes and miRNA compositions of muscle and EO tissues from adult S. macrurus. Our data show that: (1) components associated with the homeostasis of the sarcomere and sarcomere-sarcolemma linkage were transcribed in EO at levels similar to those in muscle; (2) MTF families associated with activation of the skeletal muscle program were not differentially expressed between these tissues; and (3) a set of microRNAs that are implicated in regulation of the muscle phenotype are enriched in EO. These data support the development of a unique and highly specialized non-contractile electrogenic cell that emerges from a striated phenotype and further differentiates with little modification in its transcript composition. This comprehensive analysis of parallel mRNA and miRNA profiles is not only a foundation for functional studies aimed at identifying mechanisms underlying the transcription-independent myogenic program in S. macrurus EO, but also has important implications to many vertebrate cell types that independently activate or suppress specific features of the skeletal muscle program.
Collapse
Affiliation(s)
- Matthew Pinch
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Robert Güth
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | | | - Alexander Chaidez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Graciela A. Unguez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
4
|
Traeger LL, Volkening JD, Moffett H, Gallant JR, Chen PH, Novina CD, Phillips GN, Anand R, Wells GB, Pinch M, Güth R, Unguez GA, Albert JS, Zakon H, Sussman MR, Samanta MP. Unique patterns of transcript and miRNA expression in the South American strong voltage electric eel (Electrophorus electricus). BMC Genomics 2015; 16:243. [PMID: 25887781 PMCID: PMC4393597 DOI: 10.1186/s12864-015-1288-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/26/2015] [Indexed: 11/10/2022] Open
Abstract
Background With its unique ability to produce high-voltage electric discharges in excess of 600 volts, the South American strong voltage electric eel (Electrophorus electricus) has played an important role in the history of science. Remarkably little is understood about the molecular nature of its electric organs. Results We present an in-depth analysis of the genome of E. electricus, including the transcriptomes of eight mature tissues: brain, spinal cord, kidney, heart, skeletal muscle, Sachs’ electric organ, main electric organ, and Hunter’s electric organ. A gene set enrichment analysis based on gene ontology reveals enriched functions in all three electric organs related to transmembrane transport, androgen binding, and signaling. This study also represents the first analysis of miRNA in electric fish. It identified a number of miRNAs displaying electric organ-specific expression patterns, including one novel miRNA highly over-expressed in all three electric organs of E. electricus. All three electric organ tissues also express three conserved miRNAs that have been reported to inhibit muscle development in mammals, suggesting that miRNA-dependent regulation of gene expression might play an important role in specifying an electric organ identity from its muscle precursor. These miRNA data were supported using another complete miRNA profile from muscle and electric organ tissues of a second gymnotiform species. Conclusions Our work on the E. electricus genome and eight tissue-specific gene expression profiles will greatly facilitate future research on determining the coding and regulatory sequences that specify the function, development, and evolution of electric organs. Moreover, these data and future studies will be informed by the first comprehensive analysis of miRNA expression in an electric fish presented here. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1288-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lindsay L Traeger
- Department of Genetics, University of Wisconsin, Madison, WI, 53706, USA. .,Biotechnology Center, University of Wisconsin, Madison, WI, 53706, USA.
| | - Jeremy D Volkening
- Biotechnology Center, University of Wisconsin, Madison, WI, 53706, USA. .,Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA.
| | - Howell Moffett
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA. .,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Jason R Gallant
- Department of Zoology, Michigan State University, East Lansing, MI, 48824, USA. .,BEACON Center for the Study of Evolution in Action, Lansing, USA.
| | - Po-Hao Chen
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA. .,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02141, USA.
| | - Carl D Novina
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA. .,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02141, USA.
| | - George N Phillips
- BioSciences at Rice and Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| | - Rene Anand
- Department of Pharmacology and Department of Neuroscience, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Gregg B Wells
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77483, USA.
| | - Matthew Pinch
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Robert Güth
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Graciela A Unguez
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - James S Albert
- Department of Biology, University of Louisiana, Lafayette, LA, 70503, USA.
| | - Harold Zakon
- BEACON Center for the Study of Evolution in Action, Lansing, USA. .,University of Texas, Austin, TX, 78712, USA. .,The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| | - Michael R Sussman
- Biotechnology Center, University of Wisconsin, Madison, WI, 53706, USA. .,Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA.
| | | |
Collapse
|