1
|
Wilmsen SM, Dzialowski EM. Altering developmental oxygen exposure influences thermoregulation and flight performance of Manduca sexta. J Exp Biol 2024; 227:jeb247373. [PMID: 38873724 DOI: 10.1242/jeb.247373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
Endothermic, flying insects are capable of some of the highest recorded metabolic rates. This high aerobic demand is made possible by the insect's tracheal system, which supplies the flight muscles with oxygen. Many studies focus on metabolic responses to acute changes in oxygen to test the limits of the insect flight metabolic system, with some flying insects exhibiting oxygen limitation in flight metabolism. These acute studies do not account for possible changes induced by developmental phenotypic plasticity in response to chronic changes in oxygen levels. The endothermic moth Manduca sexta is a model organism that is easy to raise and exhibits a high thorax temperature during flight (∼40°C). In this study, we examined the effects of developmental oxygen exposure during the larval, pupal and adult stages on the adult moth's aerobic performance. We measured flight critical oxygen partial pressure (Pcrit-), thorax temperature and thermoregulating metabolic rate to understand the extent of developmental plasticity as well as effects of developmental oxygen levels on endothermic capacity. We found that developing in hypoxia (10% oxygen) decreased thermoregulating thorax temperature when compared with moths raised in normoxia or hyperoxia (30% oxygen), when moths were warming up in atmospheres with 21-30% oxygen. In addition, moths raised in hypoxia had lower critical oxygen levels when flying. These results suggest that chronic developmental exposure to hypoxia affects the adult metabolic phenotype and potentially has implications for thermoregulatory and flight behavior.
Collapse
Affiliation(s)
- Sara M Wilmsen
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA
| | - Edward M Dzialowski
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA
| |
Collapse
|
2
|
Tang X, Zhou J, Koski TM, Liu S, Zhao L, Sun J. Hypoxia-induced tracheal elasticity in vector beetle facilitates the loading of pinewood nematode. eLife 2023; 12:84621. [PMID: 36995744 PMCID: PMC10063229 DOI: 10.7554/elife.84621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/21/2023] [Indexed: 03/31/2023] Open
Abstract
Many pathogens rely on their insect vectors for transmission. Such pathogens are under selection to improve vector competence for their transmission by employing various tissue or cellular responses of vectors. However, whether pathogens can actively cause hypoxia in vectors and exploit hypoxia responses to promote their vector competence is still unknown. Fast dispersal of pinewood nematode (PWN), the causal agent for the destructive pine wilt disease and subsequent infection of pine trees, is characterized by the high vector competence of pine sawyer beetles (Monochamus spp.), and a single beetle can harbor over 200,000 PWNs in its tracheal system. Here, we demonstrate that PWN loading activates hypoxia in tracheal system of the vector beetles. Both PWN loading and hypoxia enhanced tracheal elasticity and thickened the apical extracellular matrix (aECM) of the tracheal tubes while a notable upregulated expression of a resilin-like mucin protein Muc91C was observed at the aECM layer of PWN-loaded and hypoxic tracheal tubes. RNAi knockdown of Muc91C reduced tracheal elasticity and aECM thickness under hypoxia conditions and thus decreasing PWN loading. Our study suggests a crucial role of hypoxia-induced developmental responses in shaping vector tolerance to the pathogen and provides clues for potential molecular targets to control pathogen dissemination.
Collapse
Affiliation(s)
- Xuan Tang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tuuli-Marjaana Koski
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shiyao Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
3
|
Herhold HW, Davis SR, DeGrey SP, Grimaldi DA. Comparative Anatomy of the Insect Tracheal System Part 1: Introduction, Apterygotes, Paleoptera, Polyneoptera. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2023. [DOI: 10.1206/0003-0090.459.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Hollister W. Herhold
- Richard Gilder Graduate School and Division of Invertebrate Zoology, American Museum of Natural History, New York
| | - Steven R. Davis
- Division of Invertebrate Zoology, American Museum of Natural History; Laboratory of Developmental Neurobiology, Kanazawa University, Kanazawa, Japan
| | - Samuel P. DeGrey
- Kimberly Research and Extension Center, University of Idaho, Kimberly
| | - David A. Grimaldi
- Division of Invertebrate Zoology, American Museum of Natural History, New York
| |
Collapse
|
4
|
Raś M, Wipfler B, Dannenfeld T, Iwan D. Postembryonic development of the tracheal system of beetles in the context of aptery and adaptations towards an arid environment. PeerJ 2022; 10:e13378. [PMID: 35855904 PMCID: PMC9288169 DOI: 10.7717/peerj.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/13/2022] [Indexed: 01/13/2023] Open
Abstract
The tracheal system comprises one of the major adaptations of insects towards a terrestrial lifestyle. Many aspects such as the modifications towards wing reduction or a life in an arid climate are still poorly understood. To address these issues, we performed the first three-dimensional morphometric analyses of the tracheal system of a wingless insect, the desert beetle Gonopus tibialis and compared it with a flying beetle (Tenebrio molitor). Our results clearly show that the reduction of the flight apparatus has severe consequences for the tracheal system. This includes the reduction of the tracheal density, the relative volume of the trachea, the volume of the respective spiracles and the complete loss of individual tracheae. At the same time, the reduction of wings in the desert beetle allows modifications of the tracheal system that would be impossible in an animal with a functional flight apparatus such as the formation of a subelytral cavity as a part of the tracheal system, the strong elongation of the digestive tract including its tracheal system or the respiration through a single spiracle. Finally, we addressed when these modifications of the tracheal system take place during the development of the studied beetles. We can clearly show that they develop during pupation while the larvae of both species are almost identical in their tracheal system and body shape.
Collapse
Affiliation(s)
- Marcin Raś
- Zoological Museum, Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Benjamin Wipfler
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut zur Analyse des Biodiversitätswandels, Bonn, Germany
| | - Tim Dannenfeld
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut zur Analyse des Biodiversitätswandels, Bonn, Germany
| | - Dariusz Iwan
- Zoological Museum, Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Chatterjee K, Graybill PM, Socha JJ, Davalos RV, Staples AE. Frequency-specific, valveless flow control in insect-mimetic microfluidic devices. BIOINSPIRATION & BIOMIMETICS 2021; 16:036004. [PMID: 33561847 DOI: 10.1088/1748-3190/abe4bc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Inexpensive, portable lab-on-a-chip devices would revolutionize fields like environmental monitoring and global health, but current microfluidic chips are tethered to extensive off-chip hardware. Insects, however, are self-contained and expertly manipulate fluids at the microscale using largely unexplored methods. We fabricated a series of microfluidic devices that mimic key features of insect respiratory kinematics observed by synchrotron-radiation imaging, including the collapse of portions of multiple respiratory tracts in response to a single fluctuating pressure signal. In one single-channel device, the flow rate and direction could be controlled by the actuation frequency alone, without the use of internal valves. Additionally, we fabricated multichannel chips whose individual channels responded selectively (on with a variable, frequency-dependent flow rate, or off) to a single, global actuation frequency. Our results demonstrate that insect-mimetic designs have the potential to drastically reduce the actuation overhead for microfluidic chips, and that insect respiratory systems may share features with impedance-mismatch pumps.
Collapse
Affiliation(s)
- Krishnashis Chatterjee
- Laboratory for Fluid Dynamics in Nature, Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Philip M Graybill
- Bioelectromechanical Systems Laboratory, Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
- Mechanical Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - John J Socha
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Rafael V Davalos
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
- Bioelectromechanical Systems Laboratory, Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Anne E Staples
- Laboratory for Fluid Dynamics in Nature, Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
6
|
Smith A, Turnbull KF, Moulton JH, Sinclair BJ. Metabolic cost of freeze-thaw and source of CO 2 production in the freeze-tolerant cricket Gryllus veletis. J Exp Biol 2021; 224:jeb234419. [PMID: 33144372 DOI: 10.1242/jeb.234419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022]
Abstract
Freeze-tolerant insects can survive the conversion of a substantial portion of their body water to ice. While the process of freezing induces active responses from some organisms, these responses appear absent from freeze-tolerant insects. Recovery from freezing likely requires energy expenditure to repair tissues and re-establish homeostasis, which should be evident as elevations in metabolic rate after thaw. We measured carbon dioxide (CO2) production in the spring field cricket (Gryllus veletis) as a proxy for metabolic rate during cooling, freezing and thawing and compared the metabolic costs associated with recovery from freezing and chilling. We hypothesized that freezing does not induce active responses, but that recovery from freeze-thaw is metabolically costly. We observed a burst of CO2 release at the onset of freezing in all crickets that froze, including those killed by either cyanide or an insecticide (thiacloprid), implying that the source of this CO2 was neither aerobic metabolism nor a coordinated nervous system response. These results suggest that freezing does not induce active responses from G. veletis, but may liberate buffered CO2 from hemolymph. There was a transient 'overshoot' in CO2 release during the first hour of recovery, and elevated metabolic rate at 24, 48 and 72 h, in crickets that had been frozen compared with crickets that had been chilled (but not frozen). Thus, recovery from freeze-thaw and the repair of freeze-induced damage appears metabolically costly in G. veletis, and this cost persists for several days after thawing.
Collapse
Affiliation(s)
- Adam Smith
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Kurtis F Turnbull
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Julian H Moulton
- Department of Organismal Biology and Ecology, Colorado College, Colorado Springs, CO 80903, USA
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| |
Collapse
|
7
|
Youngblood JP, VandenBrooks JM, Babarinde O, Donnay ME, Elliott DB, Fredette-Roman J, Angilletta MJ. Oxygen supply limits the chronic heat tolerance of locusts during the first instar only. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104157. [PMID: 33098860 DOI: 10.1016/j.jinsphys.2020.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Although scientists know that overheating kills many organisms, they do not agree on the mechanism. According to one theory, referred to as oxygen- and capacity-limitation of thermal tolerance, overheating occurs when a warming organism's demand for oxygen exceeds its supply, reducing the organism's supply of ATP. This model predicts that an organism's heat tolerance should decrease under hypoxia, yet most terrestrial organisms tolerate the same amount of warming across a wide range of oxygen concentrations. This point is especially true for adult insects, who deliver oxygen through highly efficient respiratory systems. However, oxygen limitation at high temperatures may be more common during immature life stages, which have less developed respiratory systems. To test this hypothesis, we measured the effects of heat and hypoxia on the survival of South American locusts (Schistocerca cancellata) throughout development and during specific instars. We demonstrate that the heat tolerance of locusts depends on oxygen supply during the first instar but not during later instars. This finding provides further support for the idea that oxygen limitation of thermal tolerance depends on respiratory performance, especially during immature life stages.
Collapse
Affiliation(s)
- Jacob P Youngblood
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | - Megan E Donnay
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Deanna B Elliott
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
8
|
Waldrop LD, He Y, Battista NA, Neary Peterman T, Miller LA. Uncertainty quantification reveals the physical constraints on pumping by peristaltic hearts. J R Soc Interface 2020; 17:20200232. [PMID: 32900306 DOI: 10.1098/rsif.2020.0232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most biological functional systems are complex, and this complexity is a fundamental driver of diversity. Because input parameters interact in complex ways, a holistic understanding of functional systems is key to understanding how natural selection produces diversity. We present uncertainty quantification (UQ) as a quantitative analysis tool on computational models to study the interplay of complex systems and diversity. We investigate peristaltic pumping in a racetrack circulatory system using a computational model and analyse the impact of three input parameters (Womersley number, compression frequency, compression ratio) on flow and the energetic costs of circulation. We employed two models of peristalsis (one that allows elastic interactions between the heart tube and fluid and one that does not), to investigate the role of elastic interactions on model output. A computationally cheaper surrogate of the input parameter space was created with generalized polynomial chaos expansion to save computational resources. Sobol indices were then calculated based on the generalized polynomial chaos expansion and model output. We found that all flow metrics were highly sensitive to changes in compression ratio and insensitive to Womersley number and compression frequency, consistent across models of peristalsis. Elastic interactions changed the patterns of parameter sensitivity for energetic costs between the two models, revealing that elastic interactions are probably a key physical metric of peristalsis. The UQ analysis created two hypotheses regarding diversity: favouring high flow rates (where compression ratio is large and highly conserved) and minimizing energetic costs (which avoids combinations of high compression ratios, high frequencies and low Womersley numbers).
Collapse
Affiliation(s)
- Lindsay D Waldrop
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Yanyan He
- Department of Mathematics, University of North Texas, Denton, TX 76203, USA.,Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, USA
| | - Nicholas A Battista
- Department of Mathematics and Statistics, The College of New Jersey, Ewing Township, NJ 08628, USA
| | - Tess Neary Peterman
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Laura A Miller
- Department of Mathematics, University of Arizona, Tuscon, AZ 85721, USA
| |
Collapse
|
9
|
Hochgraf JS, Waters JS, Socha JJ. Patterns of Tracheal Compression in the Thorax of the Ground Beetle, Platynus decentis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2018; 91:409-430. [PMID: 30588208 PMCID: PMC6302622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Insects breathe using a system of tracheal tubes that ramify throughout the body. Rhythmic tracheal compression (RTC), the periodic collapse and reinflation of parts of the system, has been identified in multiple taxa, but little is known about the precise dynamics of tube deformation cycles. It has been hypothesized that during RTC, compression occurs synchronously throughout the body, but specific kinematic patterns along the length of individual tracheae may vary. Tube collapse or reinflation that proceeds unidirectionally along the length of a tube may function as a pump to transport air, augmenting gas exchange. This study aims to characterize patterns of tracheal compression in one species of carabid beetle, Platynus decentis, to test the hypothesis of directional compression. The internal tracheae of living beetles were visualized using synchrotron x-ray phase contrast imaging at the Advanced Photon Source, Argonne National Laboratory. X-ray video results show that tracheal compression is characterized by the formation of discrete, buckled regions in the tube wall, giving the appearance of "dimpling." Dimple formation in the main dorsal tracheal trunks of the prothorax occurred as two semi-circular fronts that spread symmetrically or directionally along the longitudinal tube axis. In the transverse axis, the main ventral trunks collapsed in the lateral direction, whereas the dorsal trunks collapsed dorsoventrally. Along the length of the ventral thoracic tracheal trunks, collapse and reinflation occurred synchronously in the majority of cycles (75 percent), not sequentially. Synchronous longitudinal compression and consistent dimple formation kinematics within an animal suggest that Platynus decentis employs a stereotyped mechanism to produce cycles of tracheal collapse and reinflation, but such compression does not function as a unidirectional pump, at least along the length of the local trachea. Further data on spiracle opening and closing patterns and internal pressures within the tracheal system are required to determine actual airflow patterns within the body.
Collapse
Affiliation(s)
- John S. Hochgraf
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA,To whom all correspondence should be addressed: John S. Hochgraf, Tel: 1-603-969-4615,
| | | | - John J. Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA
| |
Collapse
|
10
|
Abstract
The Southeast Asian transboundary haze contains a mixture of gases and particles from forest fires and negatively impacts people’s health and local economies. However, the effect of the haze on organisms other than humans has not yet been sufficiently studied. Insects are important members of food webs and environmental disturbances that affect insects may impact whole ecosystems. Here we studied how haze directly and indirectly affects the survival, growth, and development of insects by rearing Bicyclus anynana butterflies under artificially generated smoke as well as reared in clean air but fed on plants previously exposed to smoke. Direct haze exposure significantly increased the mortality of caterpillars, increased larval development time, and decreased pupal weight, while indirect haze exposure, via ingestion of haze-exposed food plants, also affected development time and pupal weight. No smoke particles were found in the tracheae of subjects from the smoke treatment suggesting that the increase in development time and mortality of B. anynana under smoke conditions might be due to toxic smoke gases and toxic food, rather than particulate matter. These results document significant deleterious effect of haze smoke to the development, adult size, and survival of insects, key players in food-webs.
Collapse
|
11
|
Raś M, Iwan D, Kamiński MJ. The tracheal system in post-embryonic development of holometabolous insects: a case study using the mealworm beetle. J Anat 2018; 232:997-1015. [PMID: 29574917 PMCID: PMC5980188 DOI: 10.1111/joa.12808] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
The tracheal (respiratory) system is regarded as one of the key elements which enabled insects to conquer terrestrial habitats and, as a result, achieve extreme species diversity. Despite this fact, anatomical data concerning this biological system is relatively scarce, especially in an ontogenetic context. The purpose of this study is to provide novel and reliable information on the post-embryonic development of the tracheal system of holometabolous insects using micro-computed tomography methods. Data concerning the structure of the respiratory system acquired from different developmental stages (larvae, pupae and adults) of a single insect species (Tenebrio molitor) are co-analysed in detail. Anatomy of the tracheal system is presented. Sample sizes used (29 individuals) enabled statistical analysis of the results obtained. The following aspects have been investigated (among others): the spiracle arrangement, the number of tracheal ramifications originating from particular spiracles, the diameter of longitudinal trunks, tracheal system volumes, tracheae diameter distribution and fractal dimension analysis. Based on the data acquired, the modularity of the tracheal system is postulated. Using anatomical and functional factors, the following respiratory module types have been distinguished: cephalo-prothoracic, metathoracic and abdominal. These modules can be unambiguously identified in all of the studied developmental stages. A cephalo-prothoracic module aerates organs located in the head capsule, prothorax and additionally prolegs. It is characterised by relatively thick longitudinal trunks and originates in the first thoracic spiracle pair. Thoracic modules support the flight muscles, wings, elytra, meso- and metalegs. The unique feature of this module is the presence of additional longitudinal connections between the neighbouring spiracles. These modules are concentrated around the second prothoracic and the first abdominal spiracle pairs. An abdominal module is characterised by relatively thin ventral longitudinal trunks. Its main role is to support systems located in the abdomen; however, its long visceral tracheae aerate organs situated medially from the flight muscles. Analysis of changes of the tracheal system volume enabled the calculation of growth scaling among body tissues and the volume of the tracheal system. The data presented show that the development of the body volume and tracheal system is not linear in holometabola due to the occurrence of the pupal stage causing a decrease in body volume in the imago and at the same time influencing high growth rates of the tracheal system during metamorphosis, exceeding that ones observed for hemimetabola.
Collapse
Affiliation(s)
- Marcin Raś
- Zoological Museum, Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Dariusz Iwan
- Zoological Museum, Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Marcin Jan Kamiński
- Zoological Museum, Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
12
|
Lundquist TA, Kittilson JD, Ahsan R, Greenlee KJ. The effect of within-instar development on tracheal diameter and hypoxia-inducible factors α and β in the tobacco hornworm, Manduca sexta. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:199-208. [PMID: 29246704 PMCID: PMC5960420 DOI: 10.1016/j.jinsphys.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 05/10/2023]
Abstract
As insects grow within an instar, body mass increases, often more than doubling. The increase in mass causes an increase in metabolic rate and hence oxygen demand. However, the insect tracheal system is hypothesized to increase only after molting and may be compressed as tissues grow within an instar. The increase in oxygen demand in the face of a potentially fixed or decreasing supply could result in hypoxia as insects near the end of an instar. To test these hypotheses, we first used synchrotron X-ray imaging to determine how diameters of large tracheae change within an instar and after molting to the next instar in the tobacco hornworm, Manduca sexta. Large tracheae did not increase in diameter within the first, second, third, and fourth instars, but increased upon molting. To determine if insects are hypoxic at the end of instars, we used the presence of hypoxia-inducible factors (HIFs) as an index. HIF-α and HIF-β dimerize in hypoxia and act as a transcription factor that turns on genes that will increase oxygen delivery. We sequenced both of these genes and measured their mRNA levels at the beginning and end of each larval instar. Finally, we obtained an antibody to HIF-α and measured protein expression during the same time. Both mRNA and protein levels of HIFs were increased at the end of most instars. These data support the hypothesis that some insects may experience hypoxia at the end of an instar, which could be a signal for molting. SUMMARY STATEMENT As caterpillars grow within an instar, major tracheae do not increase in size, while metabolic demand increases. At the same life stages, caterpillars increased expression of hypoxia inducible factors, suggesting that they become hypoxic near the end of an instar.
Collapse
Affiliation(s)
- Taylor A Lundquist
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, United States
| | - Jeffrey D Kittilson
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, United States
| | - Rubina Ahsan
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, United States
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, United States.
| |
Collapse
|
13
|
Ha YR, Ryu J, Yeom E, Lee SJ. Comparison of the tracheal systems of Anopheles sinensis and Aedes togoi larvae using synchrotron X-ray microscopic computed tomography (respiratory system of mosquito larvae using SR-μCT). Microsc Res Tech 2017; 80:985-993. [PMID: 28497875 DOI: 10.1002/jemt.22890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 11/07/2022]
Abstract
Mosquito-borne diseases, such as malaria, dengue fever, and Zika virus, are serious global health issues. Vector control may be an important strategy in reducing the mortality caused by these diseases. The respiratory system of mosquito larvae in the water has to inhale atmospheric oxygen as aquatic organisms. In this study, the three-dimensional (3D) structures of the dorsal longitudinal trunks (DLTs) of the tracheal systems of Anopheles sinensis and Aedes togoi were compared using synchrotron X-ray microscopic computed tomography. DLT respiratory frequencies were also investigated. Interestingly, the larvae of the two mosquito species exhibit tracheal systems that are both morphologically and functionally distinct. A. sinensis hangs horizontally under the water surface, and has a smaller DLT volume than A. togoi. In contrast, A. togoi hangs upside down using a siphon by fixing its tip to the water surface. The frequency of peristaltic movement in A. togoi is higher than that of A. sinensis. These differences in the structures and breathing behaviors of the respiratory systems of mosquito larvae provide new insights into the tracheal systems of mosquito larvae, which should help develop novel effective control strategies targeting mosquito larvae.
Collapse
Affiliation(s)
- Young-Ran Ha
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Jeongeun Ryu
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Eunseop Yeom
- School of Mechanical Engineering, Pusan National University, Pusan, 609-735, South Korea
| | - Sang-Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| |
Collapse
|
14
|
Woods HA, Lane SJ. Metabolic recovery from drowning by insect pupae. J Exp Biol 2016; 219:3126-3136. [DOI: 10.1242/jeb.144105] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Many terrestrial insects live in environments that flood intermittently, and some life stages may spend days underwater without access to oxygen. We tested the hypothesis that terrestrial insects with underground pupae show respiratory adaptations for surviving anoxia and subsequently reestablishing normal patterns of respiration. Pupae of Manduca sexta were experimentally immersed in water for between 0 and 13 days. All pupae survived up to 5 days of immersion regardless of whether the water was aerated or anoxic. By contrast, fifth-instar larvae survived a maximum of 4 h of immersion. There were no effects of immersion during the pupal period on adult size and morphology. After immersion, pupae initially emitted large pulses of CO2. After a subsequent trough in CO2 emission, spiracular activity resumed and average levels of CO2 emission were then elevated for approximately 1 day in the group immersed for 1 day and for at least 2 days in the 3- and 5-day immersion treatments. Although patterns of CO2 emission were diverse, most pupae went through a period during which they emitted CO2 in a cyclic pattern with periods of 0.78–2.2 min. These high-frequency cycles are not predicted by the recent models of Förster and Hetz (2010) and Grieshaber and Terblanche (2015), and we suggest several potential ways to reconcile the models with our observations. During immersion, pupae accumulated lactate, which then declined to low levels over 12–48 h. Pupae in the 3- and 5-day immersion groups still had elevated rates of CO2 emission after 48 h, suggesting that they continued to spend energy on reestablishing homeostasis even after lactate had returned to low levels. Despite their status as terrestrial insects, pupae of M. sexta can withstand long periods of immersion and anoxia and can reestablish homeostasis subsequently.
Collapse
Affiliation(s)
- H. Arthur Woods
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Steven J. Lane
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| |
Collapse
|
15
|
Pendar H, Kenny MC, Socha JJ. Tracheal compression in pupae of the beetle Zophobas morio. Biol Lett 2016; 11:20150259. [PMID: 26085499 DOI: 10.1098/rsbl.2015.0259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insects that are small or exhibit low metabolic rates are considered to not require active ventilation to augment diffusive gas exchange. Some pupae with low metabolic rates exhibit abdominal pumping, a behaviour that is known to drive tracheal ventilation in the adults of many species. However, previous work on pupae suggests that abdominal pumping may serve a non-respiratory role. To study the role of abdominal pumping in pupa of the beetle Zophobas morio, we visualized tracheal dynamics with X-rays while simultaneously measuring haemolymph pressure, abdominal movement, and CO2 emission. Pupae exhibited frequent tracheal compressions that were coincident with both abdominal pumping and pulsation of pressure in the haemolymph. However, more than 63% of abdominal pumping events occurred without any tracheal collapse and hence ventilation, suggesting that the major function of the abdominal pump is not respiratory. In addition, this study shows that the kinematics of abdominal pumping can be used to infer the status of the spiracles and internal behaviour of the tracheal system.
Collapse
Affiliation(s)
- Hodjat Pendar
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Melissa C Kenny
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
16
|
Webster MR, Socha JJ, Teresi L, Nardinocchi P, De Vita R. Structure of tracheae and the functional implications for collapse in the American cockroach. BIOINSPIRATION & BIOMIMETICS 2015; 10:066011. [PMID: 26584154 DOI: 10.1088/1748-3190/10/6/066011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The tracheal tubes of insects are complex and heterogeneous composites with a microstructural organization that affects their function as pumps, valves, or static conduits within the respiratory system. In this study, we examined the microstructure of the primary thoracic tracheae of the American cockroach (Periplaneta americana) using a combination of scanning electron microscopy and light microscopy. The organization of the taenidia, which represents the primary source of structural reinforcement of the tracheae, was analyzed. We found that the taenidia were more disorganized in the regions of highest curvature of the tracheal tube. We also used a simple finite element model to explore the effect of cross-sectional shape and distribution of taenidia on the collapsibility of the tracheae. The eccentricity of the tracheal cross-section had a stronger effect on the collapse properties than did the distribution of taenidia. The combination of the macro-scale geometry, meso-scale heterogeneity, and microscale organization likely enables rhythmic tracheal compression during respiration, ultimately driving oxygen-rich air to cells and tissues throughout the insect body. The material design principles of these natural composites could potentially aid in the development of new bio-inspired microfluidic systems based on the differential collapse of tracheae-like networks.
Collapse
Affiliation(s)
- Matthew R Webster
- Mechanics of Soft Biological Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech, USA
| | | | | | | | | |
Collapse
|
17
|
Kivelä SM, Friberg M, Wiklund C, Leimar O, Gotthard K. Towards a mechanistic understanding of insect life history evolution: oxygen-dependent induction of moulting explains moulting sizes. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12689] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sami M. Kivelä
- Department of Zoology; Stockholm University; SE-10691 Stockholm Sweden
| | - Magne Friberg
- Department of Plant Ecology and Evolution; Evolutionary Biology Centre; Norbyvagen 18D SE-752 36 Uppsala Sweden
| | - Christer Wiklund
- Department of Zoology; Stockholm University; SE-10691 Stockholm Sweden
| | - Olof Leimar
- Department of Zoology; Stockholm University; SE-10691 Stockholm Sweden
| | - Karl Gotthard
- Department of Zoology; Stockholm University; SE-10691 Stockholm Sweden
| |
Collapse
|
18
|
Waldrop L, Miller L. Large-amplitude, short-wave peristalsis and its implications for transport. Biomech Model Mechanobiol 2015; 15:629-42. [DOI: 10.1007/s10237-015-0713-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/27/2015] [Indexed: 12/31/2022]
|
19
|
Waldrop LD, Miller LA. The role of the pericardium in the valveless, tubular heart of the tunicate Ciona savignyi. ACTA ACUST UNITED AC 2015; 218:2753-63. [PMID: 26142414 DOI: 10.1242/jeb.116863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 06/25/2015] [Indexed: 12/25/2022]
Abstract
Tunicates, small invertebrates within the phylum Chordata, possess a robust tubular heart which pumps blood through their open circulatory systems without the use of valves. This heart consists of two major components: the tubular myocardium, a flexible layer of myocardial cells that actively contracts to drive fluid down the length of the tube; and the pericardium, a stiff, outer layer of cells that surrounds the myocardium and creates a fluid-filled space between the myocardium and the pericardium. We investigated the role of the pericardium through in vivo manipulations on tunicate hearts and computational simulations of the myocardium and pericardium using the immersed boundary method. Experimental manipulations reveal that damage to the pericardium results in aneurysm-like bulging of the myocardium and major reductions in the net blood flow and percentage closure of the heart's lumen during contraction. In addition, varying the pericardium-to-myocardium (PM) diameter ratio by increasing damage severity was positively correlated with peak dye flow in the heart. Computational simulations mirror the results of varying the PM ratio experimentally. Reducing the stiffness of the myocardium in the simulations reduced mean blood flow only for simulations without a pericardium. These results indicate that the pericardium has the ability to functionally increase the stiffness of the myocardium and limit myocardial aneurysms. The pericardium's function is likely to enhance flow through the highly resistive circulatory system by acting as a support structure in the absence of connective tissue within the myocardium.
Collapse
Affiliation(s)
- Lindsay D Waldrop
- Department of Mathematics, CB #3250, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Laura A Miller
- Department of Mathematics, CB #3250, University of North Carolina, Chapel Hill, NC 27599, USA Department of Biology, CB #3280, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Boardman L, Terblanche JS. Oxygen safety margins set thermal limits in an insect model system. J Exp Biol 2015; 218:1677-85. [DOI: 10.1242/jeb.120261] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ABSTRACT
A mismatch between oxygen availability and metabolic demand may constrain thermal tolerance. While considerable support for this idea has been found in marine organisms, results from insects are equivocal and raise the possibility that mode of gas exchange, oxygen safety margins and the physico-chemical properties of the gas medium influence heat tolerance estimates. Here, we examined critical thermal maximum (CTmax) and aerobic scope under altered oxygen supply and in two life stages that varied in metabolic demand in Bombyx mori (Lepidoptera: Bombycidae). We also systematically examined the influence of changes in gas properties on CTmax. Larvae have a lower oxygen safety margin (higher critical oxygen partial pressure at which metabolism is suppressed relative to metabolic demand) and significantly higher CTmax under normoxia than pupae (53°C vs 50°C). Larvae, but not pupae, were oxygen limited with hypoxia (2.5 kPa) decreasing CTmax significantly from 53 to 51°C. Humidifying hypoxic air relieved the oxygen limitation effect on CTmax in larvae, whereas variation in other gas properties did not affect CTmax. Our data suggest that oxygen safety margins set thermal limits in air-breathing invertebrates and the magnitude of this effect potentially reconciles differences in oxygen limitation effects on thermal tolerance found among diverse taxa to date.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
21
|
Vogt JR, Dillon MK, Dillon ME. Tracheole investment does not vary with body size among bumblebee (Bombus impatiens) sisters. Comp Biochem Physiol A Mol Integr Physiol 2014; 174:56-61. [DOI: 10.1016/j.cbpa.2014.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/26/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
22
|
Owings AA, Yocum GD, Rinehart JP, Kemp WP, Greenlee KJ. Changes in respiratory structure and function during post-diapause development in the alfalfa leafcutting bee, Megachile rotundata. JOURNAL OF INSECT PHYSIOLOGY 2014; 66:20-27. [PMID: 24819205 DOI: 10.1016/j.jinsphys.2014.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/18/2014] [Accepted: 05/01/2014] [Indexed: 06/03/2023]
Abstract
Megachile rotundata, the alfalfa leafcutting bee, is a solitary, cavity-nesting bee. M. rotundata develop from eggs laid inside brood cells constructed from leaf pieces and placed in series in an existing cavity. Due to the cavity nesting behavior of M. rotundata, developing bees may experience hypoxic conditions. The brood cell itself and the position of cell inside the cavity may impact the rates of oxygen diffusion creating hypoxic conditions for developing animals. We hypothesized that bees would be adapted to living in hypoxia and predicted that they would be highly tolerant of hypoxic conditions. To test the hypothesis, we measured critical PO2 (Pcrit) in pupal M. rotundata of varying ages. Defined as the atmospheric O2 level below which metabolic rate cannot be sustained, Pcrit is a measure of an animal's respiratory capacity. Using flow through respirometry, we measured CO2 emission rates of developing bees exposed to 21, 10, 6, 5, 4, 3, 2, 1, and 0 kPa PO2 and statistically determined Pcrit. Mean Pcrit was 4 kPa PO2 and ranged from 0 to 10 kPa PO2, similar to those of other insects. Pcrit was positively correlated with age, indicating that as pupae aged, they were less tolerant of hypoxia. To determine if there were developmental changes in tracheal structure that accounted for the increase in Pcrit, we used synchrotron X-ray imaging and measured the diameter of several tracheae in the head and abdomen of developing bees. Analyses of tracheal diameters showed that tracheae increased in size as animals aged, but the magnitude of the increase varied depending on which trachea was measured. Tracheal diameters increased as pupae molted and decreased as they neared adult emergence, possibly accounting for the decrease in hypoxia tolerance. Little is known about respiratory structures during metamorphosis in bees, and this study provides the first description of tracheal system structure and function in developing M. rotundata. Studies such as this are important for understanding how basic physiological parameters change throughout development and will help to maintain healthy pollinator populations.
Collapse
Affiliation(s)
- Austin A Owings
- North Dakota State University, Department of Biological Sciences, P.O. Box 6050, Fargo, ND 58108, USA
| | - George D Yocum
- USDA-ARS Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND 58105, USA
| | - Joseph P Rinehart
- USDA-ARS Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND 58105, USA
| | - William P Kemp
- USDA-ARS Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND 58105, USA
| | - Kendra J Greenlee
- North Dakota State University, Department of Biological Sciences, P.O. Box 6050, Fargo, ND 58108, USA.
| |
Collapse
|
23
|
Greenlee KJ, Montooth KL, Helm BR. Predicting performance and plasticity in the development of respiratory structures and metabolic systems. Integr Comp Biol 2014; 54:307-22. [PMID: 24812329 PMCID: PMC4097113 DOI: 10.1093/icb/icu018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The scaling laws governing metabolism suggest that we can predict metabolic rates across taxonomic scales that span large differences in mass. Yet, scaling relationships can vary with development, body region, and environment. Within species, there is variation in metabolic rate that is independent of mass and which may be explained by genetic variation, the environment or their interaction (i.e., metabolic plasticity). Additionally, some structures, such as the insect tracheal respiratory system, change throughout development and in response to the environment to match the changing functional requirements of the organism. We discuss how study of the development of respiratory function meets multiple challenges set forth by the NSF Grand Challenges Workshop. Development of the structure and function of respiratory and metabolic systems (1) is inherently stable and yet can respond dynamically to change, (2) is plastic and exhibits sensitivity to environments, and (3) can be examined across multiple scales in time and space. Predicting respiratory performance and plasticity requires quantitative models that integrate information across scales of function from the expression of metabolic genes and mitochondrial biogenesis to the building of respiratory structures. We present insect models where data are available on the development of the tracheal respiratory system and of metabolic physiology and suggest what is needed to develop predictive models. Incorporating quantitative genetic data will enable mapping of genetic and genetic-by-environment variation onto phenotypes, which is necessary to understand the evolution of respiratory and metabolic systems and their ability to enable respiratory homeostasis as organisms walk the tightrope between stability and change.
Collapse
Affiliation(s)
- Kendra J Greenlee
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kristi L Montooth
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Bryan R Helm
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
24
|
Abdelrahman H, Rinehart JP, Yocum GD, Greenlee KJ, Helm BR, Kemp WP, Schulz CH, Bowsher JH. Extended hypoxia in the alfalfa leafcutting bee, Megachile rotundata, increases survival but causes sub-lethal effects. JOURNAL OF INSECT PHYSIOLOGY 2014; 64:81-89. [PMID: 24662466 DOI: 10.1016/j.jinsphys.2014.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 06/03/2023]
Abstract
Many insects are tolerant of hypoxic conditions, but survival may come at a cost to long-term health. The alfalfa leaf-cutting bee, Megachile rotundata, develops in brood cells inside natural cavities, and may be exposed to hypoxic conditions for extended periods of time. Whether M. rotundata is tolerant of hypoxia, and whether exposure results in sub-lethal effects, has never been investigated. Overwintering M. rotundata prepupae were exposed to 10%, 13%, 17%, 21% and 24% O2 for 11 months. Once adults emerged, five indicators of quality - emergence weight, body size, feeding activity, flight performance, and adult longevity, - were measured to determine whether adult bees that survived past exposure to hypoxia were competent pollinators. M. rotundata prepupae are tolerant of hypoxic condition and have higher survival rates in hypoxia, than in normoxia. Under hypoxia, adult emergence rates did not decrease over the 11 months of the experiment. In contrast, bees reared in normoxia had decreased emergence rates by 8 months, and were dead by 11 months. M. rotundata prepupae exposed to extended hypoxic conditions had similar emergence weight, head width, and cross-thorax distance compared to bees reared in standard 21% oxygen. Despite no significant morphological differences, hypoxia-exposed bees had lower feeding rates and shorter adult lifespans. Hypoxia may play a role in post-diapause physiology of M. rotundata, with prepupae showing better survival under hypoxic conditions. Extended exposure to hypoxia, while not fatal, causes sub-lethal effects in feeding rates and longevity in the adults, indicating that hypoxia tolerance comes at a cost.
Collapse
Affiliation(s)
- H Abdelrahman
- Department of Biological Sciences, NDSU Dept 2715, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050, USA.
| | - J P Rinehart
- U.S. Department of Agriculture, Agriculture Research Services, Red River Valley Agricultural Research Center, 1605 Albrecht Blvd. North, Fargo, ND 58102-2765, USA.
| | - G D Yocum
- U.S. Department of Agriculture, Agriculture Research Services, Red River Valley Agricultural Research Center, 1605 Albrecht Blvd. North, Fargo, ND 58102-2765, USA.
| | - K J Greenlee
- Department of Biological Sciences, NDSU Dept 2715, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050, USA.
| | - B R Helm
- Department of Biological Sciences, NDSU Dept 2715, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050, USA; U.S. Department of Agriculture, Agriculture Research Services, Red River Valley Agricultural Research Center, 1605 Albrecht Blvd. North, Fargo, ND 58102-2765, USA.
| | - W P Kemp
- U.S. Department of Agriculture, Agriculture Research Services, Red River Valley Agricultural Research Center, 1605 Albrecht Blvd. North, Fargo, ND 58102-2765, USA.
| | - C H Schulz
- Department of Biological Sciences, NDSU Dept 2715, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050, USA.
| | - J H Bowsher
- Department of Biological Sciences, NDSU Dept 2715, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050, USA.
| |
Collapse
|
25
|
Heinrich EC, McHenry MJ, Bradley TJ. Coordinated ventilation and spiracle activity produce unidirectional airflow in the hissing cockroach, Gromphadorhina portentosa. ACTA ACUST UNITED AC 2013; 216:4473-82. [PMID: 24031063 DOI: 10.1242/jeb.088450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insects exchange respiratory gases via an extensive network of tracheal vessels that open to the surface of the body through spiracular valves. Although gas exchange is known to increase with the opening of these spiracles, it is not clear how this event relates to gas flow through the tracheal system. We examined the relationship between respiratory airflow and spiracle activity in a ventilating insect, the hissing cockroach, Gromphadorhina portentosa, to better understand the complexity of insect respiratory function. Using simultaneous video recordings of multiple spiracular valves, we found that abdominal spiracles open and close in unison during periods of ventilation. Additionally, independent recordings of CO2 release from the abdominal and thoracic regions and observations of hyperoxic tracer gas movement indicate that air is drawn into the thoracic spiracles and expelled from the abdominal spiracles. Our video recordings suggest that this unidirectional flow is driven by abdominal contractions that occur when the abdominal spiracles open. The spiracles then close as the abdomen relaxes and fills with air from the thorax. Therefore, the respiratory system of the hissing cockroach functions as a unidirectional pump through the coordinated action of the spiracles and abdominal musculature. This mechanism may be employed by a broad diversity of large insects that respire by active ventilation.
Collapse
Affiliation(s)
- Erica C Heinrich
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
26
|
Helm BR, Davidowitz G. Mass and volume growth of larval insect tracheal system within a single instar. J Exp Biol 2013; 216:4703-11. [DOI: 10.1242/jeb.080648] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Summary
Organisms must accommodate oxygen delivery to developing tissues as body mass increases during growth. In insects, the growth of the respiratory system has been assumed to occur only when it molts, whereas body mass and volume increase during the larval stages between molts. This decouples whole body growth from the growth of the oxygen supply system. This assumption is derived from the observation that the insect respiratory system is an invagination of the exoskeleton, which must be shed during molts for continued growth to occur. Here, we provide evidence that this assumption is incorrect. We found that the respiratory system increases substantially in both mass and volume within the last larval instar of Manduca sexta larvae, and that the growth of the respiratory system changes with diet quality, potentially as a consequence of shifting metabolic demands.
Collapse
|