1
|
Gasser B, Wagner J, Schoch R, Schmidt-Trucksäss A. Skeletal muscle and heart failure - What is the relationship between central versus peripheral affections? Nutr Metab Cardiovasc Dis 2023; 33:1907-1913. [PMID: 37500344 DOI: 10.1016/j.numecd.2023.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND AND AIM Heart failure is considered as a systemic disease as beside the heart, skeletal muscle is affected. METHODS AND RESULTS In this retrospective case-control study 64 men and 15 women with heart failure as well as an individually pairwise matched sample by sex, age and body mass index of healthy individuals from the COmPLETE cohort study performed an exhaustive cardiopulmonary exercise test, strength tests and anthropometric measurements. V̇O2peak was 28.6% lower in male and 24.6% lower in female patients with heart failure as compared to healthy controls. Strength parameters are significantly higher for counter movement jump in male subjects. In females, significant differences were detected for mid-thigh pull in healthy versus patients with heart failure. Skeletal muscle mass of patients was in male as well as female 3.7% lower than in controls. Furthermore, the function of skeletal muscle seems impaired as the ability to accelerate is significantly lower in affected male with a heart pathology. CONCLUSION It seems that severe affections (approx. 25 to 30%) on cardiocirculatory level are associated with moderate to low affections on functional and structural capacity on skeletal muscle level. Further, as in the male cohort with a heart pathology acceleration meaning 'fast' contracting is impaired, it is suggested, that the central limitations respectively the low perfusion of skeletal muscle over years yield to adaptions on muscle cell level ingoing with a decreased ability of fast contracting. It is therefore suggested, that the central circulatory limitations in patients with heart failure, respectively the low perfusion of skeletal muscle over years, promote maladaptation's in the periphery.
Collapse
Affiliation(s)
- Benedikt Gasser
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, Section Rehabilitative and Regenerative Sport Medicine, University of Basel, Grosse Allee 6, CH-4052 Basel, Switzerland.
| | - Jonathan Wagner
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, Section Rehabilitative and Regenerative Sport Medicine, University of Basel, Grosse Allee 6, CH-4052 Basel, Switzerland
| | - Raphael Schoch
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, Section Rehabilitative and Regenerative Sport Medicine, University of Basel, Grosse Allee 6, CH-4052 Basel, Switzerland
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, Section Rehabilitative and Regenerative Sport Medicine, University of Basel, Grosse Allee 6, CH-4052 Basel, Switzerland
| |
Collapse
|
2
|
Gasser B, Fitze D, Franchi M, Frei A, Niederseer D, Schmied CM, Catuogno S, Frey W, Flück M. The Cardiovascular Response to Interval Exercise Is Modified by the Contraction Type and Training in Proportion to Metabolic Stress of Recruited Muscle Groups. SENSORS 2020; 21:s21010173. [PMID: 33383837 PMCID: PMC7795051 DOI: 10.3390/s21010173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/20/2023]
Abstract
Background: Conventional forms of endurance training based on shortening contractions improve aerobic capacity but elicit a detriment of muscle strength. We hypothesized that eccentric interval training, loading muscle during the lengthening phase of contraction, overcome this interference and potentially adverse cardiovascular reactions, enhancing both muscle metabolism and strength, in association with the stress experienced during exercise. Methods: Twelve healthy participants completed an eight-week program of work-matched progressive interval-type pedaling exercise on a soft robot under predominately concentric or eccentric load. Results: Eccentric interval training specifically enhanced the peak power of positive anaerobic contractions (+28%), mitigated the strain on muscle’s aerobic metabolism, and lowered hemodynamic stress during interval exercise, concomitant with a lowered contribution of positive work to the target output. Concentric training alone lowered blood glucose concentration during interval exercise and mitigated heart rate and blood lactate concentration during ramp exercise. Training-induced adjustments for lactate and positive peak power were independently correlated (p < 0.05, |r| > 0.7) with indices of metabolic and mechanical muscle stress during exercise. Discussion: Task-specific improvements in strength and muscle’s metabolic capacity were induced with eccentric interval exercise lowering cardiovascular risk factors, except for blood glucose concentration, possibly through altered neuromuscular coordination.
Collapse
Affiliation(s)
- Benedikt Gasser
- Departement für Sport, Bewegung und Gesundheit—Abteilung Rehabilitative und Regenerative Sportmedizin—Universität Basel—Birsstrasse, 320B CH, 4052 Basel, Switzerland;
| | - Daniel Fitze
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
| | - Martino Franchi
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy;
| | - Annika Frei
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
| | - David Niederseer
- Sports Cardiology Section, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (D.N.); (C.M.S.)
| | - Christian M. Schmied
- Sports Cardiology Section, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (D.N.); (C.M.S.)
| | - Silvio Catuogno
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
| | - Walter Frey
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
3
|
Coratella G, Longo S, Cè E, Esposito F, de Almeida Costa Campos Y, Pereira Guimarães M, Fernandes da Silva S, Dufour SP, Hureau TJ, Lemire M, Favret F, Elmer SJ, LaStayo PC, Wernbom M, Seynnes O, Paulsen G, Bontemps B, Vercruyssen F, Gruet M, Louis J, Mourot L, Rakobowchuk M, Pageaux B, Tremblay J, Peñailillo L, Nosaka K, Hahn D, Raiteri BJ, Škarabot J, Valenzuela PL, Walsh JA, McAndrew DJ, Lepers R, Stapley PJ, Baumert P, Erskine RM, Clos P. Commentaries on Viewpoint: Distinct modalities of eccentric exercise: different recipes, not the same dish. J Appl Physiol (1985) 2020; 127:884-891. [PMID: 31525315 DOI: 10.1152/japplphysiol.00496.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Giuseppe Coratella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Longo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Emiliano Cè
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Yuri de Almeida Costa Campos
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program of the Faculty of Physical Education and Sports of the University of Juiz de Fora, Juiz de Fora, Brazil
| | - Miller Pereira Guimarães
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program of the Faculty of Physical Education and Sports of the University of Juiz de Fora, Juiz de Fora, Brazil,Presbyterian College Gammon, Lavras, Brazil
| | | | - Stéphane P. Dufour
- University of Strasbourg, Faculty of Sport Sciences, FMTS (Federation for Translational Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Strasbourg, France
| | - Thomas J. Hureau
- University of Strasbourg, Faculty of Sport Sciences, FMTS (Federation for Translational Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Strasbourg, France
| | - Marcel Lemire
- University of Strasbourg, Faculty of Sport Sciences, FMTS (Federation for Translational Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Strasbourg, France
| | - Fabrice Favret
- University of Strasbourg, Faculty of Sport Sciences, FMTS (Federation for Translational Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Strasbourg, France
| | - Steven J. Elmer
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Paul C. LaStayo
- Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Mathias Wernbom
- Center for Health and Performance, Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden,Institute of Neuroscience and Physiology, Department of Health and Rehabilitation, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olivier Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Gøran Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | | | - Mathieu Gruet
- LAMHESS, EA6312, Université de Toulon, Toulon, France
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Laurent Mourot
- EA3920 Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies, Exercise Performance Health Innovation (EPHI) platform, University of Bourgogne Franche- Comté, Besançon, France,National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Mark Rakobowchuk
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Benjamin Pageaux
- École de kinésiologie et des sciences l’activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Canada,Centre de recherche de l’Institut universitaire de gériatrie de Montréal, Montréal, Canada
| | - Jonathan Tremblay
- École de kinésiologie et des sciences l’activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Canada
| | - Luis Peñailillo
- Universidad Finis Terrae, Santiago, Chile and Edith Cowan University, Perth, Australia
| | - Kazunori Nosaka
- Universidad Finis Terrae, Santiago, Chile and Edith Cowan University, Perth, Australia
| | - Daniel Hahn
- Ruhr University Bochum, Faculty of Sport Science, Human Movement Science, Bochum, Germany,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Brent J. Raiteri
- Ruhr University Bochum, Faculty of Sport Science, Human Movement Science, Bochum, Germany
| | - Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | | | - Joel A. Walsh
- Neural Control of Movement Group, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia,Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, New South Wales, Australia
| | - Darryl J. McAndrew
- Neural Control of Movement Group, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia,Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, New South Wales, Australia
| | - Romuald Lepers
- CAPS UMR1093, Institut National de la Santé et de la Recherche Médicale (INSERM), UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France
| | - Paul J. Stapley
- Neural Control of Movement Group, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia,Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, New South Wales, Australia
| | - P Baumert
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom,Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - R M Erskine
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom,Institute of Sport, Exercise & Health, University College London, London, United Kingdom
| | - Pierre Clos
- CAPS UMR1093, Institut National de la Santé et de la Recherche Médicale (INSERM), UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
4
|
Toeda M, Aoi S, Fujiki S, Funato T, Tsuchiya K, Yanagihara D. Gait Generation and Its Energy Efficiency Based on Rat Neuromusculoskeletal Model. Front Neurosci 2020; 13:1337. [PMID: 32009870 PMCID: PMC6978804 DOI: 10.3389/fnins.2019.01337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/27/2019] [Indexed: 01/20/2023] Open
Abstract
Changing gait is crucial for adaptive and smooth animal locomotion. Although it remains unclear what makes animals decide on a specific gait, energy efficiency is an important factor. It has been reported that the relationship of oxygen consumption with speed is U-shaped for each horse gait and that different gaits have different speeds at which oxygen consumption is minimized. This allows the horse to produce energy-efficient locomotion in a wide speed range by changing gait. However, the underlying mechanisms causing oxygen consumption to be U-shaped and the speeds for the minimum consumption to be different between different gaits are unclear. In the present study, we used a neuromusculoskeletal model of the rat to examine the mechanism from a dynamic viewpoint. Specifically, we constructed the musculoskeletal part of the model based on empirical anatomical data on rats and the motor control model based on the physiological concepts of the spinal central pattern generator and muscle synergy. We also incorporated the posture and speed regulation models at the levels of the brainstem and cerebellum. Our model achieved walking through forward dynamic simulation, and the simulated joint kinematics and muscle activities were compared with animal data. Our model also achieved trotting by changing only the phase difference of the muscle-synergy-based motor commands between the forelimb and hindlimb. Furthermore, the speed of each gait varied by changing only the extension phase duration and amplitude of the muscle synergy-based motor commands and the reference values for the regulation models. The relationship between cost of transport (CoT) and speed was U-shaped for both the generated walking and trotting, and the speeds for the minimum CoT were different for the two gaits, as observed in the oxygen consumption of horses. We found that the resonance property and the posture and speed regulations contributed to the CoT shape and difference in speeds for the minimum CoT. We further discussed the energy efficiency of gait based on the simulation results.
Collapse
Affiliation(s)
- Misaki Toeda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Soichiro Fujiki
- Department of Physiology and Biological Information, School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Dai Yanagihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Nishikawa KC, Lindstedt SL, LaStayo PC. Basic science and clinical use of eccentric contractions: History and uncertainties. JOURNAL OF SPORT AND HEALTH SCIENCE 2018; 7:265-274. [PMID: 30356648 PMCID: PMC6189250 DOI: 10.1016/j.jshs.2018.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/30/2017] [Accepted: 01/09/2018] [Indexed: 05/18/2023]
Abstract
The peculiar attributes of muscles that are stretched when active have been noted for nearly a century. Understandably, the focus of muscle physiology has been primarily on shortening and isometric contractions, as eloquently revealed by A.V. Hill and subsequently by his students. When the sliding filament theory was introduced by A.F. Huxley and H.E. Huxley, it was a relatively simple task to link Hill's mechanical observations to the actions of the cross bridges during these shortening and isometric contractions. In contrast, lengthening or eccentric contractions have remained somewhat enigmatic. Dismissed as necessarily causing muscle damage, eccentric contractions have been much more difficult to fit into the cross-bridge theory. The relatively recent discovery of the giant elastic sarcomeric filament titin has thrust a previously missing element into any discussion of muscle function, in particular during active stretch. Indeed, the unexpected contribution of giant elastic proteins to muscle contractile function is highlighted by recent discoveries that twitchin-actin interactions are responsible for the "catch" property of invertebrate muscle. In this review, we examine several current theories that have been proposed to account for the properties of muscle during eccentric contraction. We ask how well each of these explains existing data and how an elastic filament can be incorporated into the sliding filament model. Finally, we review the increasing body of evidence for the benefits of including eccentric contractions into a program of muscle rehabilitation and strengthening.
Collapse
Affiliation(s)
- Kiisa C. Nishikawa
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Stan L. Lindstedt
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Corresponding author
| | - Paul C. LaStayo
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 86011, USA
| |
Collapse
|
6
|
Christensen JC, Foreman KB, LaStayo PC. The Positive Benefits of Negative Movement Patterns Following Total Knee Arthroplasty. Geriatr Orthop Surg Rehabil 2018; 9:2151458518757796. [PMID: 29623234 PMCID: PMC5881975 DOI: 10.1177/2151458518757796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/24/2017] [Accepted: 12/08/2017] [Indexed: 12/15/2022] Open
Abstract
Introduction: Eccentric (negative) resistance exercise of the legs using specialized machines has been reported to be useful and often superior to standard exercise following total knee arthroplasty (TKA). Movements that utilize body mass and gravity as a mode of eccentric resistance exercise in a more pragmatic rehabilitation paradigm may also be useful in reversing chronic muscle impairments observed years following surgery. This study explores whether an eccentrically biased, body mass resistance exercise induces greater magnitude of sagittal plane extensor angular impulse of the support torque and individual net joint torque contributions during both squatting and lunging movement patterns 6 weeks following TKA. Methods: Cross-sectional laboratory-based study design including 10 patients following primary unilateral TKA (6.5 ± 0.8 weeks.). All patients completed 3 trials of the squat and lunge movement pattern under both a concentric and an eccentric condition. Extensor angular impulse of the support torque and net joint torque contributions were calculated by integrating the joint torque versus time curves. A Two-way analysis of covariance was conducted and contracts of clinical interest were computed using Wald posttest. P Values for all pairwise comparisons were adjusted for multiplicity using Bonferroni multiple comparison procedure. Results: The eccentric condition, compared to the concentric condition, displayed larger magnitude of extensor angular impulse during both the squat (P < .001) and lunge (P < .001) movement patterns for the support torques. Similarly, the eccentric condition, compared to the concentric condition, displayed larger magnitude of extensor angular impulse of the hip, knee, and ankle (P < .001) during both movement patterns. Conclusion: Eccentrically biased, body mass movement exercises can produce higher levels of extensor angular impulse on the surgical limb in patients early after TKA. Patients in this study were able to tolerate the higher extensor angular impulse demands and performed the eccentrically biased conditions (without specialized machines) that could be beneficial in postoperative rehabilitation.
Collapse
Affiliation(s)
- Jesse C. Christensen
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado, Aurora, CO, USA
- Jesse C. Christensen, Department of Physical Medicine and Rehabilitation, University of Colorado, 13001 E. 17th Pl, Aurora, CO 80045, USA.
| | - K. Bo Foreman
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Paul C. LaStayo
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Kilgas MA, Elmer SJ. Back to the future! Revisiting the physiological cost of negative work as a team-based activity for exercise physiology students. ADVANCES IN PHYSIOLOGY EDUCATION 2017; 41:120-129. [PMID: 28188199 DOI: 10.1152/advan.00158.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 06/06/2023]
Abstract
We implemented a team-based activity in our exercise physiology teaching laboratory that was inspired from Abbott et al.'s classic 1952 Journal of Physiology paper titled "The physiological cost of negative work." Abbott et al. connected two bicycles via one chain. One person cycled forward (muscle shortening contractions, positive work) while the other resisted the reverse moving pedals (muscle lengthening contractions, negative work), and the cost of work was compared. This study was the first to link human whole body energetics with isolated muscle force-velocity characteristics. The laboratory activity for our students (n = 35) was designed to reenact Abbott et al.'s experiment, integrate previously learned techniques, and illustrate differences in physiological responses to muscle shortening and lengthening contractions. Students (11-12 students/laboratory section) were split into two teams (positive work vs. negative work). One student from each team volunteered to cycle against the other for ~10 min. The remaining students in each team were tasked with measuring: 1) O2 consumption, 2) heart rate, 3) blood lactate, and 4) perceived exertion. Students discovered that O2 consumption during negative work was about one-half that of positive work and all other physiological parameters were also substantially lower. Muscle lengthening contractions were discussed and applied to rehabilitation and sport training. The majority of students (>90%) agreed or strongly agreed that they stayed engaged during the activity and it improved their understanding of exercise physiology. All students recommended the activity be performed again. This activity was engaging, emphasized teamwork, yielded clear results, was well received, and preserved the history of classic physiological experiments.
Collapse
Affiliation(s)
- Matthew A Kilgas
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan; and
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Steven J Elmer
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan; and
| |
Collapse
|
8
|
Hessel AL, Lindstedt SL, Nishikawa KC. Physiological Mechanisms of Eccentric Contraction and Its Applications: A Role for the Giant Titin Protein. Front Physiol 2017; 8:70. [PMID: 28232805 PMCID: PMC5299520 DOI: 10.3389/fphys.2017.00070] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022] Open
Abstract
When active muscles are stretched, our understanding of muscle function is stretched as well. Our understanding of the molecular mechanisms of concentric contraction has advanced considerably since the advent of the sliding filament theory, whereas mechanisms for increased force production during eccentric contraction are only now becoming clearer. Eccentric contractions play an important role in everyday human movements, including mobility, stability, and muscle strength. Shortly after the sliding filament theory of muscle contraction was introduced, there was a reluctant recognition that muscle behaved as if it contained an "elastic" filament. Jean Hanson and Hugh Huxley referred to this structure as the "S-filament," though their concept gained little traction. This additional filament, the giant titin protein, was identified several decades later, and its roles in muscle contraction are still being discovered. Recent research has demonstrated that, like activation of thin filaments by calcium, titin is also activated in muscle sarcomeres by mechanisms only now being elucidated. The mdm mutation in mice appears to prevent activation of titin, and is a promising model system for investigating mechanisms of titin activation. Titin stiffness appears to increase with muscle force production, providing a mechanism that explains two fundamental properties of eccentric contractions: their high force and low energetic cost. The high force and low energy cost of eccentric contractions makes them particularly well suited for athletic training and rehabilitation. Eccentric exercise is commonly prescribed for treatment of a variety of conditions including sarcopenia, osteoporosis, and tendinosis. Use of eccentric exercise in rehabilitation and athletic training has exploded to include treatment for the elderly, as well as muscle and bone density maintenance for astronauts during long-term space travel. For exercise intolerance and many types of sports injuries, experimental evidence suggests that interventions involving eccentric exercise are demonstrably superior to conventional concentric interventions. Future work promises to advance our understanding of the molecular mechanisms that confer high force and low energy cost to eccentric contraction, as well as signaling mechanisms responsible for the beneficial effects of eccentric exercise in athletic training and rehabilitation.
Collapse
Affiliation(s)
| | | | - Kiisa C. Nishikawa
- Department of Biological Sciences, Center for Bioengineering Innovation, Northern Arizona UniversityFlagstaff, AZ, USA
| |
Collapse
|
9
|
Lindstedt SL. Skeletal muscle tissue in movement and health: positives and negatives. J Exp Biol 2016; 219:183-8. [DOI: 10.1242/jeb.124297] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The history of muscle physiology is a wonderful lesson in ‘the scientific method’; our functional hypotheses have been limited by our ability to decipher (observe) muscle structure. The simplistic understanding of how muscles work made a large leap with the remarkable insights of A. V. Hill, who related muscle force and power to shortening velocity and energy use. However, Hill's perspective was largely limited to isometric and isotonic contractions founded on isolated muscle properties that do not always reflect how muscles function in vivo. Robert Josephson incorporated lengthening contractions into a work loop analysis that shifted the focus to dynamic muscle function, varying force, length and work done both by and on muscle during a single muscle work cycle. It became apparent that muscle is both a force generator and a spring. Titin, the missing filament in the sliding filament model, is a muscle spring, which functions very differently in cardiac versus skeletal muscle; its possible role in these two muscle types is discussed relative to their contrasting function. The good news for those of us who choose to work on skeletal muscle is that muscle has been reluctant to reveal all of its secrets.
Collapse
Affiliation(s)
- Stan L. Lindstedt
- Northern Arizona University, Department of Biological Sciences andCenter for Bioengineering Innovation, Flagstaff, AZ 86011-4165, USA
| |
Collapse
|