1
|
Huang Y, Yang L, Yang L, Xu Z, Li M, Shang Z. Microstimulation-based path tracking control of pigeon robots through parameter adaptive strategy. Heliyon 2024; 10:e38113. [PMID: 39386879 PMCID: PMC11462516 DOI: 10.1016/j.heliyon.2024.e38113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Research on animal robots utilizing neural electrical stimulation is a significant focus within the field of neuro-control, though precise behavior control remains challenging. This study proposes a parameter-adaptive strategy to achieve accurate path tracking. First, the mapping relationship between neural electrical stimulation parameters and corresponding behavioral responses is comprehensively quantified. Next, adjustment rules related to the parameter-adaptive control strategy are established to dynamically generate different stimulation patterns. A parameter-adaptive path tracking control strategy (PAPTCS), based on fuzzy control principles, is designed for the precise path tracking tasks of pigeon robots in open environments. The results indicate that altering stimulation parameter levels significantly affects turning angles, with higher UPN and PTN inducing changes in the pigeons' motion state. In experimental scenarios, the average control efficiency of this system was 82.165%. This study provides a reference method for the precise control of pigeon robot behavior, contributing to research on accurate target path tracking.
Collapse
Affiliation(s)
- Yinggang Huang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Lifang Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Long Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zehua Xu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Mengmeng Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zhigang Shang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| |
Collapse
|
2
|
Morford J, Gagliardo A, Pollonara E, Guilford T. Homing pigeon navigational ontogeny: no evidence that exposure to a novel release site is sufficient for learning. Anim Behav 2024; 214:157-164. [PMID: 39469529 PMCID: PMC11512678 DOI: 10.1016/j.anbehav.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 04/25/2024] [Indexed: 10/30/2024]
Abstract
The navigational mechanisms of homing pigeons, Columba livia, have been extensively studied and represent a useful model for the navigation of birds and other animals. Pigeons navigate with an olfactory map and sun compass from unfamiliar areas and, in familiar areas, are largely guided by visual landscape cues, following stereotyped and idiosyncratic routes. However, the mechanisms by which they gain familiarity, improve their navigation and transition between navigational strategies during learning are not fully understood. Addressing these outstanding questions in this navigational model will help to improve our understanding of navigational ontogeny. We sought to investigate whether passive exposure to the cues at a site, without release, was sufficient for navigational learning, given that pigeons can determine the home direction before taking off. We exposed pigeons to cues at a novel site before returning them to the site the next day and releasing them alongside controls. We found no differences in the directional distributions, mean vector lengths, virtual vanishing times, efficiency indices or homing efficiency indices between birds that had and had not previously visited the site. We therefore found no evidence to suggest that passive exposure to the cues at a novel site was sufficient to facilitate a detectable improvement in navigational performance. There are three possible explanations for this result: first, a larger sample size would have detected a weak effect of learning; second, passive exposure to a release site is insufficient to generate navigational learning; and third, pigeons learn from passive exposure but do not rely upon this information, showing no difference in performance, despite learning. We discuss these three explanations with reference to previous findings on navigational learning in homing pigeons. We suggest that experiments should continue to examine navigational ontogeny in homing pigeons to help address this major problem for the field of navigation.
Collapse
Affiliation(s)
- Joe Morford
- Department of Biology, University of Oxford, Oxford, U.K
| | | | | | - Tim Guilford
- Department of Biology, University of Oxford, Oxford, U.K
| |
Collapse
|
3
|
Gagliardo A, Bingman VP. The avian olfactory system and hippocampus: Complementary roles in the olfactory and visual guidance of homing pigeon navigation. Curr Opin Neurobiol 2024; 86:102870. [PMID: 38552546 DOI: 10.1016/j.conb.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 06/11/2024]
Abstract
The homing pigeon is the foundational model species used to investigate the neural control of avian navigation. The olfactory system is critically involved in implementing the so-called olfactory map, used to locate position relative to home from unfamiliar locations. The hippocampal formation supports a complementary navigational system based on familiar visual landmarks. Insight into the neural control of pigeon navigation has been revolutionised by GPS-tracking technology, which has been crucial for both detailing the critical role of environmental odours for navigation over unfamiliar areas as well as offering unprecedented insight into the role of the hippocampal formation in visual landscape/landmark-based navigation, including a possible, unexpected role in visual-spatial perception.
Collapse
Affiliation(s)
- Anna Gagliardo
- Department of Biology, University of Pisa, 56126 Pisa, Italy.
| | - Verner P Bingman
- Department of Psychology, J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
4
|
Cioccarelli S, Giunchi D, Pollonara E, Casini G, Bingman VP, Gagliardo A. GPS tracking technology and re-visiting the relationship between the avian visual Wulst and homing pigeon navigation. Behav Brain Res 2024; 465:114971. [PMID: 38552743 DOI: 10.1016/j.bbr.2024.114971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
Within their familiar areas homing pigeons rely on familiar visual landscape features and landmarks for homing. However, the neural basis of visual landmark-based navigation has been so far investigated mainly in relation to the role of the hippocampal formation. The avian visual Wulst is the telencephalic projection field of the thalamofugal pathway that has been suggested to be involved in processing lateral visual inputs that originate from the far visual field. The Wulst is therefore a good candidate for a neural structure participating in the visual control of familiar visual landmark-based navigation. We repeatedly released and tracked Wulst-lesioned and control homing pigeons from three sites about 10-15 km from the loft. Wulst lesions did not impair the ability of the pigeons to orient homeward during the first release from each of the three sites nor to localise the loft within the home area. In addition, Wulst-lesioned pigeons displayed unimpaired route fidelity acquisition to a repeated homing path compared to the intact birds. However, compared to control birds, Wulst-lesioned pigeons displayed persistent oscillatory flight patterns across releases, diminished attention to linear (leading lines) landscape features, such as roads and wood edges, and less direct flight paths within the home area. Differences and similarities between the effects of Wulst and hippocampal lesions suggest that although the visual Wulst does not seem to play a direct role in the memory representation of a landscape-landmark map, it does seem to participate in influencing the perceptual construction of such a map.
Collapse
Affiliation(s)
| | - Dimitri Giunchi
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | | | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA; J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA
| | - Anna Gagliardo
- Department of Biology, University of Pisa, Pisa 56126, Italy.
| |
Collapse
|
5
|
Robira B, Benhamou S, Obeki Bayanga E, Breuer T, Masi S. Changes in movement patterns in relation to sun conditions and spatial scales in wild western gorillas. Anim Cogn 2024; 27:37. [PMID: 38684551 PMCID: PMC11058680 DOI: 10.1007/s10071-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
For most primates living in tropical forests, food resources occur in patchworks of different habitats that vary seasonally in quality and quantity. Efficient navigation (i.e., spatial memory-based orientation) towards profitable food patches should enhance their foraging success. The mechanisms underpinning primate navigating ability remain nonetheless mostly unknown. Using GPS long-term tracking (596 days) of one group of wild western lowland gorillas (Gorilla gorilla gorilla), we investigated their ability to navigate at long distances, and tested for how the sun was used to navigate at any scale by improving landmark visibility and/or by acting as a compass. Long episodic movements ending at a distant swamp, a unique place in the home range where gorillas could find mineral-rich aquatic plants, were straighter and faster than their everyday foraging movements relying on spatial memory. This suggests intentional targeting of the swamp based on long-distance navigation skills, which can thus be efficient over a couple of kilometres. Interestingly, for both long-distance movements towards the swamp and everyday foraging movements, gorillas moved straighter under sunlight conditions even under a dense vegetation cover. By contrast, movement straightness was not markedly different when the sun elevation was low (the sun azimuth then being potentially usable as a compass) or high (so providing no directional information) and the sky was clear or overcast. This suggests that gorillas navigate their home range by relying on visual place recognition but do not use the sun azimuth as a compass. Like humans, who rely heavily on vision to navigate, gorillas should benefit from better lighting to help them identify landmarks as they move through shady forests. This study uncovers a neglected aspect of primate navigation. Spatial memory and vision might have played an important role in the evolutionary success of diurnal primate lineages.
Collapse
Affiliation(s)
- B Robira
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier & CNRS, Montpellier, France.
- Eco-Anthropologie, Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle, Université Paris Diderot, Sorbonne Paris Cité, Musée de L'Homme, Paris, France.
| | - S Benhamou
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier & CNRS, Montpellier, France
- Associated to Cogitamus Lab,
| | - E Obeki Bayanga
- Congo Program, Mondika Research Center, Nouabalé-Ndoki National Park, Wildlife Conservation Society, Brazzaville, Republic of the Congo
| | - T Breuer
- Wildlife Conservation Society, Global Conservation Program, New-York, USA
- World Wide Fund for Nature, Berlin, Germany
| | - S Masi
- Eco-Anthropologie, Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle, Université Paris Diderot, Sorbonne Paris Cité, Musée de L'Homme, Paris, France
| |
Collapse
|
6
|
Schwarz S, Wystrach A, Cheng K, Kelly DM. Landmarks, beacons, or panoramic views: What do pigeons attend to for guidance in familiar environments? Learn Behav 2024; 52:69-84. [PMID: 38379118 DOI: 10.3758/s13420-023-00610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 02/22/2024]
Abstract
Birds and social insects represent excellent systems for understanding visually guided navigation. Both animal groups use surrounding visual cues for homing and foraging. Ants extract sufficient spatial information from panoramic views, which naturally embed all near and far spatial information, for successful homing. Although egocentric panoramic views allow for parsimonious explanations of navigational behaviors, this potential source of spatial information has been mostly neglected during studies of vertebrates. Here we investigate how distinct landmarks, a beacon, and panoramic views influence the reorientation behavior in pigeons (Columba livia). Pigeons were trained to search for a location characterized by a beacon and several distinct landmarks. Transformation tests manipulated aspects of the landmark configuration, allowing for a dissociation among navigational strategies. Quantitative image and path analyses provided support that the panoramic view was used by the pigeons. Although the results from some individuals support the use of beaconing, overall the pigeons relied predominantly on the panoramic view when spatial cues provided conflicting information regarding the goal location. Reorientation based on vector and bearing information derived from distinct landmarks as well as environmental geometry failed to account fully for the results. Thus, the results of our study support that pigeons can use panoramic views for reorientation in familiar environments. Given that the current model for landmark use by pigeons posits the use of different vectors from an object, a global panorama-matching strategy suggests a fundamental change in the theory of how pigeons use surrounding visual cues for localization.
Collapse
Affiliation(s)
- Sebastian Schwarz
- Department of Psychology, University of Manitoba, 190 Dysart Road, 190 Duff Roblin Building, Winnipeg, MB, R3T, 2N2, Canada
- Centre de Recherches sur la Cognition Animale, CNRS, Université Paul Sabatier, 31062, Toulouse Cedex, 09, France
- Institute of Biology, Karl-Franzen University, Graz, Universtitätsplatz 2, 8010, Austria
| | - Antoine Wystrach
- Centre de Recherches sur la Cognition Animale, CNRS, Université Paul Sabatier, 31062, Toulouse Cedex, 09, France
| | - Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Debbie M Kelly
- Department of Psychology, University of Manitoba, 190 Dysart Road, 190 Duff Roblin Building, Winnipeg, MB, R3T, 2N2, Canada.
- Department of Biological Sciences, University of Manitoba, 212 Biological Sciences Building, Winnipeg, MB, R3T, 2N2, Canada.
| |
Collapse
|
7
|
Cioccarelli S, Bianchi B, Giunchi D, Gagliardo A. Use of the sun compass by monocularly occluded homing pigeons in a food localisation task in an outdoor arena. Anim Cogn 2023; 26:1985-1995. [PMID: 37815729 PMCID: PMC10769948 DOI: 10.1007/s10071-023-01827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Functional asymmetries of the avian visual system can be studied in monocularly occluded birds, as their hemispheres are largely independent. Right and left monocularly occluded homing pigeons and control birds under binocular view have been trained in a food localisation task in an octagonal outdoor arena provided with one coloured beacon on each wall. The three groups were tested after the removal of the visual beacons, so to assess their sun compass learning abilities. Pigeons using the left eye/right hemisphere system exhibited slower learning compared to the other monocular group. During the test in the arena void of visual beacons, the three groups of birds, regardless of their visual condition, were generally able to identify the training sector by exclusively relying on sun compass information. However, the directional choices of the pigeons with the left eye/right hemisphere in use were significantly affected by the removal of the beacons, while both control pigeons and birds with the right eye/left hemisphere in use displayed unaltered performances during the test. A subsample of pigeons of each group were re-trained in the octagonal arena with visual beacons present and tested after the removal of visual beacons after a 6 h fast clock-shift treatment. All birds displayed the expected deflection consistent to the sun compass use. While birds using either the left or the right visual systems were equally able to learn a sun compass-mediated spatial task, the left eye/right hemisphere visual system displayed an advantage in relying on visual beacons.
Collapse
Affiliation(s)
- Sara Cioccarelli
- Department of Biology, University of Pisa, Via Volta 6, 56126, Pisa, Italy
| | - Benedetta Bianchi
- Department of Biology, University of Pisa, Via Volta 6, 56126, Pisa, Italy
| | - Dimitri Giunchi
- Department of Biology, University of Pisa, Via Volta 6, 56126, Pisa, Italy
| | - Anna Gagliardo
- Department of Biology, University of Pisa, Via Volta 6, 56126, Pisa, Italy.
| |
Collapse
|
8
|
Deconstructing the flight paths of hippocampal-lesioned homing pigeons as they navigate near home offers insight into spatial perception and memory without a hippocampus. Behav Brain Res 2023; 436:114073. [DOI: 10.1016/j.bbr.2022.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022]
|
9
|
Sasaki T, Masuda N, Mann RP, Biro D. Empirical test of the many-wrongs hypothesis reveals weighted averaging of individual routes in pigeon flocks. iScience 2022; 25:105076. [PMID: 36147962 PMCID: PMC9485075 DOI: 10.1016/j.isci.2022.105076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/26/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
The 'many-wrongs hypothesis' predicts that groups improve their decision-making performance by aggregating members' diverse opinions. Although this has been considered one of the major benefits of collective movement and migration, whether and how multiple inputs are in fact aggregated for superior directional accuracy has not been empirically verified in non-human animals. Here we showed that larger homing pigeon flocks had significantly more efficient (i.e. shorter) homing routes than smaller flocks, consistent with previous findings and with the predictions of the many-wrongs hypothesis. However, detailed analysis showed that flock routes were not simply averages of individual routes, but instead that pigeons that more faithfully recapitulated their routes during individual flights had a proportionally greater influence on their flocks' routes. We discuss the implications of our results for possible mechanisms of collective learning as well as for the definition of leadership in animals solving navigational tasks collectively.
Collapse
Affiliation(s)
- Takao Sasaki
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Corresponding author
| | - Naoki Masuda
- Department of Mathematics, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
- Computational and Data-Enabled Science and Engineer Program, University of Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Richard P. Mann
- Department of Statistics, University of Leeds, Leeds LS2 9JT, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
10
|
Hays GC, Atchison-Balmond N, Cerritelli G, Laloë JO, Luschi P, Mortimer JA, Rattray A, Esteban N. Travel routes to remote ocean targets reveal the map sense resolution for a marine migrant. J R Soc Interface 2022; 19:20210859. [PMID: 35537472 DOI: 10.1098/rsif.2021.0859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
How animals navigate across the ocean to isolated targets remains perplexing greater than 150 years since this question was considered by Charles Darwin. To help solve this long-standing enigma, we considered the likely resolution of any map sense used in migration, based on the navigational performance across different scales (tens to thousands of kilometres). We assessed navigational performance using a unique high-resolution Fastloc-GPS tracking dataset for post-breeding hawksbill turtles (Eretmochelys imbricata) migrating relatively short distances to remote, isolated targets on submerged banks in the Indian Ocean. Individuals often followed circuitous paths (mean straightness index = 0.54, range 0.14-0.93, s.d. = 0.23, n = 22), when migrating short distances (mean beeline distance to target = 106 km, range 68.7-178.2 km). For example, one turtle travelled 1306.2 km when the beeline distance to the target was only 176.4 km. When off the beeline to their target, turtles sometimes corrected their course both in the open ocean and when encountering shallow water. Our results provide compelling evidence that hawksbill turtles only have a relatively crude map sense in the open ocean. The existence of widespread foraging and breeding areas on isolated oceanic sites points to target searching in the final stages of migration being common in sea turtles.
Collapse
Affiliation(s)
| | | | - Giulia Cerritelli
- Department of Biology, University of Pisa, Via A. Volta 6, 56126 Pisa, Italy
| | | | - Paolo Luschi
- Department of Biology, University of Pisa, Via A. Volta 6, 56126 Pisa, Italy
| | - Jeanne A Mortimer
- Department of Biology, University of Florida, Gainesville, FL 32611, USA.,PO Box 1443, Victoria, Mahé, Seychelles
| | | | - Nicole Esteban
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| |
Collapse
|
11
|
Padget O, Gillies N, Syposz M, Lockley E, Guilford T. Shearwaters sometimes take long homing detours when denied natural outward journey information. Biol Lett 2022; 18:20210503. [PMID: 35135312 PMCID: PMC8825984 DOI: 10.1098/rsbl.2021.0503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cognitive processes (learning and processing of information) underpinning the long-distance navigation of birds are poorly understood. Here, we used the homing motivation of the Manx shearwater to investigate navigational decision making in a wild bird by displacing them 294 km to the far side of a large island (the island of Ireland). Since shearwaters are reluctant to fly over land, the island blocked the direct route home, forcing a navigational decision. Further still, on the far side of the obstacle, we chose a release site where the use of local knowledge could facilitate a 20% improvement in route efficiency if shearwaters were able to anticipate and avoid a large inlet giving the appearance of open water in the home direction. We found that no shearwater took the most efficient initial route home, but instead oriented in the home direction (even once the obstacle became visible). Upon reaching the obstacle, four shearwaters subsequently circumnavigated the land mass via the long route, travelling a further 900 km as a result. Hence, despite readily orienting homewards immediately after displacement, shearwaters seem unaware of the scale of the obstacle formed by a large land mass despite this being a prominent feature of their regular foraging environment.
Collapse
Affiliation(s)
- Oliver Padget
- Zoology Department, University of Oxford, Oxford, Oxfordshire, UK
| | - Natasha Gillies
- Zoology Department, University of Oxford, Oxford, Oxfordshire, UK
| | - Martyna Syposz
- Zoology Department, University of Oxford, Oxford, Oxfordshire, UK
| | | | - Tim Guilford
- Zoology Department, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
12
|
Healy SD, Patton BW. It Began in Ponds and Rivers: Charting the Beginnings of the Ecology of Fish Cognition. Front Vet Sci 2022; 9:823143. [PMID: 35187149 PMCID: PMC8850302 DOI: 10.3389/fvets.2022.823143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
But fish cognitive ecology did not begin in rivers and streams. Rather, one of the starting points for work on fish cognitive ecology was work done on the use of visual cues by homing pigeons. Prior to working with fish, Victoria Braithwaite helped to establish that homing pigeons rely not just on magnetic and olfactory cues but also on visual cues for successful return to their home loft. Simple, elegant experiments on homing established Victoria's ability to develop experimental manipulations to examine the role of visual cues in navigation by fish in familiar areas. This work formed the basis of a rich seam of work whereby a fish's ecology was used to propose hypotheses and predictions as to preferred cue use, and then cognitive abilities in a variety of fish species, from model systems (Atlantic salmon and sticklebacks) to the Panamanian Brachyraphis episcopi. Cognitive ecology in fish led to substantial work on fish pain and welfare, but was never left behind, with some of Victoria's last work addressed to determining the neural instantiation of cognitive variation.
Collapse
Affiliation(s)
- Susan D. Healy
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, United Kingdom
- *Correspondence: Susan D. Healy
| | - B. Wren Patton
- Department of Ecosystem Science and Management, Penn State University, State College, PA, United States
| |
Collapse
|
13
|
Valentini G, Pavlic TP, Walker SI, Pratt SC, Biro D, Sasaki T. Naïve individuals promote collective exploration in homing pigeons. eLife 2021; 10:e68653. [PMID: 34928230 PMCID: PMC8687659 DOI: 10.7554/elife.68653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Group-living animals that rely on stable foraging or migratory routes can develop behavioural traditions to pass route information down to inexperienced individuals. Striking a balance between exploitation of social information and exploration for better alternatives is essential to prevent the spread of maladaptive traditions. We investigated this balance during cumulative route development in the homing pigeon Columba livia. We quantified information transfer within pairs of birds in a transmission-chain experiment and determined how birds with different levels of experience contributed to the exploration-exploitation trade-off. Newly introduced naïve individuals were initially more likely to initiate exploration than experienced birds, but the pair soon settled into a pattern of alternating leadership with both birds contributing equally. Experimental pairs showed an oscillating pattern of exploration over generations that might facilitate the discovery of more efficient routes. Our results introduce a new perspective on the roles of leadership and information pooling in the context of collective learning.
Collapse
Affiliation(s)
- Gabriele Valentini
- Arizona State University, School of Earth and Space Exploration, Tempe, United States
- Arizona State University, School of Life Sciences, Tempe, United States
| | - Theodore P Pavlic
- Arizona State University, School of Life Sciences, Tempe, United States
- Arizona State University, Beyond Center for Fundamental Concepts in Science, Tempe, United States
- Arizona State University, School of Computing and Augmented Intelligence, Tempe, United States
- Arizona State University, School of Sustainability, Athens, United States
- Arizona State University, School of Complex Adaptive Systems, Tempe, United States
- Arizona State University, ASU-SFI Center for Biosocial Complex Systems, Tempe, United States
| | - Sara Imari Walker
- Arizona State University, School of Earth and Space Exploration, Tempe, United States
- Arizona State University, School of Computing and Augmented Intelligence, Tempe, United States
- Santa Fe Institute, Santa Fe, United States
| | - Stephen C Pratt
- Arizona State University, Beyond Center for Fundamental Concepts in Science, Tempe, United States
| | - Dora Biro
- University of Oxford, Department of Zoology, Oxford, United States
- University of Rochester, Department of Brain and Cognitive Sciences, Rochester, United States
| | - Takao Sasaki
- University of Georgia, Odum School of Ecology, Athens, United States
| |
Collapse
|
14
|
Patrick SC, Assink JD, Basille M, Clusella-Trullas S, Clay TA, den Ouden OFC, Joo R, Zeyl JN, Benhamou S, Christensen-Dalsgaard J, Evers LG, Fayet AL, Köppl C, Malkemper EP, Martín López LM, Padget O, Phillips RA, Prior MK, Smets PSM, van Loon EE. Infrasound as a Cue for Seabird Navigation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.740027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seabirds are amongst the most mobile of all animal species and spend large amounts of their lives at sea. They cross vast areas of ocean that appear superficially featureless, and our understanding of the mechanisms that they use for navigation remains incomplete, especially in terms of available cues. In particular, several large-scale navigational tasks, such as homing across thousands of kilometers to breeding sites, are not fully explained by visual, olfactory or magnetic stimuli. Low-frequency inaudible sound, i.e., infrasound, is ubiquitous in the marine environment. The spatio-temporal consistency of some components of the infrasonic wavefield, and the sensitivity of certain bird species to infrasonic stimuli, suggests that infrasound may provide additional cues for seabirds to navigate, but this remains untested. Here, we propose a framework to explore the importance of infrasound for navigation. We present key concepts regarding the physics of infrasound and review the physiological mechanisms through which infrasound may be detected and used. Next, we propose three hypotheses detailing how seabirds could use information provided by different infrasound sources for navigation as an acoustic beacon, landmark, or gradient. Finally, we reflect on strengths and limitations of our proposed hypotheses, and discuss several directions for future work. In particular, we suggest that hypotheses may be best tested by combining conceptual models of navigation with empirical data on seabird movements and in-situ infrasound measurements.
Collapse
|
15
|
Collet J, Sasaki T, Biro D. Pigeons retain partial memories of homing paths years after learning them individually, collectively or culturally. Proc Biol Sci 2021; 288:20212110. [PMID: 34784759 PMCID: PMC8595992 DOI: 10.1098/rspb.2021.2110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022] Open
Abstract
Memory of past experience is central to many animal decisions, but how long specific memories can influence behaviour is poorly understood. Few studies have reported memories retrieved after several years in non-human animals, especially for spatial tasks, and whether the social context during learning could affect long-term memory retention. We investigated homing pigeons' spatial memory by GPS-recording their homing paths from a site 9 km from their loft. We compared solo flights of naive pigeons with those of pigeons that had last homed from this site 3-4 years earlier, having learnt a homing route either alone (individual learning), together with a naive partner (collective learning) or within cultural transmission chains (cultural learning). We used as a control a second release site unfamiliar to all pigeons. Pigeons from all learning treatments outperformed naive birds at the familiar (but not the unfamiliar) site, but the idiosyncratic routes they formerly used several years before were now partially forgotten. Our results show that non-human animals can use their memory to solve a spatial task years after they last performed it, irrespective of the social context during learning. They also suggest that without reinforcement, landmarks and culturally acquired 'route traditions' are gradually forgotten.
Collapse
Affiliation(s)
- Julien Collet
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
| | - Takao Sasaki
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Dora Biro
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
16
|
Kashetsky T, Avgar T, Dukas R. The Cognitive Ecology of Animal Movement: Evidence From Birds and Mammals. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.724887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognition, defined as the processes concerned with the acquisition, retention and use of information, underlies animals’ abilities to navigate their local surroundings, embark on long-distance seasonal migrations, and socially learn information relevant to movement. Hence, in order to fully understand and predict animal movement, researchers must know the cognitive mechanisms that generate such movement. Work on a few model systems indicates that most animals possess excellent spatial learning and memory abilities, meaning that they can acquire and later recall information about distances and directions among relevant objects. Similarly, field work on several species has revealed some of the mechanisms that enable them to navigate over distances of up to several thousand kilometers. Key behaviors related to movement such as the choice of nest location, home range location and migration route are often affected by parents and other conspecifics. In some species, such social influence leads to the formation of aggregations, which in turn may lead to further social learning about food locations or other resources. Throughout the review, we note a variety of topics at the interface of cognition and movement that invite further investigation. These include the use of social information embedded in trails, the likely important roles of soundscapes and smellscapes, the mechanisms that large mammals rely on for long-distance migration, and the effects of expertise acquired over extended periods.
Collapse
|
17
|
de Guinea M, Estrada A, Nekaris KAI, Van Belle S. Cognitive maps in the wild: revealing the use of metric information in black howler monkey route navigation. J Exp Biol 2021; 224:271801. [PMID: 34384101 PMCID: PMC8380465 DOI: 10.1242/jeb.242430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/15/2021] [Indexed: 01/25/2023]
Abstract
When navigating, wild animals rely on internal representations of the external world – called ‘cognitive maps’ – to take movement decisions. Generally, flexible navigation is hypothesized to be supported by sophisticated spatial skills (i.e. Euclidean cognitive maps); however, constrained movements along habitual routes are the most commonly reported navigation strategy. Even though incorporating metric information (i.e. distances and angles between locations) in route-based cognitive maps would likely enhance an animal's navigation efficiency, there has been no evidence of this strategy reported for non-human animals to date. Here, we examined the properties of the cognitive map used by a wild population of primates by testing a series of cognitive hypotheses against spatially explicit movement simulations. We collected 3104 h of ranging and behavioural data on five groups of black howler monkeys (Alouatta pigra) at Palenque National Park, Mexico, from September 2016 through August 2017. We simulated correlated random walks mimicking the ranging behaviour of the study subjects and tested for differences between observed and simulated movement patterns. Our results indicated that black howler monkeys engaged in constrained movement patterns characterized by a high path recursion tendency, which limited their capacity to travel in straight lines and approach feeding trees from multiple directions. In addition, we found that the structure of observed route networks was more complex and efficient than simulated route networks, suggesting that black howler monkeys incorporate metric information into their cognitive map. Our findings not only expand the use of metric information during route navigation to non-human animals, but also highlight the importance of considering efficient route-based navigation as a cognitively demanding mechanism. Highlighted Article: Black howler monkeys rely on route-based cognitive maps, which constrain their movement decisions, but likely incorporate metric information to navigate more efficiently along frequently used routes.
Collapse
Affiliation(s)
- Miguel de Guinea
- School of Social Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.,Movement Ecology Lab, Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alejandro Estrada
- Institute of Biology, National Autonomous University of Mexico, CP 04510 Mexico City, Mexico
| | | | - Sarie Van Belle
- Department of Anthropology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
18
|
Janmaat KRL, de Guinea M, Collet J, Byrne RW, Robira B, van Loon E, Jang H, Biro D, Ramos-Fernández G, Ross C, Presotto A, Allritz M, Alavi S, Van Belle S. Using natural travel paths to infer and compare primate cognition in the wild. iScience 2021; 24:102343. [PMID: 33997670 PMCID: PMC8101046 DOI: 10.1016/j.isci.2021.102343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Within comparative psychology, the evolution of animal cognition is typically studied either by comparing indirect measures of cognitive abilities (e.g., relative brain size) across many species or by conducting batteries of decision-making experiments among (typically) a few captive species. Here, we propose a third, complementary approach: inferring and comparing cognitive abilities through observational field records of natural information gradients and the associated variation in decision-making outcomes, using the ranging behavior of wild animals. To demonstrate the feasibility of our proposal, we present the results of a global survey assessing the availability of long-term ranging data sets from wild primates and the willingness of primatologists to share such data. We explore three ways in which such ranging data, with or without the associated behavioral and ecological data often collected by primatologists, might be used to infer and compare spatial cognition. Finally, we suggest how ecological complexity may be best incorporated into comparative analyses. Comparing animal ranging decisions in natural habitats has untapped potential How decisions vary with natural information gradients reveals wild animal cognition Ranging data on at least 164 populations of 105 wild primate species are available We present three thought analyses to compare cognition and explain its evolution
Collapse
Affiliation(s)
- Karline R L Janmaat
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.,Department of Cognitive Psychology, Faculty of Social Sciences, Leiden University, Leiden, the Netherlands.,ARTIS Amsterdam Royal zoo, Amsterdam, the Netherlands
| | - Miguel de Guinea
- Department of Social Sciences, Oxford Brookes University, Oxford, UK
| | - Julien Collet
- Oxford Navigation Group, Department of Zoology, Oxford University, Oxford, UK
| | - Richard W Byrne
- Centre for Social Learning and Cognitive Evolution, School of Psychology and Neuroscience, University of St Andrews, St Andrew, UK.,Scottish Primate Research Group, Scotland, UK
| | - Benjamin Robira
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier, Montpellier, France.,Eco-anthropologie, Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Emiel van Loon
- Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Haneul Jang
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dora Biro
- Oxford Navigation Group, Department of Zoology, Oxford University, Oxford, UK.,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, USA
| | - Gabriel Ramos-Fernández
- Department of Mathematical Modelling of Social Systems, Institute for Research on Applied Mathematics and Systems, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cody Ross
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Andrea Presotto
- Department of Geography and Geosciences, Salisbury University, Salisbury, MA, USA
| | - Matthias Allritz
- School of Psychology and Neuroscience, University of St Andrews, Scotland, UK
| | - Shauhin Alavi
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behaviour, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sarie Van Belle
- Department of Anthropology, University of Austin at Texas, Austin, TX, USA
| |
Collapse
|
19
|
Rolls ET. Neurons including hippocampal spatial view cells, and navigation in primates including humans. Hippocampus 2021; 31:593-611. [PMID: 33760309 DOI: 10.1002/hipo.23324] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 01/11/2023]
Abstract
A new theory is proposed of mechanisms of navigation in primates including humans in which spatial view cells found in the primate hippocampus and parahippocampal gyrus are used to guide the individual from landmark to landmark. The navigation involves approach to each landmark in turn (taxis), using spatial view cells to identify the next landmark in the sequence, and does not require a topological map. Two other cell types found in primates, whole body motion cells, and head direction cells, can be utilized in the spatial view cell navigational mechanism, but are not essential. If the landmarks become obscured, then the spatial view representations can be updated by self-motion (idiothetic) path integration using spatial coordinate transform mechanisms in the primate dorsal visual system to transform from egocentric to allocentric spatial view coordinates. A continuous attractor network or time cells or working memory is used in this approach to navigation to encode and recall the spatial view sequences involved. I also propose how navigation can be performed using a further type of neuron found in primates, allocentric-bearing-to-a-landmark neurons, in which changes of direction are made when a landmark reaches a particular allocentric bearing. This is useful if a landmark cannot be approached. The theories are made explicit in models of navigation, which are then illustrated by computer simulations. These types of navigation are contrasted with triangulation, which requires a topological map. It is proposed that the first strategy utilizing spatial view cells is used frequently in humans, and is relatively simple because primates have spatial view neurons that respond allocentrically to locations in spatial scenes. An advantage of this approach to navigation is that hippocampal spatial view neurons are also useful for episodic memory, and for imagery.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.,Department of Computer Science, University of Warwick, Coventry, UK
| |
Collapse
|
20
|
Bonadonna F, Gagliardo A. Not only pigeons: avian olfactory navigation studied by satellite telemetry. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1871967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francesco Bonadonna
- CEFE-CNRS, University of Montpellier, EPHE, IRD, University Paul Valéry Montpellier 3, Montpellier, France
| | | |
Collapse
|
21
|
Mao J, Hu X, Zhang L, He X, Milford M. A Bio-Inspired Goal-Directed Visual Navigation Model for Aerial Mobile Robots. J INTELL ROBOT SYST 2020. [DOI: 10.1007/s10846-020-01190-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
|
23
|
Hays GC, Cerritelli G, Esteban N, Rattray A, Luschi P. Open Ocean Reorientation and Challenges of Island Finding by Sea Turtles during Long-Distance Migration. Curr Biol 2020; 30:3236-3242.e3. [PMID: 32679095 DOI: 10.1016/j.cub.2020.05.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 05/27/2020] [Indexed: 01/24/2023]
Abstract
In 1873, Charles Darwin marveled at the ability of sea turtles to find isolated island breeding sites [1], but the details of how sea turtles and other taxa navigate during these migrations remains an open question [2]. Exploring this question using free-living individuals is difficult because, despite thousands of sea turtles being satellite tracked across hundreds of studies [3], most are tracked to mainland coasts where the navigational challenges are easiest. We overcame this problem by recording unique tracks of green turtles (Chelonia mydas) migrating long distances in the Indian Ocean to small oceanic islands. Our work provides some of the best evidence to date, from naturally migrating sea turtles, for an ability to reorient in the open ocean, but only at a crude level. Using individual-based models that incorporated ocean currents, we compared actual migration tracks against candidate navigational models to show that turtles do not reorient at fine scales (e.g., daily), but rather can travel several 100 km off the direct routes to their goal before reorienting, often in the open ocean. Frequently, turtles did not home to small islands with pinpoint accuracy, but rather overshot and/or searched for the target in the final stages of migration. These results from naturally migrating individuals support the suggestion from previous laboratory work [4-6] that turtles use a true navigation system in the open ocean, but their map sense is coarse scale.
Collapse
Affiliation(s)
| | - Giulia Cerritelli
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa I-56126, Italy
| | - Nicole Esteban
- Department of Biosciences, Swansea University, Swansea SA2 8PP, Wales, UK
| | | | - Paolo Luschi
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa I-56126, Italy
| |
Collapse
|
24
|
Gagliardo A, Pollonara E, Casini G, Rossino MG, Wikelski M, Bingman VP. Importance of the hippocampus for the learning of route fidelity in homing pigeons. Biol Lett 2020; 16:20200095. [PMCID: PMC7423047 DOI: 10.1098/rsbl.2020.0095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 09/02/2023] Open
Abstract
The avian hippocampal formation (HF) is thought to regulate map-like memory representations of visual landmarks/landscape features and has more recently been suggested to be similarly important for the perceptual integration of landmarks/landscapes. Aspects of spatial memory and perception likely combine to support the now well-documented ability of homing pigeons to learn to retrace the same route when homing from familiar locations, leading to the prediction that damage to the HF would result in a diminished ability to repeatedly fly a similar route home. HF-lesioned homing pigeons were repeatedly released from three sites to assess the importance of the hippocampus as pigeons gradually learn a familiar route home guided by familiar landmark and landscape features. As expected, control pigeons displayed increasing fidelity to a familiar route home, and by inference, successful perceptual and memory processing of familiar landmarks/landscape features. By contrast, the impoverished route fidelity of the HF-lesioned pigeons indicated an impaired sensitivity to the same landmark/landscape features.
Collapse
Affiliation(s)
- Anna Gagliardo
- Department of Biology, University of Pisa, Via Volta 6, I-56126 Pisa, Italy
| | - Enrica Pollonara
- Department of Biology, University of Pisa, Via Volta 6, I-56126 Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Via Volta 6, I-56126 Pisa, Italy
| | | | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behaviour, Am Obstberg 1, 78315 Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| | - Verner P. Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA
| |
Collapse
|
25
|
Sasaki T, Danczak L, Thompson B, Morshed T, Pratt SC. Route learning during tandem running in the rock ant Temnothorax albipennis. ACTA ACUST UNITED AC 2020; 223:223/9/jeb221408. [PMID: 32414865 DOI: 10.1242/jeb.221408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/09/2020] [Indexed: 11/20/2022]
Abstract
Many animals use information from conspecifics to change their behavior in adaptive ways. When a rock ant, Temnothorax albipennis, finds food, she returns to her colony and uses a method called tandem running to lead nestmates, one at a time, from the nest to the food. In this way, naive ants can learn the location of a food source. Less clear is whether they also learn navigational cues that guide them from nest to food, although this is often assumed. We tested this idea by tracing the routes of individually marked ants as they followed tandem runs to a feeder, returned to the nest, and later traveled independently back to the food. Our results show, for the first time, that tandem run followers learn specific routes from their leaders. Independent journeys back to the food source were significantly more similar to the routes on which the ants had been led, compared with the routes taken by other tandem runs. In contrast, the homeward journey did not resemble the tandem run route. These results are consistent with followers memorizing visual cues during the tandem run that are useful for recapitulating the outward journey, but not as effective when facing in the opposite direction on the homeward journey. We further showed that foraging routes improved through individual experience over multiple trips but not through the social transfer of route information via tandem running. We discuss our findings in relation to social learning and integration of individual and social information in ants.
Collapse
Affiliation(s)
- Takao Sasaki
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK .,Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Leo Danczak
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Beth Thompson
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Trisha Morshed
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Stephen C Pratt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,Center for Social Dynamics and Complexity, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
26
|
de Guinea M, Estrada A, Nekaris KAI, Van Belle S. Arboreal route navigation in a Neotropical mammal: energetic implications associated with tree monitoring and landscape attributes. MOVEMENT ECOLOGY 2019; 7:39. [PMID: 31890215 PMCID: PMC6918719 DOI: 10.1186/s40462-019-0187-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Although navigating along a network of routes might constrain animal movement flexibility, it may be an energetically efficient strategy. Routinely using the same route allows for visually monitoring of food resources, which might reduce the cognitive load and as such facilitate the process of movement decision-making. Similarly, locating routes in areas that avoid costly landscape attributes will enhance their overall energy balance. In this study we determined the benefits of route navigation in an energy minimiser arboreal primate, the black howler monkey (Alouatta pigra). METHODS We monitored five neighbouring groups of black howler monkeys at Palenque National Park, Mexico from September 2016 through August 2017. We recorded the location of the focal group every 20 m and mapped all travel paths to establish a route network (N = 1528 travel bouts). We constructed linear mixed models to assess the influence of food resource distribution (N = 931 trees) and landscape attributes (slope, elevation and presence of canopy gaps) on the location of routes within a route network. RESULTS The number of food trees that fell within the visual detection distance from the route network was higher (mean: 156.1 ± SD 44.9) than randomly simulated locations (mean: 121.9 ± SD 46.4). Similarly, the number of food trees found within the monkey's visual range per meter travelled increased, on overage, 0.35 ± SE 0.04 trees/m with increasing use of the route. In addition, route segments used at least twice were more likely to occur with increasing density of food resources and decreasing presence of canopy gaps. Route segments used at least four times were more likely to occur in elevated areas within the home ranges but only under conditions of reduced visual access to food resources. CONCLUSIONS Route navigation emerged as an efficient movement strategy in a group-living arboreal primate. Highly used route segments potentially increased visual access to food resources while avoiding energetically costly landscape features securing foraging success in a tropical rainforest.
Collapse
Affiliation(s)
- Miguel de Guinea
- Department of Social Sciences, Oxford Brookes University, Gibbs Building, Gipsy Lane, Oxford, OX3 0BP UK
| | - Alejandro Estrada
- Institute of Biology, National Autonomous University of Mexico, Mexico City, Mexico
| | - K. Anne-Isola Nekaris
- Department of Social Sciences, Oxford Brookes University, Gibbs Building, Gipsy Lane, Oxford, OX3 0BP UK
| | - Sarie Van Belle
- Department of Anthropology, University of Texas at Austin, Austin, TX USA
| |
Collapse
|
27
|
Sage E, Bouten W, Hoekstra B, Camphuysen KCJ, Shamoun-Baranes J. Orographic lift shapes flight routes of gulls in virtually flat landscapes. Sci Rep 2019; 9:9659. [PMID: 31273241 PMCID: PMC6609688 DOI: 10.1038/s41598-019-46017-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/19/2019] [Indexed: 11/09/2022] Open
Abstract
Interactions between landscape and atmosphere result in a dynamic flight habitat which birds may use opportunistically to save energy during flight. However, their ability to utilise these dynamic landscapes and its influence on shaping movement paths is not well understood. We investigate the degree to which gulls utilise fine scale orographic lift created by wind deflected upwards over landscape features in a virtually flat landscape. Using accelerometer measurements and GPS tracking, soaring flight is identified and analysed with respect to orographic lift, modelled using high-resolution digital elevation models and wind measurements. The relationship between orographic lift and flight routes suggests gulls have advanced knowledge of their aerial surroundings and the benefits to be gained from them, even regarding small features such as tree lines. We show that in a landscape constantly influenced by anthropogenic change, the structure of our landscape has an aerial impact on flight route connectivity and costs.
Collapse
Affiliation(s)
- Elspeth Sage
- Theoretical and computational ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| | - Willem Bouten
- Theoretical and computational ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Bart Hoekstra
- Theoretical and computational ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Kees C J Camphuysen
- Department Coastal Systems, NIOZ Royal Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Judy Shamoun-Baranes
- Theoretical and computational ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Sasaki T, Mann RP, Warren KN, Herbert T, Wilson T, Biro D. Personality and the collective: bold homing pigeons occupy higher leadership ranks in flocks. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0038. [PMID: 29581403 DOI: 10.1098/rstb.2017.0038] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 01/07/2023] Open
Abstract
While collective movement is ecologically widespread and conveys numerous benefits on individuals, it also poses a coordination problem: who controls the group's movements? The role that animal 'personalities' play in this question has recently become a focus of research interest. Although many animal groups have distributed leadership (i.e. multiple individuals influence collective decisions), studies linking personality and leadership have focused predominantly on the group's single most influential individual. In this study, we investigate the relationship between personality and the influence of multiple leaders on collective movement using homing pigeons, Columba livia, a species known to display complex multilevel leadership hierarchies during flock flights. Our results show that more exploratory (i.e. 'bold') birds are more likely to occupy higher ranks in the leadership hierarchy and thus have more influence on the direction of collective movement than less exploratory (i.e. 'shy') birds during both free flights around their lofts and homing flights from a distant site. Our data also show that bold pigeons fly faster than shy birds during solo flights. We discuss our results in light of theories about the evolution of personality, with specific reference to the adaptive value of heterogeneity in animal groups.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
- Takao Sasaki
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Richard P Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Katherine N Warren
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Tristian Herbert
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Tara Wilson
- University College London, Gower Street, London WC1E 6BT, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
29
|
Bingman VP. Requiem for a heavyweight – can anything more be learned from homing pigeons about the sensory and spatial-representational basis of avian navigation? J Exp Biol 2018; 221:221/20/jeb163089. [DOI: 10.1242/jeb.163089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The homing pigeon (Columba livia) has long served as a study species to exhaustively investigate the sensory and spatial (map)-representational mechanisms that guide avian navigation. However, several factors have contributed to recent questioning of whether homing pigeons are as valuable as they once were as a general model for the study of the sensory and map-like, spatial-representational mechanisms of avian navigation. These reservations include: the success of this research program in unveiling navigational mechanisms; the burgeoning of new tracking technologies making navigational experiments on long-distance migratory and other wild birds much more accessible; the almost complete loss of the historically dominant, large-scale pigeon loft/research facilities; and prohibitive university per diem costs as well as animal care and use restrictions. Nevertheless, I propose here that there remain good prospects for homing pigeon research that could still profoundly influence how one understands aspects of avian navigation beyond sensory mechanisms and spatial-representational strategies. Indeed, research into neural mechanisms and brain organization, social/personality influences and genetics of navigation all offer opportunities to take advantage of the rich spatial behavior repertoire and experimental convenience of homing pigeons. Importantly, research in these areas would not necessarily require the large number of birds typically used in the past to study the sensory guidance of navigation. For those of us who have had the opportunity to work with this remarkable animal, one research door may be closing, but a window into exciting future opportunities lies ajar.
Collapse
Affiliation(s)
- Verner P. Bingman
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
30
|
Kano F, Walker J, Sasaki T, Biro D. Head-mounted sensors reveal visual attention of free-flying homing pigeons. ACTA ACUST UNITED AC 2018; 221:221/17/jeb183475. [PMID: 30190414 DOI: 10.1242/jeb.183475] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Gaze behavior offers valuable insights into attention and cognition. However, technological limitations have prevented the examination of animals' gaze behavior in natural, information-rich contexts; for example, during navigation through complex environments. Therefore, we developed a lightweight custom-made logger equipped with an inertial measurement unit (IMU) and GPS to simultaneously track the head movements and flight trajectories of free-flying homing pigeons. Pigeons have a limited range of eye movement, and their eye moves in coordination with their head in a saccadic manner (similar to primate eye saccades). This allows head movement to act as a proxy for visual scanning behavior. Our IMU sensor recorded the 3D movement of the birds' heads in high resolution, allowing us to reliably detect distinct saccade signals. The birds moved their head far more than necessary for maneuvering flight, suggesting that they actively scanned the environment. This movement was predominantly horizontal (yaw) and sideways (roll), allowing them to scan the environment with their lateral visual field. They decreased their head movement when they flew solo over prominent landmarks (major roads and a railway line) and also when they flew in pairs (especially when flying side by side, with the partner maintained in their lateral visual field). Thus, a decrease in head movement indicates a change in birds' focus of attention. We conclude that pigeons use their head gaze in a task-related manner and that tracking flying birds' head movement is a promising method for examining their visual attention during natural tasks.
Collapse
Affiliation(s)
- Fumihiro Kano
- Kumamoto Sanctuary, Wildlife Research Center, Kyoto University, Uki, Kumamoto, Japan .,Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - James Walker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Takao Sasaki
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
31
|
Biro D. Homing pigeons. Curr Biol 2018; 28:R966-R967. [DOI: 10.1016/j.cub.2018.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Long-distance navigation and magnetoreception in migratory animals. Nature 2018; 558:50-59. [PMID: 29875486 DOI: 10.1038/s41586-018-0176-1] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 04/13/2018] [Indexed: 11/08/2022]
Abstract
For centuries, humans have been fascinated by how migratory animals find their way over thousands of kilometres. Here, I review the mechanisms used in animal orientation and navigation with a particular focus on long-distance migrants and magnetoreception. I contend that any long-distance navigational task consists of three phases and that no single cue or mechanism will enable animals to navigate with pinpoint accuracy over thousands of kilometres. Multiscale and multisensory cue integration in the brain is needed. I conclude by raising twenty important mechanistic questions related to long-distance animal navigation that should be solved over the next twenty years.
Collapse
|
33
|
Taylor LA, Portugal SJ, Biro D. Homing pigeons ( Columba livia) modulate wingbeat characteristics as a function of route familiarity. ACTA ACUST UNITED AC 2018; 220:2908-2915. [PMID: 28814611 DOI: 10.1242/jeb.154039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/30/2017] [Indexed: 11/20/2022]
Abstract
Mechanisms of avian navigation have received considerable attention, but whether different navigational strategies are accompanied by different flight characteristics is unknown. Managing energy expenditure is critical for survival; therefore, understanding how flight characteristics, and hence energy allocation, potentially change with birds' familiarity with a navigational task could provide key insights into the costs of orientation. We addressed this question by examining changes in the wingbeat characteristics and airspeed of homing pigeons (Columba livia) as they learned a homing task. Twenty-one pigeons were released 20 times individually either 3.85 or 7.06 km from home. Birds were equipped with 5 Hz GPS trackers and 200 Hz tri-axial accelerometers. We found that, as the birds' route efficiency increased during the first six releases, their median peak-to-peak dorsal body (DB) acceleration and median DB amplitude also increased. This, in turn, led to higher airspeeds, suggesting that birds fly slower when traversing unfamiliar terrain. By contrast, after route efficiency stabilised, birds exhibited increasing wingbeat frequencies, which did not result in further increases in speed. Overall, higher wind support was also associated with lower wingbeat frequencies and increased DB amplitude. Our study suggests that the cost of early flights from an unfamiliar location may be higher than subsequent flights because of both inefficient routes (increased distance) and lower airspeeds (increased time). Furthermore, the results indicate, for the first time, that birds modulate their wingbeat characteristics as a function of navigational knowledge, and suggest that flight characteristics may be used as 'signatures' of birds' route familiarity.
Collapse
Affiliation(s)
- Lucy A Taylor
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Steven J Portugal
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
34
|
Portugal SJ, Ricketts RL, Chappell J, White CR, Shepard EL, Biro D. Boldness traits, not dominance, predict exploratory flight range and homing behaviour in homing pigeons. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0234. [PMID: 28673912 DOI: 10.1098/rstb.2016.0234] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 12/14/2022] Open
Abstract
Group living has been proposed to yield benefits that enhance fitness above the level that would be achieved through living as solitary individuals. Dominance hierarchies occur commonly in these social assemblages, and result, by definition, in resources not being evenly distributed between group members. Determinants of rank within a dominance hierarchy can be associated with morphological characteristics, previous experience of the individual, or personality traits such as exploration tendencies. The purpose of this study was to investigate whether greater exploration and positive responses to novel objects in homing pigeons (Columba livia) measured under laboratory conditions were associated with (i) greater initial exploration of the local area around the home loft during spontaneous exploration flights (SEF), (ii) faster and more efficient homing flights when released from further afield, and (iii) whether the traits of greater exploration and more positive responses to novel objects were more likely to be exhibited by the more dominant individuals within the group. There was no relationship between laboratory-based novel object exploration and position within the dominance hierarchy. Pigeons that were neophobic under laboratory conditions did not explore the local area during SEF opportunities. When released from sites further from home, neophobic pigeons took longer routes to home compared to those birds that had not exhibited neophobic traits under laboratory conditions, and had spontaneously explored to a greater extent. The lack of exploration in the neophobic birds is likely to have resulted in the increased costs of homing following release: unfamiliarity with the landscape likely led to the greater distances travelled and less efficient routes taken. Birds that demonstrated a lack of neophobia were not the dominant individuals inside the loft, and thus would have less access to resources such as food and potentially mates. However, a lack of neophobia makes the subordinate position possible, because subordinate birds that incur high travel costs would become calorie restricted and lose condition. Our results address emerging questions linking individual variation in behaviour with energetics and fitness consequences.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Steven J Portugal
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Rhianna L Ricketts
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Jackie Chappell
- Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Craig R White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Emily L Shepard
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
35
|
Padget O, Bond SL, Kavelaars MM, van Loon E, Bolton M, Fayet AL, Syposz M, Roberts S, Guilford T. In Situ Clock Shift Reveals that the Sun Compass Contributes to Orientation in a Pelagic Seabird. Curr Biol 2018; 28:275-279.e2. [PMID: 29337074 DOI: 10.1016/j.cub.2017.11.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 10/30/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
Compass orientation is central to the control of animal movement from the scale of local food-caching movements around a familiar area in parids [1] and corvids [2, 3] to the first autumn vector navigation of songbirds embarking on long-distance migration [4-6]. In the study of diurnal birds, where the homing pigeon, Columba livia, has been the main model, a time-compensated sun compass [7] is central to the two-step map-and-compass process of navigation from unfamiliar places, as well as guiding movement via a representation of familiar area landmarks [8-12]. However, its use by an actively navigating wild bird is yet to be shown. By phase shifting an animal's endogenous clock, known as clock-shifting [13-15], sun-compass use can be demonstrated when the animal incorrectly consults the sun's azimuthal position while homing after experimental displacement [15-17]. By applying clock-shift techniques at the nest of a wild bird during natural incubation, we show here that an oceanic navigator-the Manx shearwater, Puffinus puffinus-incorporates information from a time-compensated sun compass during homeward guidance to the breeding colony after displacement. Consistently with homing pigeons navigating within their familiar area [8, 9, 11, 18], we find that the effect of clock shift, while statistically robust, is partial in nature, possibly indicating the incorporation of guidance from landmarks into movement decisions.
Collapse
Affiliation(s)
- Oliver Padget
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
| | - Sarah L Bond
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Marwa M Kavelaars
- Behavioural Ecology and Ecophysiology Group, University of Antwerp, Universiteitsplein, Wilrijk, Antwerp, Belgium
| | - Emiel van Loon
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, Netherlands
| | - Mark Bolton
- RSPB Centre for Conservation Science, The Lodge, Sandy, Bedfordshire SG19 2DL, UK
| | - Annette L Fayet
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Martyna Syposz
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Stephen Roberts
- Machine Learning Research Group, Information Engineering Building, Engineering Science, Parks Rd., University of Oxford, Oxford OX1 3PJ, UK
| | - Tim Guilford
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
| |
Collapse
|
36
|
Kelly DM, Cheng K, Balda R, Kamil AC. Effects of sun compass error on spatial search by Clark's nutcrackers. Integr Zool 2018; 14:172-181. [PMID: 29316294 DOI: 10.1111/1749-4877.12302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animals employ compasses during navigation, but little attention has been paid to how accuracy is maintained in the face of compass error, which is inevitable in biological systems. The use of multiple landmarks may minimize the effect of compass error. We allowed Clark's nutcrackers to cache seeds in an outdoor aviary with either one or four landmarks present, and subsequently subjected them to small clock-shifts mimicking the effects of compass error. As predicted, the results showed a significant decrease in search accuracy following the clock-shift when one landmark was present but not when four landmarks were present. These results support that nutcrackers encode information from the sun as well as terrestrial landmarks, and these spatial cues are used in a flexible manner. Overall, our results are important as they support the hypothesis that multiple landmarks may be used during situations where the sun compass has even a small amount of error.
Collapse
Affiliation(s)
- Debbie M Kelly
- Department of Psychology, University of Manitoba, Winnipeg, Canada
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Russell Balda
- Department of Biological Sciences, Northern Arizona University, Flagstaff, USA
| | - Alan C Kamil
- Department of Biological Sciences, University of Nebraska-Lincoln, Lincoln, USA
| |
Collapse
|
37
|
Perez CR, Moye JK, Cacela D, Dean KM, Pritsos CA. Low level exposure to crude oil impacts avian flight performance: The Deepwater Horizon oil spill effect on migratory birds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 146:98-103. [PMID: 28596040 DOI: 10.1016/j.ecoenv.2017.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
In 2010, the Deepwater Horizon oil spill released 134 million gallons of crude oil into the Gulf of Mexico making it the largest oil spill in US history. The three month oil spill left tens of thousands of birds dead; however, the fate of tens of thousands of other migratory birds that were affected but did not immediately die is unknown. We used the homing pigeon as a surrogate species for migratory birds to investigate the effects of a single external oiling event on the flight performance of birds. Data from GPS data loggers revealed that lightly oiled pigeons took significantly longer to return home and spent more time stopped en route than unoiled birds. This suggests that migratory birds affected by the oil spill could have experienced long term flight impairment and delayed arrival to breeding, wintering, or crucial stopover sites and subsequently suffered reductions in survival and reproductive success.
Collapse
Affiliation(s)
- Cristina R Perez
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, United States
| | - John K Moye
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, United States
| | | | | | - Chris A Pritsos
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, United States.
| |
Collapse
|
38
|
Perez CR, Moye JK, Cacela D, Dean KM, Pritsos CA. Homing pigeons externally exposed to Deepwater Horizon crude oil change flight performance and behavior. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:530-539. [PMID: 28704750 DOI: 10.1016/j.envpol.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
The Deepwater Horizon oil spill was the largest in U.S. history, contaminating thousands of miles of coastal habitat and affecting the lives of many avian species. The Gulf of Mexico is a critical bird migration route area and migrants that were oiled but did not suffer mortality as a direct result of the spill faced unpredictable fates. This study utilized homing pigeons as a surrogate species for migratory birds to investigate the effects a single low level external oiling event has on the flight performance and behavior of birds flying repeated 161 km flights. Data from GPS data loggers showed that lightly oiled pigeons changed their flight paths, increased their flight durations by 2.6 fold, increased their flight distances by 28 km and subsequently decreased their route efficiencies. Oiled birds also exhibited reduced rate of weight gain between flights. Our data suggest that contaminated birds surviving the oil spill may have experienced flight impairment and reduced refueling abilities, likely reducing overall migration speed. Our findings contribute new information on how oil spills affect avian species, as the effects of oil on the flight behavior of long distance free-flying birds have not been previously described.
Collapse
Affiliation(s)
- Cristina R Perez
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, USA.
| | - John K Moye
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, USA
| | | | | | - Chris A Pritsos
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, USA
| |
Collapse
|
39
|
Cumulative culture can emerge from collective intelligence in animal groups. Nat Commun 2017; 8:15049. [PMID: 28416804 PMCID: PMC5399285 DOI: 10.1038/ncomms15049] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/23/2017] [Indexed: 11/09/2022] Open
Abstract
Studies of collective intelligence in animal groups typically overlook potential improvement through learning. Although knowledge accumulation is recognized as a major advantage of group living within the framework of Cumulative Cultural Evolution (CCE), the interplay between CCE and collective intelligence has remained unexplored. Here, we use homing pigeons to investigate whether the repeated removal and replacement of individuals in experimental groups (a key method in testing for CCE) alters the groups' solution efficiency over successive generations. Homing performance improves continuously over generations, and later-generation groups eventually outperform both solo individuals and fixed-membership groups. Homing routes are more similar in consecutive generations within the same chains than between chains, indicating cross-generational knowledge transfer. Our findings thus show that collective intelligence in animal groups can accumulate progressive modifications over time. Furthermore, our results satisfy the main criteria for CCE and suggest potential mechanisms for CCE that do not rely on complex cognition.
Collapse
|
40
|
|
41
|
The Influence of Social Parameters on the Homing Behavior of Pigeons. PLoS One 2016; 11:e0166572. [PMID: 27846262 PMCID: PMC5112789 DOI: 10.1371/journal.pone.0166572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022] Open
Abstract
Homing pigeons develop preferred routes when released alone several times from the same site, but they sometimes diverge from their preferred route when subsequently released with another pigeon. Additionally, group flights show a better homing performance than solo flights. But this knowledge is based on studies involving both sexes and lacks analyses of social parameters such as mating or breeding status, even though it is known that such parameters have an influence on behavior and on motivation for specific behavioral patterns. GPS trackers were used to track 24 homing pigeons (9 breeding pairs and 6 unmated females) as they performed a familiar 10km route in various pair and group combinations. Comparisons of efficiency indices (quotient between straight-line distance and pigeon’s track) reveal that unmated females show the best efficiency in single flights. Generally, group flights show the best efficiency followed by pair flights with a social partner of the opposite sex. Pair flights with the mated partner exhibit the poorest performance. Additionally, just before squabs hatching, females show a higher efficiency index when released at 8 am, compared to releases at 2 pm. Our results indicate that homing flight efficiency can provide insight into individual motivation and that social parameters have an influence on homing performance on a familiar route.
Collapse
|
42
|
Domyan ET, Shapiro MD. Pigeonetics takes flight: Evolution, development, and genetics of intraspecific variation. Dev Biol 2016; 427:241-250. [PMID: 27847323 DOI: 10.1016/j.ydbio.2016.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 11/26/2022]
Abstract
Intensive artificial selection over thousands of years has produced hundreds of varieties of domestic pigeon. As Charles Darwin observed, the morphological differences among breeds can rise to the magnitude of variation typically observed among different species. Nevertheless, different pigeon varieties are interfertile, thereby enabling forward genetic and genomic approaches to identify genes that underlie derived traits. Building on classical genetic studies of pigeon variation, recent molecular investigations find a spectrum of coding and regulatory alleles controlling derived traits, including plumage color, feather growth polarity, and limb identity. Developmental and genetic analyses of pigeons are revealing the molecular basis of variation in a classic example of extreme intraspecific diversity, and have the potential to nominate genes that control variation among other birds and vertebrates in general.
Collapse
Affiliation(s)
- Eric T Domyan
- Department of Biology, Utah Valley University, Orem, UT, United States.
| | - Michael D Shapiro
- Department of Biology, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
43
|
Martinho A, Biro D, Guilford T, Gagliardo A, Kacelnik A. Asymmetric visual input and route recapitulation in homing pigeons. Proc Biol Sci 2016; 282:20151957. [PMID: 26446810 PMCID: PMC4614786 DOI: 10.1098/rspb.2015.1957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pigeons (Columba livia) display reliable homing behaviour, but their homing routes from familiar release points are individually idiosyncratic and tightly recapitulated, suggesting that learning plays a role in route establishment. In light of the fact that routes are learned, and that both ascending and descending visual pathways share visual inputs from each eye asymmetrically to the brain hemispheres, we investigated how information from each eye contributes to route establishment, and how information input is shared between left and right neural systems. Using on-board global positioning system loggers, we tested 12 pigeons' route fidelity when switching from learning a route with one eye to homing with the other, and back, in an A-B-A design. Two groups of birds, trained first with the left or first with the right eye, formed new idiosyncratic routes after switching eyes, but those that flew first with the left eye formed these routes nearer to their original routes. This confirms that vision plays a major role in homing from familiar sites and exposes a behavioural consequence of neuroanatomical asymmetry whose ontogeny is better understood than its functional significance.
Collapse
Affiliation(s)
- Antone Martinho
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Tim Guilford
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Anna Gagliardo
- Department of Biology, University of Pisa, Via Volta 6, Pisa 56126, Italy
| | - Alex Kacelnik
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
44
|
Affiliation(s)
- P. J. Hore
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, DE-26111 Oldenburg, Germany;
- Research Centre for Neurosensory Sciences, University of Oldenburg, DE-26111 Oldenburg, Germany
| |
Collapse
|
45
|
Shoji A, Aris-Brosou S, Owen E, Bolton M, Boyle D, Fayet A, Dean B, Kirk H, Freeman R, Perrins C, Guilford T. Foraging flexibility and search patterns are unlinked during breeding in a free-ranging seabird. MARINE BIOLOGY 2016; 163:72. [PMID: 27069278 PMCID: PMC4791460 DOI: 10.1007/s00227-016-2826-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
In order to maximize foraging efficiency in a varying environment, predators are expected to optimize their search strategy. Environmental conditions are one important factor affecting these movement patterns, but variations in breeding constraints (self-feeding vs. feeding young and self-feeding) during different breeding stages (incubation vs. chick-rearing) are often overlooked, so that the mechanisms responsible for such behavioral shifts are still unknown. Here, to test how search patterns are affected at different breeding stages and to explore the proximate causes of these variations, we deployed data loggers to record both position (global positioning system) and dive activity (time-depth recorders) of a colonial breeding seabird, the razorbill Alca torda. Over a period of 3 years, our recordings of 56 foraging trips from 18 breeders show that while there is no evidence for individual route fidelity, razorbills exhibit higher foraging flexibility during incubation than during chick rearing, when foraging becomes more focused on an area of high primary productivity. We further show that this behavioral shift is not due to a shift in search patterns, as reorientations during foraging are independent of breeding stage. Our results suggest that foraging flexibility and search patterns are unlinked, perhaps because birds can read cues from their environment, including conspecifics, to optimize their foraging efficiency.
Collapse
Affiliation(s)
- Akiko Shoji
- />Department of Zoology, University of Oxford, Oxford, Oxfordshire UK
| | - Stéphane Aris-Brosou
- />Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Ellie Owen
- />The Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire SG19 2DL UK
| | - Mark Bolton
- />The Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire SG19 2DL UK
| | - Dave Boyle
- />Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, Oxfordshire UK
| | - Annette Fayet
- />Department of Zoology, University of Oxford, Oxford, Oxfordshire UK
| | - Ben Dean
- />Department of Zoology, University of Oxford, Oxford, Oxfordshire UK
| | - Holly Kirk
- />Department of Zoology, University of Oxford, Oxford, Oxfordshire UK
| | - Robin Freeman
- />Institute of Zoology, Zoological Society of London, Regents Park, London, NW1 4RY UK
| | - Chris Perrins
- />Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, Oxfordshire UK
| | - Tim Guilford
- />Department of Zoology, University of Oxford, Oxford, Oxfordshire UK
| |
Collapse
|
46
|
Affiliation(s)
- Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky-Universität Oldenburg, D-26111 Oldenburg, Germany; ,
- Research Center Neurosensory Sciences, University of Oldenburg, D-26111 Oldenburg, Germany
| | - Dominik Heyers
- Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky-Universität Oldenburg, D-26111 Oldenburg, Germany; ,
- Research Center Neurosensory Sciences, University of Oldenburg, D-26111 Oldenburg, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, D-44780 Bochum, Germany;
| |
Collapse
|
47
|
Pritchard DJ, Hurly TA, Tello-Ramos MC, Healy SD. Why study cognition in the wild (and how to test it)? J Exp Anal Behav 2016; 105:41-55. [DOI: 10.1002/jeab.195] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/08/2015] [Indexed: 02/03/2023]
|
48
|
Watts I, Pettit B, Nagy M, de Perera TB, Biro D. Lack of experience-based stratification in homing pigeon leadership hierarchies. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150518. [PMID: 26909176 PMCID: PMC4736931 DOI: 10.1098/rsos.150518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
In societies that make collective decisions through leadership, a fundamental question concerns the individual attributes that allow certain group members to assume leadership roles over others. Homing pigeons form transitive leadership hierarchies during flock flights, where flock members are ranked according to the average time differences with which they lead or follow others' movement. Here, we test systematically whether leadership ranks in navigational hierarchies are correlated with prior experience of a homing task. We constructed experimental flocks of pigeons with mixed navigational experience: half of the birds within each flock had been familiarized with a specific release site through multiple previous releases, while the other half had never been released from the same site. We measured the birds' hierarchical leadership ranks, then switched the same birds' roles at a second site to test whether the relative hierarchical positions of the birds in the two subsets would reverse in response to the reversal in levels of experience. We found that while across all releases the top hierarchical positions were occupied by experienced birds significantly more often than by inexperienced ones, the remaining experienced birds were not consistently clustered in the top half-in other words, the network did not become stratified. We discuss our results in light of the adaptive value of structuring leadership hierarchies according to 'merit' (here, navigational experience).
Collapse
Affiliation(s)
- Isobel Watts
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Benjamin Pettit
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Máté Nagy
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- MTA-ELTE Statistical and Biological Physics Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Biological Physics, Eötvös University, Budapest, Hungary
| | | | - Dora Biro
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
49
|
Pritchard DJ, Scott RD, Healy SD, Hurly AT. Wild rufous hummingbirds use local landmarks to return to rewarded locations. Behav Processes 2015; 122:59-66. [PMID: 26551275 DOI: 10.1016/j.beproc.2015.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 11/18/2022]
Abstract
Animals may remember an important location with reference to one or more visual landmarks. In the laboratory, birds and mammals often preferentially use landmarks near a goal ("local landmarks") to return to that location at a later date. Although we know very little about how animals in the wild use landmarks to remember locations, mammals in the wild appear to prefer to use distant landmarks to return to rewarded locations. To examine what cues wild birds use when returning to a goal, we trained free-living hummingbirds to search for a reward at a location that was specified by three nearby visual landmarks. Following training we expanded the landmark array to test the extent that the birds relied on the local landmarks to return to the reward. During the test the hummingbirds' search was best explained by the birds having used the experimental landmarks to remember the reward location. How the birds used the landmarks was not clear and seemed to change over the course of each test. These wild hummingbirds, then, can learn locations in reference to nearby visual landmarks.
Collapse
Affiliation(s)
| | - Renee D Scott
- Department of Biological Sciences, University of Lethbridge, Alberta, Canada
| | - Susan D Healy
- School of Biology, University of St. Andrews, Fife, UK
| | - Andrew T Hurly
- Department of Biological Sciences, University of Lethbridge, Alberta, Canada
| |
Collapse
|
50
|
Pollonara E, Luschi P, Guilford T, Wikelski M, Bonadonna F, Gagliardo A. Olfaction and topography, but not magnetic cues, control navigation in a pelagic seabird: displacements with shearwaters in the Mediterranean Sea. Sci Rep 2015; 5:16486. [PMID: 26548946 PMCID: PMC4637929 DOI: 10.1038/srep16486] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/14/2015] [Indexed: 12/04/2022] Open
Abstract
Pelagic seabirds wander the open oceans then return accurately to their habitual nest-sites. We investigated the effects of sensory manipulation on oceanic navigation in Scopoli’s shearwaters (Calonectris diomedea) breeding at Pianosa island (Italy), by displacing them 400 km from their colony and tracking them. A recent experiment on Atlantic shearwaters (Cory’s shearwater, Calonectris borealis) breeding in the Azores indicated a crucial role of olfaction over the open ocean, but left open the question of whether birds might navigate by topographical landmark cues when available. Our experiment was conducted in the Mediterranean sea, where the availability of topographical cues may provide an alternative navigational mechanism for homing. Magnetically disturbed shearwaters and control birds oriented homeward even when the coast was not visible and rapidly homed. Anosmic shearwaters oriented in a direction significantly different from the home direction when in open sea. After having approached a coastline their flight path changed from convoluted to homeward oriented, so that most of them eventually reached home. Beside confirming that magnetic cues appear unimportant for oceanic navigation by seabirds, our results support the crucial role of olfactory cues for birds’ navigation and reveal that anosmic shearwaters are able to home eventually by following coastal features.
Collapse
Affiliation(s)
- Enrica Pollonara
- Department of Biology, University of Pisa, Via Volta 6, 56126 Pisa, Italy
| | - Paolo Luschi
- Department of Biology, University of Pisa, Via Volta 6, 56126 Pisa, Italy
| | - Tim Guilford
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| | - Martin Wikelski
- Max Planck Institute for Ornithology, Department of Migration and Immuno-ecology, Schlossallee 2, Radolfzell 78315, Germany.,Dept. of Biology, University of Konstanz, 78468 Konstanz, Germany
| | | | - Anna Gagliardo
- Department of Biology, University of Pisa, Via Volta 6, 56126 Pisa, Italy
| |
Collapse
|