1
|
Meece M, Rathore S, Buschbeck EK. Stark trade-offs and elegant solutions in arthropod visual systems. J Exp Biol 2021; 224:224/4/jeb215541. [PMID: 33632851 DOI: 10.1242/jeb.215541] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vision is one of the most important senses for humans and animals alike. Diverse elegant specializations have evolved among insects and other arthropods in response to specific visual challenges and ecological needs. These specializations are the subject of this Review, and they are best understood in light of the physical limitations of vision. For example, to achieve high spatial resolution, fine sampling in different directions is necessary, as demonstrated by the well-studied large eyes of dragonflies. However, it has recently been shown that a comparatively tiny robber fly (Holcocephala) has similarly high visual resolution in the frontal visual field, despite their eyes being a fraction of the size of those of dragonflies. Other visual specializations in arthropods include the ability to discern colors, which relies on parallel inputs that are tuned to spectral content. Color vision is important for detection of objects such as mates, flowers and oviposition sites, and is particularly well developed in butterflies, stomatopods and jumping spiders. Analogous to color vision, the visual systems of many arthropods are specialized for the detection of polarized light, which in addition to communication with conspecifics, can be used for orientation and navigation. For vision in low light, optical superposition compound eyes perform particularly well. Other modifications to maximize photon capture involve large lenses, stout photoreceptors and, as has been suggested for nocturnal bees, the neural pooling of information. Extreme adaptations even allow insects to see colors at very low light levels or to navigate using the Milky Way.
Collapse
Affiliation(s)
- Michael Meece
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Shubham Rathore
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
2
|
Owens M, Giordullo I, Buschbeck EK. Establishment of correctly focused eyes may not require visual input in arthropods. ACTA ACUST UNITED AC 2020; 223:jeb.216192. [PMID: 31796609 DOI: 10.1242/jeb.216192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022]
Abstract
For proper function, vertebrate and invertebrate visual systems must be able to achieve and maintain emmetropia, a state where distant objects are in focus on the retina. In vertebrates, this is accomplished through a combination of genetic control during early development and homeostatic visual input that fine-tunes the optics of the eye. While emmetropization has long been researched in vertebrates, it is largely unknown how emmetropia is established in arthropods. We used a micro-ophthalmoscope to directly measure how the lens projects images onto the retina in the eyes of small, live arthropods, allowing us to compare the refractive states of light-reared and dark-reared arthropods. First, we measured the image-forming larval eyes of diving beetles (Thermonectus marmoratus), which are known to grow rapidly and dramatically between larval instars. Then, we measured the image-forming principal anterior-median eyes of jumping spiders (Phidippus audax) after emergence from their egg cases. Finally, we measured individual ommatidia in the compound eyes of flesh flies (Sarcophaga bullata) that had developed and emerged under either light or dark conditions. Surprisingly, and in sharp contrast to vertebrates, our data for this diverse set of arthropods suggest that visual input is inconsequential in regard to achieving well-focused eyes. Although it remains unclear whether visual input that is received after the initial development further improves focusing, these results suggest that at least the initial coordination between the lens refractive power and eye size in arthropods may be more strongly predetermined by developmental factors than is typically the case in vertebrates.
Collapse
Affiliation(s)
- Madeline Owens
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Isaiah Giordullo
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
3
|
Growing tiny eyes: How juvenile jumping spiders retain high visual performance in the face of size limitations and developmental constraints. Vision Res 2019; 160:24-36. [DOI: 10.1016/j.visres.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 11/21/2022]
|
4
|
Stahl AL, Baucom RS, Cook TA, Buschbeck EK. A Complex Lens for a Complex Eye. Integr Comp Biol 2018; 57:1071-1081. [PMID: 28992245 DOI: 10.1093/icb/icx116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A key innovation for high resolution eyes is a sophisticated lens that precisely focuses light onto photoreceptors. The eyes of holometabolous larvae range from very simple eyes that merely detect light to eyes that are capable of high spatial resolution. Particularly interesting are the bifocal lenses of Thermonectus marmoratus larvae, which differentially focus light on spectrally-distinct retinas. While functional aspects of insect lenses have been relatively well studied, little work has explored their molecular makeup, especially in regard to more complex eye types. To investigate this question, we took a transcriptomic and proteomic approach to identify the major proteins contributing to the principal bifocal lenses of T. marmoratus larvae. Mass spectrometry revealed 10 major lens proteins. Six of these share sequence homology with cuticular proteins, a large class of proteins that are also major components of corneal lenses from adult compound eyes of Drosophila melanogaster and Anopheles gambiae. Two proteins were identified as house-keeping genes and the final two lack any sequence homologies to known genes. Overall the composition seems to follow a pattern of co-opting transparent and optically dense proteins, similar to what has been described for other animal lenses. To identify cells responsible for the secretion of specific lens proteins, we performed in situ hybridization studies and found some expression differences between distal and proximal corneagenous cells. Since the distal cells likely give rise to the periphery and the proximal cells to the center of the lens, our findings highlight a possible mechanism for establishing structural differences that are in line with the bifocal nature of these lenses. A better understanding of lens composition provides insights into the evolution of proper focusing, which is an important step in the transition between low-resolution and high-resolution eyes.
Collapse
Affiliation(s)
- Aaron L Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tiffany A Cook
- Wayne State University School of Medicine, Center of Molecular Medicine and Genomics, Detroit, MI 48201, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
5
|
Stowasser A, Owens M, Buschbeck EK. Giving invertebrates an eye exam: an ophthalmoscope that utilizes the autofluorescence of photoreceptors. J Exp Biol 2017; 220:4095-4100. [DOI: 10.1242/jeb.166629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/12/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
One of the most important functional features of eyes is focusing light, as both nearsightedness and farsightedness have major functional implications. Accordingly, refractive errors are frequently assessed in vertebrates, but not in the very small invertebrate eyes. We describe a micro-ophthalmoscope that takes advantage of autofluorescent properties of invertebrate photoreceptors and test the device on the relatively well-understood eyes of jumping spiders and flies. In each case, our measurements confirmed previous findings with a greater degree of accuracy. For example, we could precisely resolve the layering of the anterior median eyes and could map out the extensive retina of the anterior lateral eyes of the spider. Measurements also confirmed that fly ommatidia are focused into infinity, but showed that their focal plane is situated slightly below the receptor surface. In contrast to other approaches, this device does not rely on reflective tapeta and allows for precise optical assessment of diverse invertebrate eyes.
Collapse
Affiliation(s)
- Annette Stowasser
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Madeline Owens
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Elke K. Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
6
|
Gonzalez-Bellido PT, Fabian ST, Nordström K. Target detection in insects: optical, neural and behavioral optimizations. Curr Opin Neurobiol 2016; 41:122-128. [DOI: 10.1016/j.conb.2016.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 11/16/2022]
|
7
|
Stecher N, Stowasser A, Stahl A, Buschbeck EK. Embryonic development of the larval eyes of the Sunburst Diving Beetle, Thermonectus marmoratus (Insecta: Dytiscidae): a morphological study. Evol Dev 2016; 18:216-28. [PMID: 27402568 DOI: 10.1111/ede.12192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stemmata, the larval eyes of holometabolous insects are extremely diverse, ranging from full compound eyes, to a few ommatidial units as are typical in compound eyes, to sophisticated and functionally specialized image-forming camera-type eyes. Stemmata evolved from a compound eye ommatidial ancestor, an eye type that is morphologically well conserved in regards to cellular composition, and well studied in regards to development. However, despite this evolutionary origin it remains largely unknown how stemmata develop. In addition, it is completely unclear how development is altered to give rise to some of the functionally most complex stemmata, such as those of the sunburst diving beetle, Thermonectus marmoratus. In this study, we used histological methods to investigate the embryonic development of the functionally complex principal stemmata Eye 1 and Eye 2 of the larval visual system of T. marmoratus. To gain insights into how cellular components of their sophisticated camera-type eyes might have evolved from the cellular components of ommatidial ancestors, we contrast our findings against known features of ommatidia development, which are particularly well understood in Drosophila. We find many similarities, such as the early presence of a pseudostratified epithelium, and the order in which specific cell types are recruited. However, in Thermonectus each cell type is represented by a large number of cells from early on and major tissue re-orientation occurs as eye development progresses. This study provides insights into the timing of morphological features and represents the basis for future molecular studies.
Collapse
Affiliation(s)
- Nadine Stecher
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA.,Department of Sciences, Wentworth Institute of Technology, Boston, MA, 02115, USA
| | - Annette Stowasser
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Aaron Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
8
|
Buschbeck EK. Escaping compound eye ancestry: the evolution of single-chamber eyes in holometabolous larvae. ACTA ACUST UNITED AC 2015; 217:2818-24. [PMID: 25122913 DOI: 10.1242/jeb.085365] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stemmata, the eyes of holometabolous insect larvae, have gained little attention, even though they exhibit remarkably different optical solutions, ranging from compound eyes with upright images, to sophisticated single-chamber eyes with inverted images. Such optical differences raise the question of how major transitions may have occurred. Stemmata evolved from compound eye ancestry, and optical differences are apparent even in some of the simplest systems that share strong cellular homology with adult ommatidia. The transition to sophisticated single-chamber eyes occurred many times independently, and in at least two different ways: through the fusion of many ommatidia [as in the sawfly (Hymenoptera)], and through the expansion of single ommatidia [as in tiger beetles (Coleoptera), antlions (Neuroptera) and dobsonflies (Megaloptera)]. Although ommatidia-like units frequently have multiple photoreceptor layers (tiers), sophisticated image-forming stemmata tend to only have one photoreceptor tier, presumably a consequence of the lens only being able to efficiently focus light on to one photoreceptor layer. An interesting exception is found in some diving beetles [Dytiscidae (Coleoptera)], in which two retinas receive sharp images from a bifocal lens. Taken together, stemmata represent a great model system to study an impressive set of optical solutions that evolved from a relatively simple ancestral organization.
Collapse
Affiliation(s)
- Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| |
Collapse
|
9
|
Werner S, Buschbeck EK. Rapid and step-wise eye growth in molting diving beetle larvae. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:1091-102. [DOI: 10.1007/s00359-015-1040-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/19/2015] [Accepted: 08/26/2015] [Indexed: 01/19/2023]
|
10
|
How aquatic water-beetle larvae with small chambered eyes overcome challenges of hunting under water. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:911-22. [PMID: 25261360 DOI: 10.1007/s00359-014-0944-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
A particularly unusual visual system exists in the visually guided aquatic predator, the Sunburst Diving Beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae). The question arises: how does this peculiar visual system function? A series of experiments suggests that their principal eyes (E1 and E2) are highly specialized for hunting. These eyes are tubular and have relatively long focal lengths leading to high image magnification. Their retinae are linear, and are divided into distinct green-sensitive distal and UV and polarization-sensitive proximal portions. Each distal retina, moreover, has many tiers of photoreceptors with rhabdomeres the long axis of which are peculiarly oriented perpendicular to the light path. Based on detailed optical investigations, the lenses of these eyes are bifocal and project focused images onto specific retinal tiers. Behavioral experiments suggest that these larvae approach prey within their eyes' near-fields, and that they can correctly gauge prey distances even when conventional distance-vision mechanisms are unavailable. In the near-field of these eyes object distance determines which of the many retinal layers receive the best-focused images. This retinal organization could facilitate an unusual distance-vision mechanism. We here summarize past findings and discuss how these eyes allow Thermonectus larvae to be such successful predators.
Collapse
|