1
|
Zeil J. Views from 'crabworld': the spatial distribution of light in a tropical mudflat. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:859-876. [PMID: 37460846 PMCID: PMC10643439 DOI: 10.1007/s00359-023-01653-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 11/14/2023]
Abstract
Natural scene analysis has been extensively used to understand how the invariant structure of the visual environment may have shaped biological image processing strategies. This paper deals with four crucial, but hitherto largely neglected aspects of natural scenes: (1) the viewpoint of specific animals; (2) the fact that image statistics are not independent of the position within the visual field; (3) the influence of the direction of illumination on luminance, spectral and polarization contrast in a scene; and (4) the biologically relevant information content of natural scenes. To address these issues, I recorded the spatial distribution of light in a tropical mudflat with a spectrographic imager equipped with a polarizing filter in an attempt to describe quantitatively the visual environment of fiddler crabs. The environment viewed by the crabs has a distinct structure. Depending on the position of the sun, the luminance, the spectral composition, and the polarization characteristics of horizontal light distribution are not uniform. This is true for both skylight and for reflections from the mudflat surface. The high-contrast feature of the line of horizon dominates the vertical distribution of light and is a discontinuity in terms of luminance, spectral distribution and of image statistics. On a clear day, skylight intensity increases towards the horizon due to multiple scattering, and its spectral composition increasingly resembles that of sunlight. Sky-substratum contrast is highest at short wavelengths. I discuss the consequences of this extreme example of the topography of vision for extracting biologically relevant information from natural scenes.
Collapse
Affiliation(s)
- Jochen Zeil
- Research School of Biology, Australian National University, P.O. Box 475, Canberra, ACT, 2601, Australia.
| |
Collapse
|
2
|
Temple SE, How MJ, Powell SB, Gruev V, Marshall NJ, Roberts NW. Thresholds of polarization vision in octopuses. J Exp Biol 2021; 224:238090. [PMID: 33602676 PMCID: PMC8077535 DOI: 10.1242/jeb.240812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022]
Abstract
Polarization vision is widespread in nature, mainly among invertebrates, and is used for a range of tasks including navigation, habitat localization and communication. In marine environments, some species such as those from the Crustacea and Cephalopoda that are principally monochromatic, have evolved to use this adaptation to discriminate objects across the whole visual field, an ability similar to our own use of colour vision. The performance of these polarization vision systems varies, and the few cephalopod species tested so far have notably acute thresholds of discrimination. However, most studies to date have used artificial sources of polarized light that produce levels of polarization much higher than found in nature. In this study, the ability of octopuses to detect polarization contrasts varying in angle of polarization (AoP) was investigated over a range of different degrees of linear polarization (DoLP) to better judge their visual ability in more ecologically relevant conditions. The ‘just-noticeable-differences’ (JND) of AoP contrasts varied consistently with DoLP. These JND thresholds could be largely explained by their ‘polarization distance’, a neurophysical model that effectively calculates the level of activity in opposing horizontally and vertically oriented polarization channels in the cephalopod visual system. Imaging polarimetry from the animals’ natural environment was then used to illustrate the functional advantage that these polarization thresholds may confer in behaviourally relevant contexts. Summary: Octopuses are highly sensitive to small changes in the angle of polarization (<1 deg contrast), even when the degree of polarization is low, which may confer a functional advantage in behaviourally relevant contexts.
Collapse
Affiliation(s)
- Shelby E Temple
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.,Azul Optics Ltd, Henleaze, Bristol BS9 4QG, UK
| | - Martin J How
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Samuel B Powell
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Viktor Gruev
- Biosensors Lab, Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - N Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas W Roberts
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
3
|
Drerup C, How MJ. Polarization contrasts and their effect on the gaze stabilization of crustaceans. J Exp Biol 2021; 224:237796. [PMID: 33692078 PMCID: PMC8077661 DOI: 10.1242/jeb.229898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/01/2021] [Indexed: 01/20/2023]
Abstract
Many animals go to great lengths to stabilize their eyes relative to the visual scene and do so to enhance the localization of moving objects and to functionally partition the visual system relative to the outside world. An important cue that is used to control these stabilization movements is contrast within the visual surround. Previous studies on insects, spiders and fish have shown that gaze stabilization is achromatic (‘colour blind’), meaning that chromatic contrast alone (in the absence of apparent intensity contrasts) does not contribute to gaze stabilization. Following the assumption that polarization vision is analogous in many ways to colour vision, the present study shows that five different crustacean species do not use the polarization of light alone for gaze stabilization, despite being able to use this modality for detecting predator-like objects. This work therefore suggests that the gaze stabilization in many crustaceans cannot be elicited by the polarization of light alone. Summary: Five different crustacean species do not use the polarization of light alone for gaze stabilization, despite being able to use this modality for detecting predator-like objects.
Collapse
Affiliation(s)
- Christian Drerup
- CCMAR (Centro de Ciências do Mar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.,Marine Behavioural Ecology Group, Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
4
|
Daly IM, How MJ, Partridge JC, Roberts NW. Gaze stabilization in mantis shrimp in response to angled stimuli. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:515-527. [PMID: 31093738 PMCID: PMC6647723 DOI: 10.1007/s00359-019-01341-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 11/24/2022]
Abstract
Gaze stabilization is a fundamental aspect of vision and almost all animals shift their eyes to compensate for any self-movement relative to the external environment. When it comes to mantis shrimp, however, the situation becomes complicated due to the complexity of their visual system and their range of eye movements. The stalked eyes of mantis shrimp can independently move left and right, and up and down, whilst simultaneously rotating about the axis of the eye stalks. Despite the large range of rotational freedom, mantis shrimp nevertheless show a stereotypical gaze stabilization response to horizontal motion of a wide-field, high-contrast stimulus. This response is often accompanied by pitch (up-down) and torsion (about the eye stalk) rotations which, surprisingly, have no effect on the performance of yaw (side-to-side) gaze stabilization. This unusual feature of mantis shrimp vision suggests that their neural circuitry for detecting motion is radially symmetric and immune to the confounding effects of torsional self-motion. In this work, we reinforce this finding, demonstrating that the yaw gaze stabilization response of the mantis shrimp is robust to the ambiguous motion cues arising from the motion of striped visual gratings in which the angle of a grating is offset from its direction of travel.
Collapse
Affiliation(s)
- Ilse M Daly
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Julian C Partridge
- Oceans Institute, University of Western Australia, 35 Stirling Highway, (M470), Crawley, WA, 6009, Australia
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
5
|
Marshall NJ, Powell SB, Cronin TW, Caldwell RL, Johnsen S, Gruev V, Chiou THS, Roberts NW, How MJ. Polarisation signals: a new currency for communication. ACTA ACUST UNITED AC 2019; 222:222/3/jeb134213. [PMID: 30733259 DOI: 10.1242/jeb.134213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Most polarisation vision studies reveal elegant examples of how animals, mainly the invertebrates, use polarised light cues for navigation, course-control or habitat selection. Within the past two decades it has been recognised that polarised light, reflected, blocked or transmitted by some animal and plant tissues, may also provide signals that are received or sent between or within species. Much as animals use colour and colour signalling in behaviour and survival, other species additionally make use of polarisation signalling, or indeed may rely on polarisation-based signals instead. It is possible that the degree (or percentage) of polarisation provides a more reliable currency of information than the angle or orientation of the polarised light electric vector (e-vector). Alternatively, signals with specific e-vector angles may be important for some behaviours. Mixed messages, making use of polarisation and colour signals, also exist. While our knowledge of the physics of polarised reflections and sensory systems has increased, the observational and behavioural biology side of the story needs more (and more careful) attention. This Review aims to critically examine recent ideas and findings, and suggests ways forward to reveal the use of light that we cannot see.
Collapse
Affiliation(s)
- N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Samuel B Powell
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, MD 21250, USA
| | - Roy L Caldwell
- University of California Berkeley, Department of Integrative Biology, Berkeley, CA 94720-3140, USA
| | - Sonke Johnsen
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Viktor Gruev
- Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - T-H Short Chiou
- Department of Life Sciences, National Cheng-Kung University, Tainan City 701, Taiwan
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
6
|
De Grande FR, Cannicci S, Costa TM. Can fiddler crabs detect underwater predators? A laboratory test with Leptuca thayeri. ETHOL ECOL EVOL 2019. [DOI: 10.1080/03949370.2018.1503196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Fernando Rafael De Grande
- Postgraduate Program in Biological Sciences (Zoology), Botucatu Biosciences Institute, São Paulo State University – UNESP, 18618-000 Botucatu, SP, Brazil
| | - Stefano Cannicci
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Tânia Marcia Costa
- Postgraduate Program in Biological Sciences (Zoology), Botucatu Biosciences Institute, São Paulo State University – UNESP, 18618-000 Botucatu, SP, Brazil
- Laboratory of Ecology and Animal Behavior, Coastal Campus, Biosciences Institute, São Paulo State University – UNESP, 11330-900 São Vicente, SP, Brazil
| |
Collapse
|
7
|
Stewart FJ, Kinoshita M, Arikawa K. Monopolatic motion vision in the butterfly Papilio xuthus. J Exp Biol 2019; 222:222/1/jeb191957. [DOI: 10.1242/jeb.191957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/31/2018] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The swallowtail butterfly Papilio xuthus can perceive the linear polarization of light. Using a novel polarization projection system, we recently demonstrated that P. xuthus can detect visual motion based on polarization contrast. In the present study, we attempt to infer via behavioural experiments the mechanism underlying this polarization-based motion vision. Papilio xuthus do not perceive contrast between unpolarized and diagonally polarized light, implying that they cannot unambiguously estimate angle and degree of polarization, at least as far as motion detection is concerned. Furthermore, they conflate brightness and polarization cues, such that bright vertically polarized light resembles dim unpolarized light. These observations are consistent with a one-channel ‘monopolatic’ detector mechanism. We extend our existing model of motion vision in P. xuthus to incorporate these polarization findings, and conclude that the photoreceptors likely to form the basis for the putative monopolatic polarization detector are R3 and R4, which respond maximally to horizontally polarized green light. R5–R8, we propose, form a polarization-insensitive secondary channel tuned to longer wavelengths of light. Consistent with this account, we see greater sensitivity to polarization for green-light stimuli than for subjectively equiluminant red ones. Somewhat counter-intuitively, our model predicts greatest sensitivity to vertically polarized light; owing to the non-linearity of photoreceptor responses, light polarized to an angle orthogonal to a monopolatic detector's orientation offers the greatest contrast with unpolarized light.
Collapse
Affiliation(s)
- Finlay J. Stewart
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan International Village, Hayama, Kanagawa, 240-0193 Japan
| | - Michiyo Kinoshita
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan International Village, Hayama, Kanagawa, 240-0193 Japan
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan International Village, Hayama, Kanagawa, 240-0193 Japan
| |
Collapse
|
8
|
Basnak MA, Pérez-Schuster V, Hermitte G, Berón de Astrada M. Polarized object detection in crabs: a two-channel system. ACTA ACUST UNITED AC 2018; 221:jeb.173369. [PMID: 29650753 DOI: 10.1242/jeb.173369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/10/2018] [Indexed: 11/20/2022]
Abstract
Many animal species take advantage of polarization vision for vital tasks such as orientation, communication and contrast enhancement. Previous studies have suggested that decapod crustaceans use a two-channel polarization system for contrast enhancement. Here, we characterize the polarization contrast sensitivity in a grapsid crab. We estimated the polarization contrast sensitivity of the animals by quantifying both their escape response and changes in heart rate when presented with polarized motion stimuli. The motion stimulus consisted of an expanding disk with an 82 deg polarization difference between the object and the background. More than 90% of animals responded by freezing or trying to avoid the polarized stimulus. In addition, we co-rotated the electric vector (e-vector) orientation of the light from the object and background by increments of 30 deg and found that the animals' escape response varied periodically with a 90 deg period. Maximum escape responses were obtained for object and background e-vectors near the vertical and horizontal orientations. Changes in cardiac response showed parallel results but also a minimum response when e-vectors of object and background were shifted by 45 deg with respect to the maxima. These results are consistent with an orthogonal receptor arrangement for the detection of polarized light, in which two channels are aligned with the vertical and horizontal orientations. It has been hypothesized that animals with object-based polarization vision rely on a two-channel detection system analogous to that of color processing in dichromats. Our results, obtained by systematically varying the e-vectors of object and background, provide strong empirical support for this theoretical model of polarized object detection.
Collapse
Affiliation(s)
- Melanie Ailín Basnak
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, 1428, Argentina.,Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Verónica Pérez-Schuster
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, 1428, Argentina.,Departamento de Física, FCEyN, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
| | - Gabriela Hermitte
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, 1428, Argentina
| | - Martín Berón de Astrada
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, 1428, Argentina
| |
Collapse
|
9
|
Daly IM, How MJ, Partridge JC, Roberts NW. Complex gaze stabilization in mantis shrimp. Proc Biol Sci 2018; 285:20180594. [PMID: 29720419 PMCID: PMC5966611 DOI: 10.1098/rspb.2018.0594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 11/12/2022] Open
Abstract
Almost all animals, regardless of the anatomy of the eyes, require some level of gaze stabilization in order to see the world clearly and without blur. For the mantis shrimp, achieving gaze stabilization is unusually challenging as their eyes have an unprecedented scope for movement in all three rotational degrees of freedom: yaw, pitch and torsion. We demonstrate that the species Odontodactylus scyllarus performs stereotypical gaze stabilization in the yaw degree of rotational freedom, which is accompanied by simultaneous changes in the pitch and torsion rotation of the eye. Surprisingly, yaw gaze stabilization performance is unaffected by both the torsional pose and the rate of torsional rotation of the eye. Further to this, we show, for the first time, a lack of a torsional gaze stabilization response in the stomatopod visual system. In the light of these findings, we suggest that the neural wide-field motion detection network in the stomatopod visual system may follow a radially symmetric organization to compensate for the potentially disorientating effects of torsional eye movements, a system likely to be unique to stomatopods.
Collapse
Affiliation(s)
- Ilse M Daly
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Julian C Partridge
- School of Biological Sciences and the Oceans Institute, Faculty of Science, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
10
|
Foster JJ, Temple SE, How MJ, Daly IM, Sharkey CR, Wilby D, Roberts NW. Polarisation vision: overcoming challenges of working with a property of light we barely see. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2018; 105:27. [PMID: 29589169 PMCID: PMC5871655 DOI: 10.1007/s00114-018-1551-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/01/2022]
Abstract
In recent years, the study of polarisation vision in animals has seen numerous breakthroughs, not just in terms of what is known about the function of this sensory ability, but also in the experimental methods by which polarisation can be controlled, presented and measured. Once thought to be limited to only a few animal species, polarisation sensitivity is now known to be widespread across many taxonomic groups, and advances in experimental techniques are, in part, responsible for these discoveries. Nevertheless, its study remains challenging, perhaps because of our own poor sensitivity to the polarisation of light, but equally as a result of the slow spread of new practices and methodological innovations within the field. In this review, we introduce the most important steps in designing and calibrating polarised stimuli, within the broader context of areas of current research and the applications of new techniques to key questions. Our aim is to provide a constructive guide to help researchers, particularly those with no background in the physics of polarisation, to design robust experiments that are free from confounding factors.
Collapse
Affiliation(s)
- James J Foster
- Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| | - Shelby E Temple
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
- Azul Optics Ltd., 7 Bishop Manor Road, Westbury-On-Trym, Bristol, BS10 5BD, UK
| | - Martin J How
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Ilse M Daly
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Camilla R Sharkey
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, CB2 3EG, UK
| | - David Wilby
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Nicholas W Roberts
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
11
|
Stewart FJ, Kinoshita M, Arikawa K. A Novel Display System Reveals Anisotropic Polarization Perception in the Motion Vision of the Butterfly Papilio xuthus. Integr Comp Biol 2017; 57:1130-1138. [PMID: 28992194 DOI: 10.1093/icb/icx070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While the linear polarization of light is virtually invisible to humans, many invertebrates' eyes can detect it. How this information is processed in the nervous system, and what behavioral function it serves, are in many cases unclear. One reason for this is the technical difficulty involved in presenting images or video containing polarization contrast, particularly if intensity and/or color contrast is also required. In this primarily methods-focused article, we present a novel technique based on projecting video through a synchronously rotating linear polarizer. This approach allows the intensity, angle of polarization, degree of linear polarization, and potentially also color of individual pixels to be controlled independently. We characterize the performance of our system, and then use it to investigate the relationship between polarization and motion vision in the swallowtail butterfly Papilio xuthus. Although this animal has photoreceptors sensitive to four different polarization angles, we find that its motion vision cannot distinguish between diagonally-polarized and unpolarized light. Furthermore, it responds more strongly to vertically-polarized moving objects than horizontally-polarized ones. This implies that Papilio's polarization-based motion detection employs either an unbalanced two-channel (dipolatic) opponent architecture, or possibly a single-channel (monopolatic) scheme without opponent mechanisms.
Collapse
Affiliation(s)
- Finlay J Stewart
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (Sokendai), Shonan International Village, Hayama, Kanagawa, 240-0193 Japan
| | - Michiyo Kinoshita
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (Sokendai), Shonan International Village, Hayama, Kanagawa, 240-0193 Japan
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (Sokendai), Shonan International Village, Hayama, Kanagawa, 240-0193 Japan
| |
Collapse
|
12
|
Abstract
The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, 'color-blind' humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert 'water below!' to water-seeking bugs.
Collapse
Affiliation(s)
- Thomas Labhart
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zürich CH 8057, Switzerland
| |
Collapse
|
13
|
Daly IM, How MJ, Partridge JC, Temple SE, Marshall NJ, Cronin TW, Roberts NW. Dynamic polarization vision in mantis shrimps. Nat Commun 2016; 7:12140. [PMID: 27401817 PMCID: PMC4945877 DOI: 10.1038/ncomms12140] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/06/2016] [Indexed: 11/17/2022] Open
Abstract
Gaze stabilization is an almost ubiquitous animal behaviour, one that is required to see the world clearly and without blur. Stomatopods, however, only fix their eyes on scenes or objects of interest occasionally. Almost uniquely among animals they explore their visual environment with a series pitch, yaw and torsional (roll) rotations of their eyes, where each eye may also move largely independently of the other. In this work, we demonstrate that the torsional rotations are used to actively enhance their ability to see the polarization of light. Both Gonodactylus smithii and Odontodactylus scyllarus rotate their eyes to align particular photoreceptors relative to the angle of polarization of a linearly polarized visual stimulus, thereby maximizing the polarization contrast between an object of interest and its background. This is the first documented example of any animal displaying dynamic polarization vision, in which the polarization information is actively maximized through rotational eye movements. Mantis shrimps are known to display large pitch, yaw and torsional eye rotations. Here, the authors show that these eye movements allow mantis shrimp to orientate particular photoreceptors in order to better discriminate the polarization of light.
Collapse
Affiliation(s)
- Ilse M Daly
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Julian C Partridge
- School of Animal Biology and the Oceans Institute, University of Western Australia, 35 Stirling Highway (M317), Crawley, Western Australia 6009, Australia
| | - Shelby E Temple
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
14
|
How M, Christy J, Temple S, Hemmi J, Marshall N, Roberts N. Target Detection Is Enhanced by Polarization Vision in a Fiddler Crab. Curr Biol 2015; 25:3069-73. [DOI: 10.1016/j.cub.2015.09.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/17/2015] [Accepted: 09/30/2015] [Indexed: 11/29/2022]
|