1
|
Finneran JJ, Lally K, Mulsow J, Houser DS. Dolphin short-term auditory fatigue and self-mitigation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2241-2246. [PMID: 38535629 DOI: 10.1121/10.0025387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/04/2024] [Indexed: 05/01/2024]
Abstract
Auditory brainstem responses (ABRs) were measured at 57 kHz in two dolphins warned of an impending intense tone at 40 kHz. Over the course of testing, the duration of the intense tone was increased from 0.5 to 16 s to determine if changes in ABRs observed after cessation of the intense sound were the result of post-stimulatory auditory fatigue or conditioned hearing attenuation. One dolphin exhibited conditioned hearing attenuation after the warning sound preceding the intense sound, but little evidence of post-stimulatory fatigue after the intense sound. The second dolphin showed no conditioned attenuation before the intense sound, but auditory fatigue afterwards. The fatigue was observed within a few seconds after cessation of the intense tone: i.e., at time scales much shorter than those in previous studies of marine mammal noise-induced threshold shifts, which feature measurements on the order of a few minutes after exposure. The differences observed between the two individuals (less auditory fatigue in the dolphin that exhibited the conditioned attenuation) support the hypothesis that conditioned attenuation is a form of "self-mitigation."
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| | - Katelin Lally
- National Marine Mammal Foundation, 2240 Shelter Island Dr. #200, San Diego, California 92106, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Dr. #200, San Diego, California 92106, USA
| | - Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Dr. #200, San Diego, California 92106, USA
| |
Collapse
|
2
|
Finneran JJ, Lally K, Strahan MG, Donohoe K, Mulsow J, Houser DS. Dolphin conditioned hearing attenuation in response to repetitive tones with increasing level. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:496. [PMID: 36732272 DOI: 10.1121/10.0016868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
All species of toothed whales studied to date can learn to reduce their hearing sensitivity when warned of an impending intense sound; however, the specific conditions under which animals will employ this technique are not well understood. The present study was focused on determining whether dolphins would reduce their hearing sensitivity in response to an intense tone presented at a fixed rate but increasing level, without an otherwise explicit warning. Auditory brainstem responses (ABRs) to intermittent, 57-kHz tone bursts were continuously measured in two bottlenose dolphins as they were exposed to a series of 2-s, 40-kHz tones at fixed time intervals of 20, 25, or 29 s and at sound pressure levels (SPLs) increasing from 120 to 160 dB re 1 μPa. Results from one dolphin showed consistent ABR attenuation preceding intense tones when the SPL exceeded ∼140-150 dB re 1 μPa and the tone interval was 20 s. ABR attenuation with 25- or 29-s intense tone intervals was inconsistent. The second dolphin showed similar, but more subtle, effects. The results show dolphins can learn the timing of repetitive noise and may reduce their hearing sensitivity if the SPL is high enough, presumably to "self-mitigate" the noise effects.
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| | - Katelin Lally
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Madelyn G Strahan
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Kyle Donohoe
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| |
Collapse
|
3
|
Harley HE, Fellner W, Frances C, Thomas A, Losch B, Newton K, Feuerbach D. Information-seeking across auditory scenes by an echolocating dolphin. Anim Cogn 2022; 25:1109-1131. [PMID: 36018473 DOI: 10.1007/s10071-022-01679-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
Dolphins gain information through echolocation, a publicly accessible sensory system in which dolphins produce clicks and process returning echoes, thereby both investigating and contributing to auditory scenes. How their knowledge of these scenes contributes to their echoic information-seeking is unclear. Here, we investigate their top-down cognitive processes in an echoic matching-to-sample task in which targets and auditory scenes vary in their decipherability and shift from being completely unfamiliar to familiar. A blind-folded adult male dolphin investigated a target sample positioned in front of a hydrophone to allow recording of clicks, a measure of information-seeking and effort; the dolphin received fish for choosing an object identical to the sample from 3 alternatives. We presented 20 three-object sets, unfamiliar in the first five 18-trial sessions with each set. Performance accuracy and click counts varied widely across sets. Click counts of the four lowest-performance-accuracy/low-discriminability sets (X = 41%) and the four highest-performance-accuracy/high-discriminability sets (X = 91%) were similar at the first sessions' starts and then decreased for both kinds of scenes, although the decrease was substantially greater for low-discriminability sets. In four challenging-but-doable sets, number of clicks remained relatively steady across the 5 sessions. Reduced echoic effort with low-discriminability sets was not due to overall motivation: the differential relationship between click number and object-set discriminability was maintained when difficult and easy trials were interleaved and when objects from originally difficult scenes were grouped with more discriminable objects. These data suggest that dolphins calibrate their echoic information-seeking effort based on their knowledge and expectations of auditory scenes.
Collapse
Affiliation(s)
- Heidi E Harley
- Division of Social Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL, 34243, USA.
- The Seas, Epcot®, Walt Disney World® Resorts , Lake Buena Vista, FL, USA.
| | - Wendi Fellner
- The Seas, Epcot®, Walt Disney World® Resorts , Lake Buena Vista, FL, USA
| | - Candice Frances
- Division of Social Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL, 34243, USA
- Basque Center on Cognition, Brain and Language, Donostia, Spain
| | - Amber Thomas
- Division of Social Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL, 34243, USA
- The Seas, Epcot®, Walt Disney World® Resorts , Lake Buena Vista, FL, USA
| | - Barbara Losch
- The Seas, Epcot®, Walt Disney World® Resorts , Lake Buena Vista, FL, USA
| | - Katherine Newton
- Division of Social Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL, 34243, USA
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, USA
| | - David Feuerbach
- The Seas, Epcot®, Walt Disney World® Resorts , Lake Buena Vista, FL, USA
| |
Collapse
|
4
|
Tougaard J, Beedholm K, Madsen PT. Thresholds for noise induced hearing loss in harbor porpoises and phocid seals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:4252. [PMID: 35778178 DOI: 10.1121/10.0011560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Intense sound sources, such as pile driving, airguns, and military sonars, have the potential to inflict hearing loss in marine mammals and are, therefore, regulated in many countries. The most recent criteria for noise induced hearing loss are based on empirical data collected until 2015 and recommend frequency-weighted and species group-specific thresholds to predict the onset of temporary threshold shift (TTS). Here, evidence made available after 2015 in light of the current criteria for two functional hearing groups is reviewed. For impulsive sounds (from pile driving and air guns), there is strong support for the current threshold for very high frequency cetaceans, including harbor porpoises (Phocoena phocoena). Less strong support also exists for the threshold for phocid seals in water, including harbor seals (Phoca vitulina). For non-impulsive sounds, there is good correspondence between exposure functions and empirical thresholds below 10 kHz for porpoises (applicable to assessment and regulation of military sonars) and between 3 and 16 kHz for seals. Above 10 kHz for porpoises and outside of the range 3-16 kHz for seals, there are substantial differences (up to 35 dB) between the predicted thresholds for TTS and empirical results. These discrepancies call for further studies.
Collapse
Affiliation(s)
- Jakob Tougaard
- Department of Ecoscience, Marine Mammal Research, Aarhus University, C. F. Møllers Allé 3, Aarhus 8000, Denmark
| | - Kristian Beedholm
- Department of Biology, Zoophysiology, Aarhus University, C. F. Møllers Allé 3, Aarhus 8000, Denmark
| | - Peter T Madsen
- Department of Biology, Zoophysiology, Aarhus University, C. F. Møllers Allé 3, Aarhus 8000, Denmark
| |
Collapse
|
5
|
Beedholm K, Malinka C, Ladegaard M, Madsen PT. Do echolocating toothed whales direct their acoustic gaze on- or off-target in a static detection task? THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:581. [PMID: 33514151 DOI: 10.1121/10.0003357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Echolocating mammals produce directional sound beams with high source levels to improve echo-to-noise ratios and reduce clutter. Recent studies have suggested that the differential spectral gradients of such narrow beams are exploited to facilitate target localization by pointing the beam slightly off targets to maximize the precision of angular position estimates [maximizing bearing Fisher information (FI)]. Here, we test the hypothesis that echolocating toothed whales focus their acoustic gaze askew during target detection to maximize spectral cues by investigating the acoustic gaze direction of two trained delphinids (Tursiops truncatus and Pseudorca crassidens) echolocating to detect an aluminum cylinder behind a hydrophone array in a go/no-go paradigm. The animals rarely placed their beam axis directly on the target, nor within the narrow range around the off-axis angle that maximizes FI. However, the target was, for each trial, ensonified within the swath of the half-power beam width, and hence we conclude that the animals solved the detection task using a strategy that seeks to render high echo-to-noise ratios rather than maximizing bearing FI. We posit that biosonar beam adjustment and acoustic gaze strategies are likely task-dependent and that maximizing bearing FI by pointing off-axis does not improve target detection performance.
Collapse
Affiliation(s)
- Kristian Beedholm
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Chloe Malinka
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael Ladegaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
6
|
Kastelein RA, Helder-Hoek L, Cornelisse SA, von Benda-Beckmann AM, Lam FPA, de Jong CAF, Ketten DR. Lack of reproducibility of temporary hearing threshold shifts in a harbor porpoise after exposure to repeated airgun sounds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:556. [PMID: 32872990 DOI: 10.1121/10.0001668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Noise-induced temporary hearing threshold shift (TTS) was studied in a harbor porpoise exposed to impulsive sounds of scaled-down airguns while both stationary and free-swimming for up to 90 min. In a previous study, ∼4 dB TTS was elicited in this porpoise, but despite 8 dB higher single-shot and cumulative exposure levels (up to 199 dB re 1 μPa2s) in the present study, the porpoise showed no significant TTS at hearing frequencies 2, 4, or 8 kHz. There were no changes in the study animal's audiogram between the studies or significant differences in the fatiguing sound that could explain the difference, but audible and visual cues in the present study may have allowed the porpoise to predict when the fatiguing sounds would be produced. The discrepancy between the studies may have resulted from self-mitigation by the porpoise. Self-mitigation, resulting in reduced hearing sensitivity, can be achieved via changes in the orientation of the head, or via alteration of the hearing threshold by processes in the ear or central nervous system.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Suzanne A Cornelisse
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | | | - Frans-Peter A Lam
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Christ A F de Jong
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Darlene R Ketten
- The Hearing Research Center, Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02155, USA
| |
Collapse
|
7
|
Finneran JJ. Conditioned attenuation of dolphin monaural and binaural auditory evoked potentials after preferential stimulation of one ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:2302. [PMID: 32359288 DOI: 10.1121/10.0001033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have demonstrated that some species of odontocetes can be conditioned to reduce hearing sensitivity when warned of an impending intense sound; however, the underlying mechanisms remain poorly understood. In the present study, conditioned hearing attenuation was elicited in two bottlenose dolphins by pairing a 10-kHz tone (the conditioned stimulus) with a more intense tone (the unconditioned stimulus) at 28 kHz. Testing was performed in air, with sounds presented via contact transducers. Hearing was assessed via noninvasive measurement of monaural auditory nerve responses (ANR) and binaural auditory brainstem responses (ABR). ABRs/ANRs were measured in response to 40-kHz tone bursts, over 2 to 3-s time intervals before and after the conditioned and unconditioned stimuli. Results showed reductions in ABR/ANR amplitude and increases in latency after pairing the warning and more intense tones. Monaural ANRs from the left and right ears were attenuated by similar amounts when the warning and more intense sounds were preferentially applied to the right ear. The data support a neural mechanism operating at the level of the cochlea and/or auditory nerve and suggest the involvement of neural projections that can affect the contralateral ear.
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
8
|
Nachtigall PE, Supin AY, Pacini AF, Kastelein RA. Four odontocete species change hearing levels when warned of impending loud sound. Integr Zool 2018; 13:160-165. [PMID: 29078030 DOI: 10.1111/1749-4877.12286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hearing sensitivity change was investigated when a warning sound preceded a loud sound in the false killer whale (Pseudorca crassidens), the bottlenose dolphin (Tursiops truncatus), the beluga whale (Delphinaperus leucas) and the harbor porpoise (Phocoena phocoena). Hearing sensitivity was measured using pip-train test stimuli and auditory evoked potential recording. When the test/warning stimuli preceded a loud sound, hearing thresholds before the loud sound increased relative to the baseline by 13 to 17 dB. Experiments with multiple frequencies of exposure and shift provided evidence of different amounts of hearing change depending on frequency, indicating that the hearing sensation level changes were not likely due to a simple stapedial reflex.
Collapse
Affiliation(s)
- Paul E Nachtigall
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe Hawaii, USA
| | - Alexander Ya Supin
- Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Aude F Pacini
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe Hawaii, USA
| | | |
Collapse
|
9
|
Finneran JJ. Conditioned attenuation of auditory brainstem responses in dolphins warned of an intense noise exposure: Temporal and spectral patterns. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:795. [PMID: 29495733 DOI: 10.1121/1.5022784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conditioned reductions in hearing sensitivity were elicited in two bottlenose dolphins by pairing a 10-kHz tone (the conditioned stimulus) with a more intense tone (the unconditioned stimulus) at 20, 40, or 80 kHz. Hearing was assessed via noninvasive measurement of auditory brainstem responses (ABRs) to 20 - to 133-kHz tone bursts presented at randomized intervals from 1 to 3 ms. ABRs within each trial were obtained by averaging the instantaneous electroencephalogram, time-locked to tone burst onsets, over 2- to 3-s time intervals. In initial testing, ABR amplitudes were reduced (relative to baseline values) in one dolphin after the conditioned stimulus, but before the unconditioned stimulus, demonstrating conditioned hearing attenuation. In subsequent testing with both dolphins, ABRs were attenuated throughout the entire 31-s trial. Maximum ABR threshold shifts occurred at and above the unconditioned stimulus frequency and were above 40 dB for some conditions. The results (1) confirm that dolphins can be conditioned to reduce hearing sensitivity when warned of an impending noise exposure, (2) show that hearing attenuation occurs within the cochlea or auditory nerve, and (3) support the hypothesis that toothed whales can "self-mitigate" some effects of noise if warned of an impending exposure.
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
10
|
Erbe C, Dunlop R, Dolman S. Effects of Noise on Marine Mammals. EFFECTS OF ANTHROPOGENIC NOISE ON ANIMALS 2018. [DOI: 10.1007/978-1-4939-8574-6_10] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Houser DS, Yost W, Burkard R, Finneran JJ, Reichmuth C, Mulsow J. A review of the history, development and application of auditory weighting functions in humans and marine mammals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:1371. [PMID: 28372133 DOI: 10.1121/1.4976086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This document reviews the history, development, and use of auditory weighting functions for noise impact assessment in humans and marine mammals. Advances from the modern era of electroacoustics, psychophysical studies of loudness, and other related hearing studies are reviewed with respect to the development and application of human auditory weighting functions, particularly A-weighting. The use of auditory weighting functions to assess the effects of environmental noise on humans-such as hearing damage-risk criteria-are presented, as well as lower-level effects such as annoyance and masking. The article also reviews marine mammal auditory weighting functions, the development of which has been fundamentally directed by the objective of predicting and preventing noise-induced hearing loss. Compared to the development of human auditory weighting functions, the development of marine mammal auditory weighting functions have faced additional challenges, including a large number of species that must be considered, a lack of audiometric information on most species, and small sample sizes for nearly all species for which auditory data are available. The review concludes with research recommendations to address data gaps and assumptions underlying marine mammal auditory weighting function design and application.
Collapse
Affiliation(s)
- Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| | - William Yost
- Speech and Hearing Science, Arizona State University, Tempe, Arizona 85287, USA
| | - Robert Burkard
- Department of Rehabilitation Science, University at Buffalo, 510 Kimball Tower, Buffalo, New York 14214, USA
| | - James J Finneran
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| | - Colleen Reichmuth
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, California 95060, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| |
Collapse
|
12
|
Schakner ZA, Götz T, Janik VM, Blumstein DT. Can fear conditioning repel California sea lions from fishing activities? Anim Conserv 2017. [DOI: 10.1111/acv.12329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zachary A. Schakner
- Department of Ecology & Evolutionary Biology University of California Los Angeles Los Angeles CA 90095‐1606 USA
| | - Thomas Götz
- Sea Mammal Research Unit Scottish Oceans Institute University of St Andrews East Sands St Andrews Fife KY16 8LB UK
| | - Vincent M. Janik
- Sea Mammal Research Unit Scottish Oceans Institute University of St Andrews East Sands St Andrews Fife KY16 8LB UK
| | - Daniel T. Blumstein
- Department of Ecology & Evolutionary Biology University of California Los Angeles Los Angeles CA 90095‐1606 USA
| |
Collapse
|
13
|
Nachtigall PE, Supin AY, Pacini AF, Kastelein RA. Conditioned hearing sensitivity change in the harbor porpoise (Phocoena phocoena). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:960. [PMID: 27586728 DOI: 10.1121/1.4960783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hearing sensitivity, during trials in which a warning sound preceding a loud sound, was investigated in two harbor porpoises (Phocoena phocoena). Sensitivity was measured using pip-train test stimuli and auditory evoked potential recording. When a hearing test/warning stimulus, with a frequency of either 45 or 32 kHz, preceded a loud 32 kHz tone with a sound pressure level of 152 dB re 1 μPa root mean square, lasting 2 s yielding an sound exposure level (SEL) of 155 dB re 1 μPa(2)s, pooled hearing thresholds measured just before the loud sound increased relative to baseline thresholds. During two experimental sessions the threshold increased up to 17 dB for the test frequency of 45 kHz and up to 11 dB for the test frequency of 32 kHz. An extinction test revealed very rapid threshold recovery within the first two experimental sessions. The SEL producing the hearing dampening effect was low compared to previous other odontocete hearing change efforts with each individual trial equal to 155 dB re 1 μPa(2) but the cumulative SEL for each subsession may have been as high as 168 dB re 1 μPa(2). Interpretations of conditioned hearing sensation change and possible change due to temporary threshold shifts are considered for the harbor porpoise and discussed in the light of potential mechanisms and echolocation.
Collapse
Affiliation(s)
- Paul E Nachtigall
- Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, Hawaii 96744, USA
| | - Alexander Ya Supin
- Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Aude F Pacini
- Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, Hawaii 96744, USA
| | - Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
14
|
Nachtigall PE, Supin AY, Smith AB, Pacini AF. Expectancy and conditioned hearing levels in the bottlenose dolphin (Tursiops truncatus). ACTA ACUST UNITED AC 2016; 219:844-50. [PMID: 26787478 DOI: 10.1242/jeb.133777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022]
Abstract
The hearing sensitivity of a bottlenose dolphin for a warning sound, when the exact time of the arrival of a loud sound could or could not be predicted, was measured. Sensitivity was measured when the time of onset of the loud sound was randomly varied (random-variation sessions) and when the time of onset of the loud sound and the pattern of stimulus levels was constant (fixed-stimulus sessions). The loud sound was kept the same in both of the series. The mean duration and mean range of the levels of the test/warning signal were also kept equal across experimental sessions. Hearing sensitivity was measured using the auditory evoked potential method with rhythmic trains of short pips as test stimuli. With randomly varied warning sounds, thresholds before the loud sound were on average 10.6 dB higher than the baseline thresholds. With fixed warning signals, thresholds were on average 4.4 dB higher than the baseline thresholds. Considering that the loud sounds were identical, the difference between the random-variation and the fixed-stimulus sessions cannot be explained by a direct (unconditioned) influence of sound exposure. Therefore, the data provide reliable evidence for the conditioning nature of the hearing-dampening effect and also demonstrate that hearing sensitivity change also depends on when the animal can expect the loud sound to occur.
Collapse
Affiliation(s)
- Paul E Nachtigall
- Hawaii Institute of Marine Biology, University of Hawaii, PO Box 1106, Kailua, HI 96734, USA
| | - Alexander Ya Supin
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| | - Adam B Smith
- Hawaii Institute of Marine Biology, University of Hawaii, PO Box 1106, Kailua, HI 96734, USA
| | - Aude F Pacini
- Hawaii Institute of Marine Biology, University of Hawaii, PO Box 1106, Kailua, HI 96734, USA
| |
Collapse
|
15
|
Nachtigall PE, Supin AY, Estaban JA, Pacini AF. Learning and extinction of conditioned hearing sensation change in the beluga whale (Delphinapterus leucas). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 202:105-13. [DOI: 10.1007/s00359-015-1056-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
|
16
|
Wensveen PJ, von Benda-Beckmann AM, Ainslie MA, Lam FPA, Kvadsheim PH, Tyack PL, Miller PJO. How effectively do horizontal and vertical response strategies of long-finned pilot whales reduce sound exposure from naval sonar? MARINE ENVIRONMENTAL RESEARCH 2015; 106:68-81. [PMID: 25795075 DOI: 10.1016/j.marenvres.2015.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 05/23/2023]
Abstract
The behaviour of a marine mammal near a noise source can modulate the sound exposure it receives. We demonstrate that two long-finned pilot whales both surfaced in synchrony with consecutive arrivals of multiple sonar pulses. We then assess the effect of surfacing and other behavioural response strategies on the received cumulative sound exposure levels and maximum sound pressure levels (SPLs) by modelling realistic spatiotemporal interactions of a pilot whale with an approaching source. Under the propagation conditions of our model, some response strategies observed in the wild were effective in reducing received levels (e.g. movement perpendicular to the source's line of approach), but others were not (e.g. switching from deep to shallow diving; synchronous surfacing after maximum SPLs). Our study exemplifies how simulations of source-whale interactions guided by detailed observational data can improve our understanding about motivations behind behaviour responses observed in the wild (e.g., reducing sound exposure, prey movement).
Collapse
Affiliation(s)
- Paul J Wensveen
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, United Kingdom; Acoustics & Sonar Research Group, Netherlands Organisation for Applied Scientific Research (TNO), PO Box 96864, The Hague, 2509 JG, The Netherlands.
| | - Alexander M von Benda-Beckmann
- Acoustics & Sonar Research Group, Netherlands Organisation for Applied Scientific Research (TNO), PO Box 96864, The Hague, 2509 JG, The Netherlands
| | - Michael A Ainslie
- Acoustics & Sonar Research Group, Netherlands Organisation for Applied Scientific Research (TNO), PO Box 96864, The Hague, 2509 JG, The Netherlands
| | - Frans-Peter A Lam
- Acoustics & Sonar Research Group, Netherlands Organisation for Applied Scientific Research (TNO), PO Box 96864, The Hague, 2509 JG, The Netherlands
| | - Petter H Kvadsheim
- Maritime Systems, Norwegian Defence Research Establishment (FFI), NO-3191, Horten, Norway
| | - Peter L Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, United Kingdom
| | - Patrick J O Miller
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, United Kingdom
| |
Collapse
|
17
|
Finneran JJ, Schlundt CE, Branstetter BK, Trickey JS, Bowman V, Jenkins K. Effects of multiple impulses from a seismic air gun on bottlenose dolphin hearing and behavior. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:1634-1646. [PMID: 25920816 DOI: 10.1121/1.4916591] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To investigate the auditory effects of multiple underwater impulses, hearing thresholds were measured in three bottlenose dolphins before and after exposure to 10 impulses produced by a seismic air gun. Thresholds were measured at multiple frequencies using both psychophysical and electrophysiological (auditory evoked potential) methods. Exposures began at relatively low levels and gradually increased over a period of several months. The highest exposures featured peak sound pressure levels from 196 to 210 dB re 1 μPa, peak-peak sound pressure levels of 200-212 dB re 1 μPa, and cumulative (unweighted) sound exposure levels from 193 to 195 dB re 1 μPa(2)s. At the cessation of the study, no significant increases were observed in psychophysical thresholds; however, a small (9 dB) shift in mean auditory evoked potential thresholds, accompanied by a suppression of the evoked potential amplitude function, was seen in one subject at 8 kHz. At the highest exposure condition, two of the dolphins also exhibited behavioral reactions indicating that they were capable of anticipating and potentially mitigating the effects of impulsive sounds presented at fixed time intervals.
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152
| | | | - Brian K Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, No. 200, San Diego, California 92106
| | - Jennifer S Trickey
- National Marine Mammal Foundation, 2240 Shelter Island Drive, No. 200, San Diego, California 92106
| | - Victoria Bowman
- National Marine Mammal Foundation, 2240 Shelter Island Drive, No. 200, San Diego, California 92106
| | - Keith Jenkins
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152
| |
Collapse
|
18
|
Nachtigall PE, Supin AY. Conditioned frequency-dependent hearing sensitivity reduction in the bottlenose dolphin (Tursiops truncatus). ACTA ACUST UNITED AC 2015; 218:999-1005. [PMID: 25657210 DOI: 10.1242/jeb.114066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/21/2015] [Indexed: 11/20/2022]
Abstract
The frequency specificity of conditioned dampening of hearing, when a loud sound is preceded by a warning sound, was investigated in a bottlenose dolphin. The loud sounds were 5 s tones of 16, 22.5 or 32 kHz, sound pressure level of 165 dB root mean square (RMS) re. 1 µPa. Hearing sensitivity was tested at the same three frequencies. Hearing sensitivity was measured using pip-train test stimuli and auditory evoked potential recording. The test sound stimuli served also as warning sounds. The durations of the warning sounds were varied randomly to avoid locking a conditioning effect to the timing immediately before the loud sound. Hearing thresholds before the loud sound increased, relative to the baseline, at test frequencies equal to or higher than the loud sound frequency. The highest threshold increase appeared at test frequencies of 0.5 octaves above the loud sound frequencies.
Collapse
Affiliation(s)
- Paul E Nachtigall
- Hawaii Institute of Marine Biology, University of Hawaii, PO Box 1106, Kailua, HI 96734, USA
| | - Alexander Ya Supin
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| |
Collapse
|