1
|
Hird C, Barham KE, Franklin CE. Looking beyond the mean: quantile regression for comparative physiologists. J Exp Biol 2024; 227:jeb247122. [PMID: 38323449 PMCID: PMC10949063 DOI: 10.1242/jeb.247122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Statistical analyses that physiologists use to test hypotheses predominantly centre on means, but the tail ends of the response distribution can behave quite differently and underpin important scientific phenomena. We demonstrate that quantile regression (QR) offers a way to bypass some limitations of least squares regression (LSR) by building a picture of independent variable effects across the whole distribution of a dependent variable. We used LSR and QR with simulated and real datasets. With simulated data, LSR showed no change in the mean response but missed significant effects in the tails of the distribution found using QR. With real data, LSR showed a significant change in the mean response but missed a lack of response in the upper quantiles which was biologically revealing. Together, this highlights that QR can help to ask and answer more questions about variation in nature.
Collapse
Affiliation(s)
- Coen Hird
- School of the Environment, The University of Queensland, Brisbane (Magandjin), QLD 4072, Australia
| | - Kaitlin E. Barham
- School of the Environment, The University of Queensland, Brisbane (Magandjin), QLD 4072, Australia
| | - Craig E. Franklin
- School of the Environment, The University of Queensland, Brisbane (Magandjin), QLD 4072, Australia
| |
Collapse
|
2
|
Hawkins OH, Crawford CH, Hoover RC, Kane EA. Intraspecific variation in feeding and locomotor kinematics during prey capture in redbreast sunfish (Lepomis auritus). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:706-722. [PMID: 37306263 DOI: 10.1002/jez.2721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Biomechanics research often revolves around understanding traits impacting suction feeding performance in fishes, using freshwater ray-finned sunfishes (Family Centrarchidae) as models. However, simultaneous feeding and locomotion kinematics during prey capture are not recorded for many species and there is less information on how these kinematics vary within a species and within individuals. To (1) add to existing data on the prey capture kinematics of centrarchids, (2) assess variation in a species both within and across individuals, and (3) compare morphology and prey capture kinematics of well-sampled centrarchids, we filmed five redbreast sunfish (Lepomis auritus) at 500 fps-1 approaching and striking non-evasive prey. Redbreast approach prey at ~30 cm s-1 and use approximately 70% of their maximum gape size. Traits related to feeding are more repeatable than traits related to locomotion. However, the Accuracy Index (AI) was consistent across individuals (AI = 0.76 ± 0.07). Functionally, redbreast sunfish are more similar to bluegill sunfish but morphologically they fall in the intermediate morphospace alongside green sunfish when compared with other centrarchids. These data show that whole organism outcomes (AI) are similar despite variation present both within and across individuals and demonstrate the importance of considering both interspecific and intraspecific differences in the functional diversity of ecologically and evolutionarily important behaviors such as prey capture.
Collapse
Affiliation(s)
- Olivia H Hawkins
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Callie H Crawford
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
| | - Richard C Hoover
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Emily A Kane
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| |
Collapse
|
3
|
Chang I, Hartline DK, Lenz PH, Takagi D. Larval fish counteract ram and suction to capture evasive prey. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220714. [PMID: 36340513 PMCID: PMC9626256 DOI: 10.1098/rsos.220714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
A simple hydrodynamic model of predator-prey interactions between larval clownfish and copepod prey is used to elucidate how larval fish capture highly evasive copepods. Fish larvae are considered to be suction feeders; however, video observations revealed that successful captures by clownfish larvae were preceded by rapidly accelerating lunges (ram), while the role of suction to draw prey into the fish's mouth was less clear. Simulations were made of the fish's strike, varying strengths of ram and suction to characterize optimal strategies for copepod capture given known evasive capabilities. Our results suggest that, contrary to expectations, suction feeding is dominant only in older larvae, whereas ram feeding is the dominant mode for early larvae. Despite the relatively weak suction produced by smaller larvae, it still plays a crucial role in prey capture through hydrodynamic stealth. Escape-triggering water deformations from the strike can be cancelled through controlled suction. Experimental data obtained from larval clownfish agree with model results, suggesting that the primary role of suction in early larvae is providing hydrodynamic stealth rather than capture.
Collapse
Affiliation(s)
- Irvin Chang
- Department of Mathematics, University of Hawai'i at Mānoa, 2565 McCarthy Mall, Honolulu, HI 96822, USA
| | - Daniel K. Hartline
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Petra H. Lenz
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Daisuke Takagi
- Department of Mathematics, University of Hawai'i at Mānoa, 2565 McCarthy Mall, Honolulu, HI 96822, USA
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
4
|
Olsson KH, Gurka R, Holzman R. Trophic guilds of suction-feeding fishes are distinguished by their characteristic hydrodynamics of swimming and feeding. Proc Biol Sci 2022; 289:20211968. [PMID: 35016537 PMCID: PMC8753175 DOI: 10.1098/rspb.2021.1968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/06/2021] [Indexed: 11/12/2022] Open
Abstract
Suction-feeding in fishes is a ubiquitous form of prey capture whose outcome depends both on the movements of the predator and the prey, and on the dynamics of the surrounding fluid, which exerts forces on the two organisms. The inherent complexity of suction-feeding has challenged previous efforts to understand how the feeding strikes are modified when species evolve to feed on different prey types. Here, we use the concept of dynamic similarity, commonly applied to understanding the mechanisms of swimming, flying, walking and aquatic feeding. We characterize the hydrodynamic regimes pertaining to (i) the forward movement of the fish (ram), and (ii) the suction flows for feeding strikes of 71 species of acanthomorph fishes. A discriminant function analysis revealed that feeding strikes of zooplanktivores, generalists and piscivores could be distinguished based on their hydrodynamic regimes. Furthermore, a phylogenetic comparative analysis revealed that there are distinctive hydrodynamic adaptive peaks associated with zooplanktivores, generalists and piscivores. The scaling of dynamic similarity across species, body sizes and feeding guilds in fishes indicates that elementary hydrodynamic principles govern the trophic evolution of suction-feeding in fishes.
Collapse
Affiliation(s)
- Karin H. Olsson
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Roi Gurka
- Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC, USA
| | - Roi Holzman
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
5
|
Olsson KH, Martin CH, Holzman R. Hydrodynamic Simulations of the Performance Landscape for Suction-Feeding Fishes Reveal Multiple Peaks for Different Prey Types. Integr Comp Biol 2020; 60:1251-1267. [PMID: 32333778 PMCID: PMC7825097 DOI: 10.1093/icb/icaa021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The complex interplay between form and function forms the basis for generating and maintaining organismal diversity. Fishes that rely on suction-feeding for prey capture exhibit remarkable phenotypic and trophic diversity. Yet the relationships between fish phenotypes and feeding performance on different prey types are unclear, partly because the morphological, biomechanical, and hydrodynamic mechanisms that underlie suction-feeding are complex. Here we demonstrate a general framework to investigate the mapping of multiple phenotypic traits to performance by mapping kinematic variables to suction-feeding capacity. Using a mechanistic model of suction-feeding that is based on core physical principles, we predict prey capture performance across a broad range of phenotypic trait values, for three general prey types: mollusk-like prey, copepod-like prey, and fish-like prey. Mollusk-like prey attach to surfaces, copepod-like prey attempt to escape upon detecting the hydrodynamic disturbance produced by the predator, and fish-like prey attempt to escape when the predator comes within a threshold distance. This approach allowed us to evaluate suction-feeding performance for any combination of six key kinematic traits, irrespective of whether these trait combinations were observed in an extant species, and to generate a multivariate mapping of phenotype to performance. We used gradient ascent methods to explore the complex topography of the performance landscape for each prey type, and found evidence for multiple peaks. Characterization of phenotypes associated with performance peaks indicates that the optimal kinematic parameter range for suction-feeding on different prey types are narrow and distinct from each other, suggesting different functional constraints for the three prey types. These performance landscapes can be used to generate hypotheses regarding the distribution of extant species in trait space and their evolutionary trajectories toward adaptive peaks on macroevolutionary fitness landscapes.
Collapse
Affiliation(s)
- Karin H Olsson
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
- Inter-University Institute for Marine Sciences, Eilat 8810302, Israel
| | - Christopher H Martin
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Roi Holzman
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
- Inter-University Institute for Marine Sciences, Eilat 8810302, Israel
| |
Collapse
|
6
|
Müller UK, Berg O, Schwaner JM, Brown MD, Li G, Voesenek CJ, van Leeuwen JL. Bladderworts, the smallest known suction feeders, generate inertia-dominated flows to capture prey. THE NEW PHYTOLOGIST 2020; 228:586-595. [PMID: 32506423 DOI: 10.1111/nph.16726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 05/02/2023]
Abstract
Aquatic bladderworts (Utricularia gibba and U. australis) capture zooplankton in mechanically triggered underwater traps. With characteristic dimensions less than 1 mm, the trapping structures are among the smallest known to capture prey by suction, a mechanism that is not effective in the creeping-flow regime where viscous forces prevent the generation of fast and energy-efficient suction flows. To understand what makes suction feeding possible on the small scale of bladderwort traps, we characterised their suction flows experimentally (using particle image velocimetry) and mathematically (using computational fluid dynamics and analytical mathematical models). We show that bladderwort traps avoid the adverse effects of creeping flow by generating strong, fast-onset suction pressures. Our findings suggest that traps use three morphological adaptations: the trap walls' fast release of elastic energy ensures strong and constant suction pressure; the trap door's fast opening ensures effectively instantaneous onset of suction; the short channel leading into the trap ensures undeveloped flow, which maintains a wide effective channel diameter. Bladderwort traps generate much stronger suction flows than larval fish with similar gape sizes because of the traps' considerably stronger suction pressures. However, bladderworts' ability to generate strong suction flows comes at considerable energetic expense.
Collapse
Affiliation(s)
- Ulrike K Müller
- Department of Biology, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Otto Berg
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Janneke M Schwaner
- Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
| | - Matthew D Brown
- Department of Biology, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Gen Li
- Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Showa-machi, Kanazawa-ku, Yokohama-city, Kanagawa, 3173-25, 236-0001, Japan
| | - Cees J Voesenek
- Experimental Zoology Group, Wageningen University, De Elst 1, Wageningen, 6708WD, the Netherlands
| | - Johan L van Leeuwen
- Experimental Zoology Group, Wageningen University, De Elst 1, Wageningen, 6708WD, the Netherlands
| |
Collapse
|
7
|
Deban SM, Holzman R, Müller UK. Suction Feeding by Small Organisms: Performance Limits in Larval Vertebrates and Carnivorous Plants. Integr Comp Biol 2020; 60:852-863. [PMID: 32658970 DOI: 10.1093/icb/icaa105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Suction feeding has evolved independently in two highly disparate animal and plant systems, aquatic vertebrates and carnivorous bladderworts. We review the suction performance of animal and plant suction feeders to explore biomechanical performance limits for aquatic feeders based on morphology and kinematics, in the context of current knowledge of suction feeding. While vertebrates have the greatest diversity and size range of suction feeders, bladderworts are the smallest and fastest known suction feeders. Body size has profound effects on aquatic organismal function, including suction feeding, particularly in the intermediate flow regime that tiny organisms can experience. A minority of tiny organisms suction feed, consistent with model predictions that generating effective suction flow is less energetically efficient and also requires more flow-rate specific power at small size. Although the speed of suction flows generally increases with body and gape size, some specialized tiny plant and animal predators generate suction flows greater than those of suction feeders 100 times larger. Bladderworts generate rapid flow via high-energy and high-power elastic recoil and suction feed for nutrients (relying on photosynthesis for energy). Small animals may be limited by available muscle energy and power, although mouth protrusion can offset the performance cost of not generating high suction pressure. We hypothesize that both the high energetic costs and high power requirements of generating rapid suction flow shape the biomechanics of small suction feeders, and that plants and animals have arrived at different solutions due in part to their different energy budgets.
Collapse
Affiliation(s)
- Stephen M Deban
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave, SCA 110, Tampa, FL 33620, USA
| | - Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.,The Inter-University for Marine Sciences in Eilat, Israel
| | - Ulrike K Müller
- Department of Biology, California State University Fresno, Fresno, CA 93740, USA
| |
Collapse
|
8
|
Dial TR, Lauder GV. Longer development provides first-feeding fish time to escape hydrodynamic constraints. J Morphol 2020; 281:956-969. [PMID: 32557795 DOI: 10.1002/jmor.21224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 11/08/2022]
Abstract
What is the functional effect of prolonged development? By controlling for size, we quantify first-feeding performance and hydrodynamics of zebrafish and guppy offspring (5 ± 0.5 mm in length), which differ fivefold in developmental time and twofold in ontogenetic state. By manipulating water viscosity, we control the hydrodynamic regime, measured as Reynolds number. We predicted that if feeding performance were strictly the result of hydrodynamics, and not development, feeding performance would scale with Reynolds number. We find that guppy offspring successfully feed at much greater distances to prey (1.0 vs. 0.2 mm) and with higher capture success (90 vs. 20%) compared with zebrafish larvae, and that feeding performance was not a result of Reynolds number alone. Flow visualization shows that zebrafish larvae produce a bow wave ~0.2 mm in length, and that the flow field produced during suction does not extend beyond this bow wave. Due to well-developed oral jaw protrusion, the similar-sized suction field generated by guppy offspring extends beyond the horizon of their bow wave, leading to successful prey capture from greater distances. These findings suggest that prolonged development and increased ontogenetic state provides first-feeding fish time to escape the pervasive hydrodynamic constraints (bow wave) of being small.
Collapse
Affiliation(s)
- Terry R Dial
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Krishnan K, Nafi AS, Gurka R, Holzman R. The hydrodynamic regime drives flow reversals in suction-feeding larval fishes during early ontogeny. J Exp Biol 2020; 223:jeb214734. [PMID: 32253288 PMCID: PMC7240303 DOI: 10.1242/jeb.214734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/24/2020] [Indexed: 11/20/2022]
Abstract
Fish larvae are the smallest self-sustaining vertebrates. As such, they face multiple challenges that stem from their minute size, and from the hydrodynamic regime in which they dwell. This regime, of intermediate Reynolds numbers, was shown to affect the swimming of larval fish and impede their ability to capture prey. Prey capture is impeded because smaller larvae produce weaker suction flows, exerting weaker forces on the prey. Previous observations on feeding larvae also showed prey exiting the mouth after initially entering it (hereafter 'in-and-out'), although the mechanism causing such failures had been unclear. In this study, we used numerical simulations to investigate the hydrodynamic mechanisms responsible for the failure to feed caused by this in-and-out prey movement. Detailed kinematics of the expanding mouth during prey capture by larval Sparus aurata were used to parameterize age-specific numerical models of the flows inside the mouth. These models revealed that for small larvae which expand their mouth slowly, fluid entering the mouth cavity is expelled through the mouth before it is closed, resulting in flow reversal at the orifice. This relative efflux of water through the mouth was >8% of the influx through the mouth for younger ages. However, similar effluxes were found when we simulated slow strikes by larger fish. The simulations can explain the observations of larval fish failing to feed because of the in-and-out movement of the prey. These results further highlight the importance of transporting the prey from the gape deeper into the mouth cavity in determining suction-feeding success.
Collapse
Affiliation(s)
- Krishnamoorthy Krishnan
- School of Coastal and Marine Systems Science, Coastal Carolina University, Conway, SC 29526, USA
| | - Asif Shahriar Nafi
- School of Coastal and Marine Systems Science, Coastal Carolina University, Conway, SC 29526, USA
| | - Roi Gurka
- School of Coastal and Marine Systems Science, Coastal Carolina University, Conway, SC 29526, USA
| | - Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| |
Collapse
|
10
|
Berg O, Singh K, Hall MR, Schwaner MJ, Müller UK. Thermodynamics of the Bladderwort Feeding Strike-Suction Power from Elastic Energy Storage. Integr Comp Biol 2020; 59:1597-1608. [PMID: 31406979 DOI: 10.1093/icb/icz144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The carnivorous plant bladderwort exemplifies the use of accumulated elastic energy to power motion: respiration-driven pumps slowly load the walls of its suction traps with elastic energy (∼1 h). During a feeding strike, this energy is released suddenly to accelerate water (∼1 ms). However, due to the traps' small size and concomitant low Reynolds number, a significant fraction of the stored energy may be dissipated as viscous friction. Such losses and the mechanical reversibility of Stokes flow are thought to degrade the feeding success of other suction feeders in this size range, such as larval fish. In contrast, triggered bladderwort traps are generally successful. By mapping the energy budget of a bladderwort feeding strike, we illustrate how this smallest of suction feeders can perform like an adult fish.
Collapse
Affiliation(s)
- Otto Berg
- Department of Chemistry, California State University Fresno, Fresno, CA, USA
| | - Krizma Singh
- Department of Biology, California State University Fresno, Fresno, CA, USA
| | - Maxwell R Hall
- Department of Biology, California State University Fresno, Fresno, CA, USA
| | | | - Ulrike K Müller
- Department of Biology, California State University Fresno, Fresno, CA, USA
| |
Collapse
|
11
|
Suction Flows Generated by the Carnivorous Bladderwort Utricularia—Comparing Experiments with Mechanical and Mathematical Models. FLUIDS 2020. [DOI: 10.3390/fluids5010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Suction feeding is a well-understood feeding mode among macroscopic aquatic organisms. The little we know about small suction feeders from larval fish suggests that small suction feeders are not effective. Yet bladderworts, an aquatic carnivorous plant with microscopic underwater traps, have strong suction performances despite having the same mouth size as that of fish larvae. Previous experimental studies of bladderwort suction feeding have focused on the solid mechanics of the trap door’s opening mechanism rather than the mechanics of fluid flow. As flows are difficult to study in small suction feeders due to their small size and brief event durations, we combine flow visualization on bladderwort traps with measurements on a mechanical, dynamically scaled model of a suction feeder. We find that bladderwort traps generate flows that are more similar to the inertia-dominated flows of adult fish than the viscosity-dominated flows of larval fish. Our data further suggest that axial flow transects through suction flow fields, often used in biological studies to characterize suction flows, are less diagnostic of the relative contribution of inertia versus viscosity than transverse transects.
Collapse
|
12
|
Abstract
Hagfish slime is a unique predator defence material containing a network of long fibrous threads each ∼10 cm in length. Hagfish release the threads in a condensed coiled state known as skeins (∼100 µm), which must unravel within a fraction of a second to thwart a predator attack. Here we consider the hypothesis that viscous hydrodynamics can be responsible for this rapid unravelling, as opposed to chemical reaction kinetics alone. Our main conclusion is that, under reasonable physiological conditions, unravelling due to viscous drag can occur within a few hundred milliseconds, and is accelerated if the skein is pinned at a surface such as the mouth of a predator. We model a single skein unspooling as the fibre peels away due to viscous drag. We capture essential features by considering simplified cases of physiologically relevant flows and one-dimensional scenarios where the fibre is aligned with streamlines in either uniform or uniaxial extensional flow. The peeling resistance is modelled with a power-law dependence on peeling velocity. A dimensionless ratio of viscous drag to peeling resistance appears in the dynamical equations and determines the unraveling time scale. Our modelling approach is general and can be refined with future experimental measurements of peel strength for skein unravelling. It provides key insights into the unravelling process, offers potential answers to lingering questions about slime formation from threads and mucous vesicles, and will aid the growing interest in engineering similar bioinspired material systems.
Collapse
Affiliation(s)
- Gaurav Chaudhary
- 1 Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, IL , USA
| | - Randy H Ewoldt
- 1 Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, IL , USA
| | | |
Collapse
|
13
|
Galindo D, Sweet E, DeLeon Z, Wagner M, DeLeon A, Carter C, McMenamin SK, Cooper WJ. Thyroid hormone modulation during zebrafish development recapitulates evolved diversity in danionin jaw protrusion mechanics. Evol Dev 2019; 21:231-246. [PMID: 31374588 PMCID: PMC6815664 DOI: 10.1111/ede.12299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protrusile jaws are a highly useful innovation that has been linked to extensive diversification in fish feeding ecology. Jaw protrusion can enhance the performance of multiple functions, such as suction production and capturing elusive prey. Identifying the developmental factors that alter protrusion ability will improve our understanding of fish diversification. In the zebrafish protrusion arises postmetamorphosis. Fish metamorphosis typically includes significant changes in trophic morphology, accompanies a shift in feeding niche and coincides with increased thyroid hormone production. We tested whether thyroid hormone affects the development of zebrafish feeding mechanics. We found that it affected all developmental stages examined, but that effects were most pronounced after metamorphosis. Thyroid hormone levels affected the development of jaw morphology, feeding mechanics, shape variation, and cranial ossification. Adult zebrafish utilize protrusile jaws, but an absence of thyroid hormone impaired development of the premaxillary bone, which is critical to jaw protrusion. Premaxillae from early juvenile zebrafish and hypothyroid adult zebrafish resemble those from adults in the genera Danionella, Devario, and Microdevario that show little to no jaw protrusion. Our findings suggest that evolutionary changes in how the developing skulls of danionin minnows respond to thyroid hormone may have promoted diversification into different feeding niches.
Collapse
Affiliation(s)
- Demi Galindo
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Elly Sweet
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Zoey DeLeon
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Mitchel Wagner
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Adrian DeLeon
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Casey Carter
- School of Biological Sciences, Washington State University, Pullman, Washington
| | | | - W. James Cooper
- School of Biological Sciences, Washington State University, Pullman, Washington
| |
Collapse
|
14
|
Zingel P, Agasild H, Karus K, Buholce L, Nõges T. Importance of ciliates as food for fish larvae in a shallow sea bay and a large shallow lake. Eur J Protistol 2019; 67:59-70. [DOI: 10.1016/j.ejop.2018.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
|
15
|
Sommerfeld N, Holzman R. The interaction between suction feeding performance and prey escape response determines feeding success in larval fish. J Exp Biol 2019; 222:jeb.204834. [DOI: 10.1242/jeb.204834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/29/2019] [Indexed: 01/22/2023]
Abstract
The survival of larval marine fishes during early development depends on their ability to capture prey. Most larval fish capture prey by expanding their mouth, generating a “suction flow” that draws the prey into it. These larvae dwell in a hydrodynamic regime of intermediate Reynolds numbers, shown to impede their ability to capture non-evasive prey. However, the marine environment is characterized by an abundance of evasive prey, such as Copepods. These organisms sense the hydrodynamic disturbance created by approaching predators and perform high-acceleration escape maneuvers. Using a 3D high-speed video system, we characterized the interaction between Sparus aurata larvae and prey from a natural zooplankton assemblage that contained evasive prey, and assessed the factors that determine the outcome of these interactions. 8-33 day post hatching larvae preferentially attacked large prey that was moving prior to the initialization of the strike, however feeding success was lower for larger, more evasive prey. Thus, larvae were challenged in capturing their preferred prey. Larval feeding success increased with increasing Reynolds numbers, but decreased sharply when the prey performed an escape maneuver. The kinematics of successful strikes resulted in a shorter response time but higher hydrodynamic signature available for the prey, suggesting that strike success in our experiments was determined by brevity rather than stealth, i.e. executing a fast strike eliminated a potential escape response by the prey. Our observations of prey selectivity as it happens, reveal that larval performance, rather than preferences, determines their diet during early development.
Collapse
Affiliation(s)
- Noam Sommerfeld
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| | - Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| |
Collapse
|
16
|
Koch L, Shainer I, Gurevich T, Holzman R. The Expression of agrp1, A Hypothalamic Appetite-Stimulating Neuropeptide, Reveals Hydrodynamic-Induced Starvation in a Larval Fish. Integr Org Biol 2018. [DOI: 10.1093/iob/oby003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Larval fish suffer dramatic mortality in the days following transition to autonomous feeding, with over 90% of larvae being eliminated within a period of few weeks. Recent work has shown that the hydrodynamic environment experienced by recently-hatched larvae impedes their feeding rates even under high prey densities. Here, we quantified starvation through early ontogeny in Sparus aurata larvae (8–18 days post-hatching; DPH) and tested whether the emerging ontogenetic pattern is consistent with that expected one based on the hydrodynamic environment that these larvae experience. We screened three candidate genes agrp1, npy, and hsp70, whose expression was previously shown to respond to starvation in fish. Of the three genes, agrp1 was identified as a suitable indicator for starvation. Localization of agrp1 mRNA by whole-mount in-situ hybridization confirmed that, in S. aurata larvae, agrp1 is expressed only in the hypothalamus. Quantification of agrp1 mRNA using real-time PCR revealed that the expression of this gene is elevated in starved compared to fed larvae, and in younger (8 DPH) compared to older larvae (18 DPH). Manipulating the water viscosity to simulate the hydrodynamic conditions during the onset of the critical period led to increased agrp1 expression. These findings suggest that the hydrodynamic constraints on larval feeding lead to the starvation of small larvae. Further, they provide a mechanistic explanation for the “safe harbor” hypothesis, which postulates that larvae should allocate resources toward rapid linear growth to escape detrimental effects of dwelling in an environment where viscous fluid forces dominate.
Collapse
Affiliation(s)
- L Koch
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - I Shainer
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - T Gurevich
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - R Holzman
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| |
Collapse
|
17
|
China V, Levy L, Liberzon A, Elmaliach T, Holzman R. Hydrodynamic regime determines the feeding success of larval fish through the modulation of strike kinematics. Proc Biol Sci 2018; 284:rspb.2017.0235. [PMID: 28446697 DOI: 10.1098/rspb.2017.0235] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 11/12/2022] Open
Abstract
Larval fishes experience extreme mortality rates, with 99% of a cohort perishing within days after starting to actively feed. While recent evidence suggests that hydrodynamic factors contribute to constraining larval feeding during early ontogeny, feeding is a complex process that involves numerous interacting behavioural and biomechanical components. How these components change throughout ontogeny and how they contribute to feeding remain unclear. Using 339 observations of larval feeding attempts, we quantified the effects of morphological and behavioural traits on feeding success of Sparus aurata larvae during early ontogeny. Feeding success was determined using high-speed videography, under both natural and increased water viscosity treatments. Successful strikes were characterized by Reynolds numbers that were an order of magnitude higher than those of failed strikes. The pattern of increasing strike success with increasing age was driven by the ontogeny of traits that facilitate the transition to higher Reynolds numbers. Hence, the physical growth of a larva plays an important role in its transition to a hydrodynamic regime of higher Reynolds numbers, in which suction feeding is more effective.
Collapse
Affiliation(s)
- Victor China
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Liraz Levy
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Alex Liberzon
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Elmaliach
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Roi Holzman
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel .,The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| |
Collapse
|
18
|
Jacobs C, Holzman R. Conserved spatio-temporal patterns of suction-feeding flows across aquatic vertebrates: a comparative flow visualization study. J Exp Biol 2018; 221:jeb.174912. [DOI: 10.1242/jeb.174912] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/28/2018] [Indexed: 11/20/2022]
Abstract
Suction feeding is a widespread prey capture strategy among aquatic vertebrates. It is almost omnipresent across fishes, and has repeatedly evolved in other aquatic vertebrates. By rapidly expanding the mouth cavity, suction-feeders generate a fluid flow outside of their mouth, drawing prey inside. Fish and other suction feeding organisms display remarkable trophic diversity, echoed in the diversity of their skull and mouth morphologies. Yet, it is unclear how variable suction flows are across species, and whether variation in suction flows supports trophic diversity. Using a high-speed flow visualization technique, we characterized the spatio-temporal patterns in the flow fields produced during feeding in 14 species of aquatic suction feeders. We found that suction-feeding hydrodynamics are highly conserved across species. Suction flows affected only a limited volume of ∼1 gape diameter away from the mouth, and peaked around the timing of maximal mouth opening. The magnitude of flow speed increased with increasing mouth diameter and, to a lesser extent, with decreasing time to peak gape opening. Other morphological, kinematic and behavioral variables played a minor role in shaping suction-feeding dynamics. We conclude that the trophic diversity within fishes, and likely other aquatic vertebrates, is not supported by a diversity of mechanisms that modify the characteristics of suction flow. Rather, we suggest that suction feeding supports such trophic diversity due to the general lack of strong trade-offs with other mechanisms that contribute to prey capture.
Collapse
Affiliation(s)
- Corrine Jacobs
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| | - Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| |
Collapse
|
19
|
McMenamin S, Carter C, Cooper WJ. Thyroid Hormone Stimulates the Onset of Adult Feeding Kinematics in Zebrafish. Zebrafish 2017; 14:517-525. [PMID: 28933679 DOI: 10.1089/zeb.2017.1453] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The physical demands for swimming and feeding change dramatically over the course of development for many aquatic animals. Indeed, in teleosts, the transition from larva to adult involves major shifts in both trophic morphology and feeding behavior. A spike in thyroid hormone (TH) coordinates many developmental processes that occur during this adult transition in numerous vertebrate species. Using mutant and transgenic zebrafish, we tested the hypothesis that TH is essential for the transition from larval to adult feeding kinematic profiles. We found that every measured kinematic variable that distinguished larvae from adults also differentiated hypothyroid from wild-type (WT) euthyroid adults, suggesting that TH is indeed necessary for the onset of mature feeding behaviors. In contrast, feeding kinematics in hyperthyroid adults were extremely similar to those measured in euthyroid adults. Altered TH signaling underlies pedomorphosis in some amphibian species, and Danionella is a pedomorphic danionin genus. We therefore tested whether feeding kinematics of adult Danionella would more closely match larval zebrafish (and hypothyroid adults) than WT adult zebrafish. We found Danionella feeding kinematics resemble those of larval (and hypothyroid) zebrafish in multiple respects. Overall, we conclude that TH is essential in stimulating the onset of adult feeding kinematics in zebrafish, and that some of the underlying developmental pathways may have been lost in Danionella.
Collapse
Affiliation(s)
- Sarah McMenamin
- 1 Biology Department, Boston College , Chestnut Hill, Massachusetts
| | - Casey Carter
- 2 School of Biological Sciences, Washington State University Tri-cities , Richland, Washington
| | - Wiliam James Cooper
- 2 School of Biological Sciences, Washington State University Tri-cities , Richland, Washington
| |
Collapse
|
20
|
Abstract
Inhalant flows draw fluid into an orifice from a reservoir and are ubiquitous in engineering and biology. Surprisingly, there is a lack of quantitative information on viscous inhalant flows. We consider here laminar flows (Reynolds number Re≤100) developing after impulsive inhalation begins. We implement finite element simulations of flows with varying Re and extraction height h (orifice height above a bottom bed). Numerical results are experimentally validated using particle image velocimetry measurements in a physical model for a representative flow case in the middle of the Re-h parameter space. We use two metrics to characterize the flow in space and time: regions of influence (ROIs), which describe the spatial extent of the flow field, and inhalation volumes, which describe the initial distribution of inhaled fluid. The transient response for all Re features an inviscid sinklike component at early times followed by a viscous diffusive component. At lower Re, diffusion entrains an increasing volume of fluid over time, enlarging the ROI indefinitely. In some geometries, these flows spatially bifurcate, with some fluid being inhaled through the orifice and some bypassing into recirculation. At higher Re, inward advection dominates outward viscous diffusion and the flow remains trapped in a sinklike state. Both ROIs and inhalation volumes are strongly dependent on Re and extraction height, suggesting that organisms or engineers could tune these parameters to achieve specific inhalation criteria.
Collapse
Affiliation(s)
- Aaron C True
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0428, USA
| | - John P Crimaldi
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0428, USA
| |
Collapse
|
21
|
Önal U, Langdon C. Diet Size Preference of Zebrafish (Danio rerio) Larvae Fed on Cross-Linked Protein-Walled Capsules. Zebrafish 2016; 13:556-562. [PMID: 27788061 DOI: 10.1089/zeb.2016.1307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To optimize diet particle size for ingestion by zebrafish larvae, Danio rerio, a series of diet selection experiments were carried out using two different length classes: 5-day-old, first feeding larvae with a mean standard length (MLs) of 3.8 mm and 15-day-old larvae with MLs of 5.2 mm. For this purpose, crosslinked protein-walled capsules with five different size classes (≤20, 21-45, 46-75, 76-106, and 107-212 μm) were used in selection experiments. A particle size selection model was then developed after accounting for both rate of loss of capsules in the water column and their ingestion by larvae. Results indicated that concentration of larger particles in the water column decreased rapidly and less than 20% of capsules larger than 75 μm were available for the larvae after 30 min. Zebrafish larvae accepted a wide range of particle sizes, but larvae preferred particles much smaller than the maximum size they could ingest. While first feeding larvae preferred 21-45 μm capsules, 15-day-old larvae preferred capsules in the 47-75 μm size range. A better understanding of the behavior of small-sized food particles in the water column and their acquisition by fish larvae is important to optimize feeding protocols in successful larvae culture.
Collapse
Affiliation(s)
- Umur Önal
- 1 Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University , Çanakkale, Turkey
| | - Chris Langdon
- 2 Coastal Oregon Marine Experiment Station and Department of Fisheries and Wildlife, Oregon State University , Newport, Oregon
| |
Collapse
|
22
|
Uslu FE, Pekkan K. Mytilus galloprovincialis as a smart micro-pump. Biol Open 2016; 5:1493-1499. [PMID: 27612512 PMCID: PMC5087679 DOI: 10.1242/bio.021048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022] Open
Abstract
Hydrodynamic performance of the marine mussel, Mytilus galloprovincialis, is studied with time-resolved particle image velocimetry. We evaluated inhalant flow, exhalant jet flow, suction performance and flow control capabilities of the mussels quantitatively. Inhalant flow structures of mussels are measured at the coronal plane for the first time in literature. Nutrient fluid is convected into the mussel by three-dimensional sink flow. Inhalant velocity reaches its highest magnitude inside the mussel mantle while it is accelerating outward from the mussels. We calculated pressure gradient at the coronal plane. As inhalant flow approaches the mussel shell tip, suction force generated by the inhalant flow increases and becomes significant at the shell tip. Likewise, exhalant jet flow regimes were studied for 17 mussels. Mussels can control their exhalant jet flow structure from a single potential core region to double potential core region or vice versa. Peak exhalant jet velocity generated by the mussels changes between 2.77 cm s-1 and 11.1 cm s-1 as a function of mussel cavity volume. Measurements of hydrodynamic dissipation at the sagittal plane revealed no interaction between the inhalant and exhalant jet flow, indicating energy-efficient synchronized pumping mechanism. This efficient pumping mechanism is associated with the flow-turning angle between inhalant and exhalant jet flows, ∼90° (s.d. 12°).
Collapse
Affiliation(s)
- Fazil E Uslu
- Mechanical Engineering Department, Koc University, Istanbul 34450, Turkey
| | - Kerem Pekkan
- Mechanical Engineering Department, Koc University, Istanbul 34450, Turkey
| |
Collapse
|
23
|
Neves MP, Delariva RL, Guimarães ATB, Sanches PV. Carnivory during Ontogeny of the Plagioscion squamosissimus: A Successful Non-Native Fish in a Lentic Environment of the Upper Paraná River Basin. PLoS One 2015; 10:e0141651. [PMID: 26524336 PMCID: PMC4629902 DOI: 10.1371/journal.pone.0141651] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/12/2015] [Indexed: 11/21/2022] Open
Abstract
This study evaluated feeding patterns and ontogenetic variations in a non-native fish species (Plagioscion squamosissimus) in an isolated lake in the Upper Paraná River floodplain. Quarterly samplings were performed from April 2005 to February 2006 using plankton nets to capture larvae, seining nets for juveniles, and gill nets and trammel for adults. Stomach contents (n = 378) were examined according to the volumetric method in which the volume of each food item was estimated using graduated test tubes or a glass counting plate. During early development (larval stage), P. squamosissimus consumed mainly Cladocera and Copepoda. Juveniles showed a more diverse diet, including shrimp (Macrobrachium amazonicum), fish, aquatic insects (Trichoptera, Ephemeroptera, Chironomidae and pupae of Diptera) and plants. It was notable the high proportion of cannibalism (23.3%) in this stage. Adults consumed predominantly shrimp and fish. The use of food resources varied significantly between development stages (ANOSIM; r = 0.458; p<0.005), showing changes in food preferences during ontogeny. The Similarity Percentage Analysis (SIMPER) indicated that Cladocera and Copepoda were responsible for the differences observed between the larval stages of pre-flexion, flexion and post-flexion. M. amazonicum and Chironomidae were responsible for the differences between juvenile and larval stages, while M. amazonicum and other fishes caused the differences between adults and other ontogenetic stages. These results are confirmed by the relationship between standard length and developmental periods (ANCOVA; r2 = 0.94; p<0.0001). In general, there were low values of trophic niche breadth. The essentially carnivorous habit from the early stages of P. squamosissimus and the predominant use of M. amazonicum by adults have important roles in feeding patterns of the species, suggesting a major contribution to its success and establishment, especially in lentic environments.
Collapse
Affiliation(s)
- Mayara Pereira Neves
- Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Rosilene Luciana Delariva
- Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Ana Tereza Bittencourt Guimarães
- Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Paulo Vanderlei Sanches
- Pós-Graduação em Recursos Pesqueiros e Engenharia de Pesca, Universidade Estadual do Oeste do Paraná, Toledo, Paraná, Brazil
| |
Collapse
|
24
|
Day SW, Higham TE, Holzman R, Van Wassenbergh S. Morphology, Kinematics, and Dynamics: The Mechanics of Suction Feeding in Fishes. Integr Comp Biol 2015; 55:21-35. [PMID: 25980568 DOI: 10.1093/icb/icv032] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Suction feeding is pervasive among aquatic vertebrates, and our understanding of the functional morphology and biomechanics of suction feeding has recently been advanced by combining experimental and modeling approaches. Key advances include the visualization of the patterns of flow in front of the mouth of a feeding fish, the measurement of pressure inside their mouth cavity, and the employment of analytical and computational models. Here, we review the key components of the morphology and kinematics of the suction-feeding system of anatomically generalized, adult ray-finned fishes, followed by an overview of the hydrodynamics involved. In the suction-feeding apparatus, a strong mechanistic link among morphology, kinematics, and the capture of prey is manifested through the hydrodynamic interactions between the suction flows and solid surfaces (the mouth cavity and the prey). It is therefore a powerful experimental system in which the ecology and evolution of the capture of prey can be studied based on first principals.
Collapse
Affiliation(s)
- Steven W Day
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium Steven.Day@RIT
| | - Timothy E Higham
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | - Roi Holzman
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | - Sam Van Wassenbergh
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| |
Collapse
|
25
|
Holzman R, China V, Yaniv S, Zilka M. Hydrodynamic Constraints of Suction Feeding in Low Reynolds Numbers, and the Critical Period of Larval Fishes. Integr Comp Biol 2015; 55:48-61. [DOI: 10.1093/icb/icv030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Van Wassenbergh S. A Solution Strategy to Include the Opening of the Opercular Slits in Moving-Mesh CFD Models of Suction Feeding. Integr Comp Biol 2015; 55:62-73. [DOI: 10.1093/icb/icv031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|