1
|
Yu H, Liang S, Muijres FT, te Lindert JS, de Knegt HJ, Hedenström A, Lamers KP, Henningsson P. Flight activity and effort of breeding pied flycatchers in the wild, revealed with accelerometers and machine learning. J Exp Biol 2024; 227:jeb247606. [PMID: 39284689 PMCID: PMC11491815 DOI: 10.1242/jeb.247606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
Flight behaviours of birds have been extensively studied from different angles such as their kinematics, aerodynamics and, more generally, their migration patterns. Nevertheless, much is still unknown about the daily foraging flight activity and behaviour of breeding birds, and potential differences among males and females. The recent development of miniaturized accelerometers allows us a glimpse into the daily life of a songbird. Here, we tagged 13 male and 13 female pied flycatchers (Ficedula hypoleuca) with accelerometers and used machine learning approaches to analyse their flight activity and effort during the chick rearing period. We found that during 2 h of foraging, chick-rearing pied flycatchers were flying on average 13.7% of the time. Almost all flights (>99%) were short flights lasting less than 10 s. Flight activity changed throughout the day and was highest in the morning and lowest in the early afternoon. Male pied flycatchers had lower wing loading than females, and in-flight accelerations were inversely correlated with wing loading. Despite this, we found no significant differences in flight duration and intensity between sexes. This suggests that males possess a higher potential flight performance, which they did not fully utilize during foraging flights.
Collapse
Affiliation(s)
- Hui Yu
- Experimental Zoology Group, Wageningen University, 6708 WD Wageningen, The Netherlands
| | | | - Florian T. Muijres
- Experimental Zoology Group, Wageningen University, 6708 WD Wageningen, The Netherlands
| | | | - Henrik J. de Knegt
- Wildlife Ecology and Conservation Group, Wageningen University, 6708 WD Wageningen, The Netherlands
| | - Anders Hedenström
- Department of Biology, Lund University, Naturvetarvägen 6A, 223 62 Lund, Sweden
| | - Koosje P. Lamers
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 CC Groningen, The Netherlands
| | - Per Henningsson
- Department of Biology, Lund University, Naturvetarvägen 6A, 223 62 Lund, Sweden
- Danish Hydraulic Institute (DHI), Agern Alle 5, 2970 Hørsholm, Denmark
| |
Collapse
|
2
|
Schalcher K, Milliet E, Séchaud R, Bühler R, Almasi B, Potier S, Becciu P, Roulin A, Shepard ELC. Landing force reveals new form of motion-induced sound camouflage in a wild predator. eLife 2024; 12:RP87775. [PMID: 39046781 PMCID: PMC11268889 DOI: 10.7554/elife.87775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Predator-prey arms races have led to the evolution of finely tuned disguise strategies. While the theoretical benefits of predator camouflage are well established, no study has yet been able to quantify its consequences for hunting success in natural conditions. We used high-resolution movement data to quantify how barn owls (Tyto alba) conceal their approach when using a sit-and-wait strategy. We hypothesized that hunting barn owls would modulate their landing force, potentially reducing noise levels in the vicinity of prey. Analysing 87,957 landings by 163 individuals equipped with GPS tags and accelerometers, we show that barn owls reduce their landing force as they approach their prey, and that landing force predicts the success of the following hunting attempt. Landing force also varied with the substrate, being lowest on man-made poles in field boundaries. The physical environment, therefore, affects the capacity for sound camouflage, providing an unexpected link between predator-prey interactions and land use. Finally, hunting strike forces in barn owls were the highest recorded in any bird, relative to body mass, highlighting the range of selective pressures that act on landings and the capacity of these predators to modulate their landing force. Overall, our results provide the first measurements of landing force in a wild setting, revealing a new form of motion-induced sound camouflage and its link to hunting success.
Collapse
Affiliation(s)
- Kim Schalcher
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Estelle Milliet
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Robin Séchaud
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
- Agroecology and Environment, AgroscopeZurichSwitzerland
| | - Roman Bühler
- Swiss Ornithological InstituteSempachSwitzerland
| | | | - Simon Potier
- Department of Biology, Lund UniversityLundSweden
- Les Ailes de l’UrgaMarcilly-la-CampagneFrance
| | - Paolo Becciu
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Emily LC Shepard
- Department of Biosciences, Swansea UniversitySwanseaUnited Kingdom
| |
Collapse
|
3
|
Provini P, Camp AL, Crandell KE. Emerging biological insights enabled by high-resolution 3D motion data: promises, perspectives and pitfalls. J Exp Biol 2023; 226:286825. [PMID: 36752301 PMCID: PMC10038148 DOI: 10.1242/jeb.245138] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Deconstructing motion to better understand it is a key prerequisite in the field of comparative biomechanics. Since Marey and Muybridge's work, technical constraints have been the largest limitation to motion capture and analysis, which, in turn, limited what kinds of questions biologists could ask or answer. Throughout the history of our field, conceptual leaps and significant technical advances have generally worked hand in hand. Recently, high-resolution, three-dimensional (3D) motion data have become easier to acquire, providing new opportunities for comparative biomechanics. We describe how adding a third dimension of information has fuelled major paradigm shifts, not only leading to a reinterpretation of long-standing scientific questions but also allowing new questions to be asked. In this paper, we highlight recent work published in Journal of Experimental Biology and influenced by these studies, demonstrating the biological breakthroughs made with 3D data. Although amazing opportunities emerge from these technical and conceptual advances, high-resolution data often come with a price. Here, we discuss challenges of 3D data, including low-throughput methodology, costly equipment, low sample sizes, and complex analyses and presentation. Therefore, we propose guidelines for how and when to pursue 3D high-resolution data. We also suggest research areas that are poised for major new biological advances through emerging 3D data collection.
Collapse
Affiliation(s)
- Pauline Provini
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, F-75004 Paris, France
- Learning Planet Institute, F-75004 Paris, France
- Département Adaptations du Vivant, UMR 7179 CNRS/Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Ariel L Camp
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L78TX, UK
| | | |
Collapse
|
4
|
Whitehead JG, Worrell T, Socha JJ. Mallard landing behavior on water follows a -constant braking strategy. J Exp Biol 2023; 226:287071. [PMID: 36807532 DOI: 10.1242/jeb.244256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023]
Abstract
Many flying animals use optic flow to control their flight. During landing maneuvers, pigeons, hummingbirds, bats, Draco lizards and bees use the -constant braking strategy. This strategy regulates the approach by keeping the ratio of distance to an object and the rate of change of that distance constant. In keeping this ratio, , constant, a variety of deceleration profiles can lead to different collision avoidance behaviors. The landing behaviors listed above all qualify as controlled collisions, where the animal is decelerating into the object. We examined whether the same regulatory strategy is employed by mallards when landing on water. Video of mallard landing behavior was recorded at a local pond and digitized. Kinematic and τ parameters were calculated for each landing (N=177). The Pearson correlation coefficient for τ with respect to time to land was 0.99±0.02, indicating mallards employ a controlled-collision strategy. This result implies regulation by the birds to fix as constant while landing (on average, 0.90±0.13). In comparison with other active flyers, mallards use a higher value of when landing (0.775±0.109, 0.710±0.132 and 0.702±0.052 for pigeons, hummingbirds and bats, respectively). This higher may reflect physical differences in substrate from solid to liquid. The higher compliance of water in comparison to a solid substrate may reduce impact forces that could be injurious on a solid substrate, thereby enabling mallards to approach faster and expend less energy for costly, slow flight.
Collapse
Affiliation(s)
- John G Whitehead
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Terrell Worrell
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24060, USA
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
5
|
Garant RC, Tobalske BW, Ben Sassi N, van Staaveren N, Tulpan D, Widowski T, Powers DR, Harlander-Matauschek A. Does wing use and disuse cause behavioural and musculoskeletal changes in domestic fowl ( Gallus gallus domesticus)? ROYAL SOCIETY OPEN SCIENCE 2023; 10:220809. [PMID: 36704252 PMCID: PMC9874265 DOI: 10.1098/rsos.220809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Domestic chickens may live in environments which restrict wing muscle usage. Notably, reduced wing activity and accompanying muscle weakness are hypothesized risk factors for keel bone fractures and deviations. We used radio-frequency identification (RFID) to measure duration spent at elevated resources (feeders, nest-boxes), ultrasonography to measure muscle thickness (breast and lower leg) changes, radiography and palpation to determine fractures and deviations, respectively, following no, partial (one-sided wing sling) and full (cage) immobilization in white- and brown-feathered birds. We hypothesized partially immobilized hens would reduce elevated resource usage and that both immobilization groups would show decreased pectoralis thickness (disuse) and increased prevalence of fractures and deviations. Elevated nest-box usage was 42% lower following five weeks of partial immobilization for brown-feathered hens but no change in resource usage in white-feathered birds was observed. Fully immobilized, white-feathered hens showed a 17% reduction in pectoralis thickness, while the brown-feathered counterparts showed no change. Lastly, fractures and deviations were not affected in either strain or form of wing immobilization; however, overall low numbers of birds presented with these issues. Altogether, this study shows a profound difference between white- and brown-feathered hens in response to wing immobilization and associated muscle physiology.
Collapse
Affiliation(s)
- Renée C. Garant
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, Canada N1G 2W1
| | - Bret W. Tobalske
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Neila Ben Sassi
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, Canada N1G 2W1
| | - Nienke van Staaveren
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, Canada N1G 2W1
| | - Dan Tulpan
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, Canada N1G 2W1
| | - Tina Widowski
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, Canada N1G 2W1
| | - Donald R. Powers
- Department of Biology, George Fox University, 414 N Meridian Street, Newberg, OR 97132, USA
| | | |
Collapse
|
6
|
KleinHeerenbrink M, France LA, Brighton CH, Taylor GK. Optimization of avian perching manoeuvres. Nature 2022; 607:91-96. [PMID: 35768508 PMCID: PMC9259480 DOI: 10.1038/s41586-022-04861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/12/2022] [Indexed: 11/09/2022]
Abstract
Perching at speed is among the most demanding flight behaviours that birds perform1,2 and is beyond the capability of most autonomous vehicles. Smaller birds may touch down by hovering3–8, but larger birds typically swoop up to perch1,2—presumably because the adverse scaling of their power margin prohibits hovering9 and because swooping upwards transfers kinetic to potential energy before collision1,2,10. Perching demands precise control of velocity and pose11–14, particularly in larger birds for which scale effects make collisions especially hazardous6,15. However, whereas cruising behaviours such as migration and commuting typically minimize the cost of transport or time of flight16, the optimization of such unsteady flight manoeuvres remains largely unexplored7,17. Here we show that the swooping trajectories of perching Harris’ hawks (Parabuteo unicinctus) minimize neither time nor energy alone, but rather minimize the distance flown after stalling. By combining motion capture data from 1,576 flights with flight dynamics modelling, we find that the birds’ choice of where to transition from powered dive to unpowered climb minimizes the distance over which high lift coefficients are required. Time and energy are therefore invested to provide the control authority needed to glide safely to the perch, rather than being minimized directly as in technical implementations of autonomous perching under nonlinear feedback control12 and deep reinforcement learning18,19. Naive birds learn this behaviour on the fly, so our findings suggest a heuristic principle that could guide reinforcement learning of autonomous perching. To perch safely, large birds minimize the distance flown after stalling when swooping up from a dive to a perch, but not the time or energy required.
Collapse
Affiliation(s)
| | - Lydia A France
- Department of Zoology, University of Oxford, Oxford, UK.,The Alan Turing Institute, London, UK
| | | | | |
Collapse
|
7
|
Garant R, Tobalske BW, Sassi NB, van Staaveren N, Widowski T, Powers DR, Harlander-Matauschek A. Wing-feather loss in white-feathered laying hens decreases pectoralis thickness but does not increase risk of keel bone fracture. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220155. [PMID: 35719889 PMCID: PMC9198519 DOI: 10.1098/rsos.220155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 05/03/2023]
Abstract
Feather loss in domestic chickens can occur due to wear and tear, disease or bird-to-bird pecking. Flight feather loss may decrease wing use, cause pectoral muscle loss and adversely impact the keel bone to which these muscles anchor. Feather loss and muscle weakness are hypothesized risk factors for keel bone fractures that are reported in up to 98% of chickens. We used ultrasound to measure changes in pectoral muscle thickness and X-rays to assess keel bone fracture prevalence following symmetric clipping of primary and secondary feathers in white- and brown-feathered birds. Four and six weeks after flight feather clipping, pectoralis thickness decreased by approximately 5%, while lower leg thickness increased by approximately 5% in white-feathered birds. This pectoralis thickness decrease may reflect wing disuse followed by muscle atrophy, while the increased leg thickness may reflect increased bipedal locomotion. The lack of effect on muscle thickness in brown-feathered hens was probably due to their decreased tendency for aerial locomotion. Finally, pectoralis thickness was not associated with keel bone fractures in either white- or brown-feathered birds. This suggests that the white-feathered strain was more sensitive to feather loss. Future prevention strategies should focus on birds most susceptible to muscle loss associated with flight feather damage.
Collapse
Affiliation(s)
- Renée Garant
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | - Bret W. Tobalske
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Neila Ben Sassi
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | - Nienke van Staaveren
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | - Tina Widowski
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | - Donald R. Powers
- Department of Biology, George Fox University, 414N Meridian Street, Newberg, OR 97132, USA
| | | |
Collapse
|
8
|
Garant R, Tobalske BW, BenSassi N, van Staaveren N, Tulpan D, Widowski T, Powers DR, Harlander-Matauschek A. Effects of clipping of flight feathers on resource use in Gallus gallus domesticus. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211561. [PMID: 35316951 PMCID: PMC8889189 DOI: 10.1098/rsos.211561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/02/2022] [Indexed: 05/03/2023]
Abstract
Ground-dwelling species of birds, such as domestic chickens (Gallus gallus domesticus), experience difficulties sustaining flight due to high wing loading. This limited flight ability may be exacerbated by loss of flight feathers that is prevalent among egg-laying chickens. Despite this, chickens housed in aviary style systems need to use flight to access essential resources stacked in vertical tiers. To understand the impact of flight feather loss on chickens' ability to access elevated resources, we clipped primary and secondary flight feathers for two hen strains (brown-feathered and white-feathered, n = 120), and recorded the time hens spent at elevated resources (feeders, nest-boxes). Results showed that flight feather clipping significantly reduced the percentage of time that hens spent at elevated resources compared to ground resources. When clipping both primary and secondary flight feathers, all hens exhibited greater than or equal to 38% reduction in time spent at elevated resources. When clipping only primary flight feathers, brown-feathered hens saw a greater than 50% reduction in time spent at elevated nest-boxes. Additionally, brown-feathered hens scarcely used the elevated feeder regardless of treatment. Clipping of flight feathers altered the amount of time hens spent at elevated resources, highlighting that distribution and accessibility of resources is an important consideration in commercial housing.
Collapse
Affiliation(s)
- Renée Garant
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | - Bret W. Tobalske
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Neila BenSassi
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | - Nienke van Staaveren
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | - Dan Tulpan
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | - Tina Widowski
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | - Donald R. Powers
- Department of Biology, George Fox University, 414N Meridian St, Newberg, OR 97132, USA
| | | |
Collapse
|
9
|
Siddall R, Byrnes G, Full RJ, Jusufi A. Tails stabilize landing of gliding geckos crashing head-first into tree trunks. Commun Biol 2021; 4:1020. [PMID: 34475510 PMCID: PMC8413312 DOI: 10.1038/s42003-021-02378-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
Animals use diverse solutions to land on vertical surfaces. Here we show the unique landing of the gliding gecko, Hemidactylus platyurus. Our high-speed video footage in the Southeast Asian rainforest capturing the first recorded, subcritical, short-range glides revealed that geckos did not markedly decrease velocity prior to impact. Unlike specialized gliders, geckos crashed head-first with the tree trunk at 6.0 ± 0.9 m/s (~140 body lengths per second) followed by an enormous pitchback of their head and torso 103 ± 34° away from the tree trunk anchored by only their hind limbs and tail. A dynamic mathematical model pointed to the utility of tails for the fall arresting response (FAR) upon landing. We tested predictions by measuring foot forces during landing of a soft, robotic physical model with an active tail reflex triggered by forefoot contact. As in wild animals, greater landing success was found for tailed robots. Experiments showed that longer tails with an active tail reflex resulted in the lower adhesive foot forces necessary for stabilizing successful landings, with a tail shortened to 25% requiring over twice the adhesive foot force.
Collapse
Affiliation(s)
- Robert Siddall
- Locomotion in Biorobotic and Somatic Systems Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Greg Byrnes
- Department of Biology, Siena College, Loudonville, NY, USA
| | - Robert J Full
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Ardian Jusufi
- Locomotion in Biorobotic and Somatic Systems Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
10
|
León BM, Tobalske BW, Sassi NB, Garant R, Powers DR, Harlander-Matauschek A. Domestic egg-laying hens, Gallus gallus domesticus, do not modulate flapping flight performance in response to wing condition. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210196. [PMID: 34350016 PMCID: PMC8316787 DOI: 10.1098/rsos.210196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/18/2021] [Indexed: 05/14/2023]
Abstract
Wild birds modulate wing and whole-body kinematics to adjust their flight patterns and trajectories when wing loading increases flight power requirements. Domestic chickens (Gallus gallus domesticus) in backyards and farms exhibit feather loss, naturally high wing loading, and limited flight capabilities. Yet, housing chickens in aviaries requires birds to navigate three-dimensional spaces to access resources. To understand the impact of feather loss on laying hens' flight capabilities, we symmetrically clipped the primary and secondary feathers before measuring wing and whole-body kinematics during descent from a 1.5 m platform. We expected birds to compensate for increased wing loading by increasing wingbeat frequency, amplitude and angular velocity. Otherwise, we expected to observe an increase in descent velocity and angle and an increase in vertical acceleration. Feather clipping had a significant effect on descent velocity, descent angle and horizontal acceleration. Half-clipped hens had lower descent velocity and angle than full-clipped hens, and unclipped hens had the highest horizontal acceleration. All hens landed with a velocity two to three times greater than in bird species that are adept fliers. Our results suggest that intact laying hens operate at the maximal power output supported by their anatomy and are at the limit of their ability to control flight trajectory.
Collapse
Affiliation(s)
- Brianna M. León
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada N1G 2W1
| | - Bret W. Tobalske
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Neila Ben Sassi
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada N1G 2W1
| | - Renée Garant
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada N1G 2W1
| | - Donald R. Powers
- Department of Biology, George Fox University, 414 N Meridian Street, Newberg, OR 97132, USA
| | | |
Collapse
|
11
|
Bishop PJ, Falisse A, De Groote F, Hutchinson JR. Predictive Simulations of Musculoskeletal Function and Jumping Performance in a Generalized Bird. ACTA ACUST UNITED AC 2021; 3:obab006. [PMID: 34377939 PMCID: PMC8341896 DOI: 10.1093/iob/obab006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Jumping is a common, but demanding, behavior that many animals employ during everyday activity. In contrast to jump-specialists such as anurans and some primates, jumping biomechanics and the factors that influence performance remains little studied for generalized species that lack marked adaptations for jumping. Computational biomechanical modeling approaches offer a way of addressing this in a rigorous, mechanistic fashion. Here, optimal control theory and musculoskeletal modeling are integrated to generate predictive simulations of maximal height jumping in a small ground-dwelling bird, a tinamou. A three-dimensional musculoskeletal model with 36 actuators per leg is used, and direct collocation is employed to formulate a rapidly solvable optimal control problem involving both liftoff and landing phases. The resulting simulation raises the whole-body center of mass to over double its standing height, and key aspects of the simulated behavior qualitatively replicate empirical observations for other jumping birds. However, quantitative performance is lower, with reduced ground forces, jump heights, and muscle–tendon power. A pronounced countermovement maneuver is used during launch. The use of a countermovement is demonstrated to be critical to the achievement of greater jump heights, and this phenomenon may only need to exploit physical principles alone to be successful; amplification of muscle performance may not necessarily be a proximate reason for the use of this maneuver. Increasing muscle strength or contractile velocity above nominal values greatly improves jump performance, and interestingly has the greatest effect on more distal limb extensor muscles (i.e., those of the ankle), suggesting that the distal limb may be a critical link for jumping behavior. These results warrant a re-evaluation of previous inferences of jumping ability in some extinct species with foreshortened distal limb segments, such as dromaeosaurid dinosaurs. Simulations prédictives de la fonction musculo-squelettique et des performances de saut chez un oiseau généralisé Sauter est un comportement commun, mais exigeant, que de nombreux animaux utilisent au cours de leurs activités quotidiennes. Contrairement aux spécialistes du saut tels que les anoures et certains primates, la biomécanique du saut et les facteurs qui influencent la performance restent peu étudiés pour les espèces généralisées qui n’ont pas d’adaptations marquées pour le saut. Les approches de modélisation biomécanique computationnelle offrent un moyen d’aborder cette question de manière rigoureuse et mécaniste. Ici, la théorie du contrôle optimal et la modélisation musculo-squelettique sont intégrées pour générer des simulations prédictives du saut en hauteur maximal chez un petit oiseau terrestre, le tinamou. Un modèle musculo-squelettique tridimensionnel avec 36 actionneurs par patte est utilisé, et une méthode numérique nommée “direct collocation” est employée pour formuler un problème de contrôle optimal rapidement résoluble impliquant les phases de décollage et d’atterrissage. La simulation qui en résulte élève le centre de masse du corps entier à plus du double de sa hauteur debout, et les aspects clés du comportement simulé reproduisent qualitativement les observations empiriques d’autres oiseaux sauteurs. Cependant, les performances quantitatives sont moindres, avec une réduction des forces au sol, des hauteurs de saut et de la puissance musculo-tendineuse. Une manœuvre de contre-mouvement prononcée est utilisée pendant le lancement. Il a été démontré que l’utilisation d’un contre-mouvement est essentielle à l’obtention de hauteurs de saut plus importantes, et il se peut que ce phénomène doive exploiter uniquement des principes physiques pour réussir; l’amplification de la performance musculaire n’est pas nécessairement une raison immédiate de l’utilisation de cette manœuvre. L’augmentation de la force musculaire ou de la vitesse de contraction au-dessus des valeurs nominales améliore grandement la performance de saut et, fait intéressant, a le plus grand effet sur les muscles extenseurs des membres plus distaux (c'est-à-dire ceux de la cheville), ce qui suggère que le membre distal peut être un lien critique pour le comportement de saut. Ces résultats justifient une réévaluation des déductions précédentes de la capacité de sauter chez certaines espèces éteintes avec des segments de membres distaux raccourcis, comme les dinosaures droméosauridés. Voorspellende simulaties van musculoskeletale functie en springprestaties bij een gegeneraliseerde vogel Springen is een veel voorkomend, maar veeleisend, gedrag dat veel dieren toepassen tijdens hun dagelijkse bezigheden. In tegenstelling tot de springspecialisten zoals de anura en sommige primaten, is de biomechanica van het springen en de factoren die de prestaties beïnvloeden nog weinig bestudeerd voor algemene soorten die geen uitgesproken adaptaties voor het springen hebben. Computationele biomechanische modelbenaderingen bieden een manier om dit op een rigoureuze, mechanistische manier aan te pakken. Hier worden optimale controle theorie en musculoskeletale modellering geïntegreerd om voorspellende simulaties te genereren van maximale hoogtesprong bij een kleine grondbewonende vogel, een tinamou. Een driedimensionaal musculoskeletaal model met 36 actuatoren per poot wordt gebruikt, en directe collocatie wordt toegepast om een snel oplosbaar optimaal controleprobleem te formuleren dat zowel de opstijg-als de landingsfase omvat. De resulterende simulatie verhoogt het lichaamszwaartepunt tot meer dan het dubbele van de stahoogte, en belangrijke aspecten van het gesimuleerde gedrag komen kwalitatief overeen met empirische waarnemingen voor andere springende vogels. De kwantitatieve prestaties zijn echter minder, met verminderde grondkrachten, spronghoogtes en spierpeeskracht. Tijdens de lancering wordt een uitgesproken tegenbewegingsmanoeuvre gebruikt. Aangetoond is dat het gebruik van een tegenbeweging van cruciaal belang is voor het bereiken van grotere spronghoogten, en dit fenomeen hoeft alleen op fysische principes te berusten om succesvol te zijn; versterking van de spierprestaties hoeft niet noodzakelijk een proximate reden te zijn voor het gebruik van deze manoeuvre. Het verhogen van de spierkracht of van de contractiesnelheid boven de nominale waarden verbetert de sprongprestatie aanzienlijk, en heeft interessant genoeg het grootste effect op de meer distale extensoren van de ledematen (d.w.z. die van de enkel), wat suggereert dat de distale ledematen een kritieke schakel kunnen zijn voor het springgedrag. Deze resultaten rechtvaardigen een herevaluatie van eerdere conclusies over springvermogen bij sommige uitgestorven soorten met voorgekorte distale ledematen, zoals dromaeosauride dinosauriërs. Prädiktive Simulationen der muskuloskelettalen Funktion und Sprungleistung bei einem generalisierten Vogel Springen ist ein übliches jedoch anstrengendes Verhalten, das viele Tiere bei ihren täglichen Aktivitäten einsetzen. Im Gegensatz zu Springspezialisten, wie Fröschen und einigen Primaten, sind bei allgemeinen Arten, welche keine ausgeprägten Anpassung für Sprungverhalten aufweisen, die Biomechanik beim Springen und die Faktoren, welche die Leistungsfähigkeit beeinflussen, noch wenig untersucht. Computergestützte biomechanische Modellierungsverfahren bieten hier eine Möglichkeit, dies in einer gründlichen, mechanistischen Weise anzugehen. In dieser Arbeit werden die optimale Steuerungstheorie und Muskel-Skelett-Modellierung zusammen eingesetzt, um die maximale Sprunghöhe eines kleinen bodenlebenden Vogels, eines Perlsteisshuhns, zu simulieren und zu prognostizieren. Es wird ein dreidimensionales Muskel-Skelett-Modell mit 36 Aktuatoren pro Bein verwendet, und durch direkte Kollokation wird ein schnell lösbares optimales Steuerungsproblem formuliert, das sowohl die Abstoss- als auch die Landephase umfasst. Die daraus folgende Simulation bringt den Ganzkörperschwerpunkt auf mehr als das Doppelte seiner Standhöhe und entscheidende Aspekte des simulierten Verhaltens entsprechen qualitativ empirischen Beobachtungen für andere springende Vögel. Allerdings ist die quantitative Leistungsfähigkeit geringer, mit reduzierten Bodenkräften, Sprunghöhen und Muskel-Sehnen-Kräften. Beim Abstossen wird ein ausgeprägtes Gegenbewegungsmanöver durchgeführt. Die Durchführung einer Gegenbewegung ist nachweislich entscheidend für das Erreichen grösserer Sprunghöhen, wobei dieses Phänomen möglicherweise nur physikalische Prinzipien auszuschöpfen braucht, um erfolgreich zu sein. Die Verstärkung der Muskelleistung ist daher möglicherweise nicht zwingend ein unmittelbarer Grund für die Verwendung dieses Manövers. Eine Erhöhung der Muskelkraft oder der Kontraktionsgeschwindigkeit über die Nominalwerte hinaus führt zu einer erheblichen Zunahme der Sprungleistung und hat interessanterweise den grössten Effekt bei den weiter distal gelegenen Streckmuskeln der Beine (d.h. bei denjenigen des Sprunggelenks), was darauf hindeutet, dass die distale Gliedmasse ein entscheidendes Element für das Sprungverhalten sein könnte. Diese Ergebnisse geben Anlass zur Überprüfung früherer Schlussfolgerungen hinsichtlich der Sprungfähigkeit einiger ausgestorbener Arten mit verkürzten distalen Gliedmassen, wie beispielsweise bei dromaeosauriden Dinosauriern.
Collapse
Affiliation(s)
- P J Bishop
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Geosciences Program, Queensland Museum, Brisbane, Australia.,Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - A Falisse
- Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - F De Groote
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - J R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
12
|
Tichit P, Alves-Dos-Santos I, Dacke M, Baird E. Accelerated landing in a stingless bee and its unexpected benefits for traffic congestion. Proc Biol Sci 2020; 287:20192720. [PMID: 32070252 DOI: 10.1098/rspb.2019.2720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To land, flying animals must simultaneously reduce speed and control their path to the target. While the control of approach speed has been studied in many different animals, little is known about the effect of target size on landing, particularly for small targets that require precise trajectory control. To begin to explore this, we recorded the stingless bees Scaptotrigona depilis landing on their natural hive entrance-a narrow wax tube built by the bees themselves. Rather than decelerating before touchdown as most animals do, S. depilis accelerates in preparation for its high precision landings on the narrow tube of wax. A simulation of traffic at the hive suggests that this counterintuitive landing strategy could confer a collective advantage to the colony by minimizing the risk of mid-air collisions and thus of traffic congestion. If the simulated size of the hive entrance increases and if traffic intensity decreases relative to the measured real-world values, 'accelerated landing' ceases to provide a clear benefit, suggesting that it is only a useful strategy when target cross-section is small and landing traffic is high. We discuss this strategy in the context of S. depilis' ecology and propose that it is an adaptive behaviour that benefits foraging and nest defence.
Collapse
Affiliation(s)
- Pierre Tichit
- Department of Biology, Lund University, Lund 22362, Sweden
| | | | - Marie Dacke
- Department of Biology, Lund University, Lund 22362, Sweden
| | - Emily Baird
- Department of Biology, Lund University, Lund 22362, Sweden.,Department of Zoology, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
13
|
Abourachid A, Wenger P. 44th Congress of the Société de Biomécanique. Comput Methods Biomech Biomed Engin 2019; 22:S1-S393. [PMID: 31791153 DOI: 10.1080/10255842.2019.1668135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Chin DD, Lentink D. Birds repurpose the role of drag and lift to take off and land. Nat Commun 2019; 10:5354. [PMID: 31767856 PMCID: PMC6877630 DOI: 10.1038/s41467-019-13347-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/31/2019] [Indexed: 11/29/2022] Open
Abstract
The lift that animal wings generate to fly is typically considered a vertical force that supports weight, while drag is considered a horizontal force that opposes thrust. To determine how birds use lift and drag, here we report aerodynamic forces and kinematics of Pacific parrotlets (Forpus coelestis) during short, foraging flights. At takeoff they incline their wing stroke plane, which orients lift forward to accelerate and drag upward to support nearly half of their bodyweight. Upon landing, lift is oriented backward to contribute a quarter of the braking force, which reduces the aerodynamic power required to land. Wingbeat power requirements are dominated by downstrokes, while relatively inactive upstrokes cost almost no aerodynamic power. The parrotlets repurpose lift and drag during these flights with lift-to-drag ratios below two. Such low ratios are within range of proto-wings, showing how avian precursors may have relied on drag to take off with flapping wings. Recent work has suggested that lift and drag may be employed differently in slow, flapping flight compared to classic flight aerodynamics. Here the authors develop a method to measure vertical and horizontal aerodynamic forces simultaneously and use it to quantify lift and drag during slow flight.
Collapse
Affiliation(s)
- Diana D Chin
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94035, USA.
| | - David Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94035, USA.
| |
Collapse
|
15
|
Roderick WRT, Chin DD, Cutkosky MR, Lentink D. Birds land reliably on complex surfaces by adapting their foot-surface interactions upon contact. eLife 2019; 8:e46415. [PMID: 31385573 PMCID: PMC6684272 DOI: 10.7554/elife.46415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/30/2019] [Indexed: 11/13/2022] Open
Abstract
Birds land on a wide range of complex surfaces, yet it is unclear how they grasp a perch reliably. Here, we show how Pacific parrotlets exhibit stereotyped leg and wing dynamics regardless of perch diameter and texture, but foot, toe, and claw kinematics become surface-specific upon touchdown. A new dynamic grasping model, which integrates our detailed measurements, reveals how birds stabilize their grasp. They combine predictable toe pad friction with probabilistic friction from their claws, which they drag to find surface asperities-dragging further when they can squeeze less. Remarkably, parrotlet claws can undergo superfast movements, within 1-2 ms, on moderately slippery surfaces to find more secure asperities when necessary. With this strategy, they first ramp up safety margins by squeezing before relaxing their grasp. The model further shows it is advantageous to be small for stable perching when high friction relative to normal force is required because claws can find more usable surface, but this trend reverses when required friction shrinks. This explains how many animals and robots may grasp complex surfaces reliably.
Collapse
Affiliation(s)
- William RT Roderick
- Department of Mechanical EngineeringStanford UniversityStanfordUnited States
| | - Diana D Chin
- Department of Mechanical EngineeringStanford UniversityStanfordUnited States
| | - Mark R Cutkosky
- Department of Mechanical EngineeringStanford UniversityStanfordUnited States
| | - David Lentink
- Department of Mechanical EngineeringStanford UniversityStanfordUnited States
| |
Collapse
|
16
|
Coping with compliance during take-off and landing in the diamond dove (Geopelia cuneata). PLoS One 2018; 13:e0199662. [PMID: 30044804 PMCID: PMC6059395 DOI: 10.1371/journal.pone.0199662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/12/2018] [Indexed: 11/19/2022] Open
Abstract
The natural world is filled with substrates of varying properties that challenge locomotor abilities. Birds appear to transition smoothly from aerial to terrestrial environments during take-offs and landings using substrates that are incredibly variable. It may be challenging to control movement on and off compliant (flexible) substrates such as twigs, yet birds routinely accomplish such tasks. Previous research suggests that birds do not use their legs to harness elastic recoil from perches. Given avian mastery of take-off and landing, we hypothesized that birds instead modulate wing, body and tail movements to effectively use compliant perches. We measured take-off and landing performance of diamond doves (Geopelia cuneata (N = 5) in the laboratory and perch selection in this species in the field (N = 25). Contrary to our hypothesis, doves do not control take-off and landing on compliant perches as effectively as they do on stiff perches. They do not recover elastic energy from the perch, and take-off velocities are thus negatively impacted. Landing velocities remain unchanged, which suggests they may not anticipate the need to compensate for compliance. Legs and wings function as independent units: legs produce lower initial velocities when taking off from a compliant substrate, which negatively impacts later flight velocities. During landing, significant stability problems arise with compliance that are ameliorated by the wings and tail. Collectively, we suggest that the diamond dove maintains a generalized take-off and landing behavior regardless of perch compliance, leading us to conclude that perch compliance represents a challenge for flying birds. Free-living diamond doves avoid the negative impacts of compliance by preferentially selecting perches of larger diameter, which tend to be stiffer.
Collapse
|
17
|
Daley MA, Birn-Jeffery A. Scaling of avian bipedal locomotion reveals independent effects of body mass and leg posture on gait. ACTA ACUST UNITED AC 2018; 221:221/10/jeb152538. [PMID: 29789347 DOI: 10.1242/jeb.152538] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Birds provide an interesting opportunity to study the relationships between body size, limb morphology and bipedal locomotor function. Birds are ecologically diverse and span a large range of body size and limb proportions, yet all use their hindlimbs for bipedal terrestrial locomotion, for at least some part of their life history. Here, we review the scaling of avian striding bipedal gaits to explore how body mass and leg morphology influence walking and running. We collate literature data from 21 species, spanning a 2500× range in body mass from painted quail to ostriches. Using dynamic similarity theory to interpret scaling trends, we find evidence for independent effects of body mass, leg length and leg posture on gait. We find no evidence for scaling of duty factor with body size, suggesting that vertical forces scale with dynamic similarity. However, at dynamically similar speeds, large birds use relatively shorter stride lengths and higher stride frequencies compared with small birds. We also find that birds with long legs for their mass, such as the white stork and red-legged seriema, use longer strides and lower swing frequencies, consistent with the influence of high limb inertia on gait. We discuss the observed scaling of avian bipedal gait in relation to mechanical demands for force, work and power relative to muscle actuator capacity, muscle activation costs related to leg cycling frequency, and considerations of stability and agility. Many opportunities remain for future work to investigate how morphology influences gait dynamics among birds specialized for different habitats and locomotor behaviors.
Collapse
Affiliation(s)
- Monica A Daley
- Structure and Motion Lab, Royal Veterinary College, Hawkshead Campus, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, UK
| | - Aleksandra Birn-Jeffery
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
18
|
Zhang Z, Zhao J, Chen H, Chen D. A Survey of Bioinspired Jumping Robot: Takeoff, Air Posture Adjustment, and Landing Buffer. Appl Bionics Biomech 2017; 2017:4780160. [PMID: 29311756 PMCID: PMC5618752 DOI: 10.1155/2017/4780160] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/08/2017] [Indexed: 11/17/2022] Open
Abstract
A bioinspired jumping robot has a strong ability to overcome obstacles. It can be applied to the occasion with complex and changeable environment, such as detection of planet surface, postdisaster relief, and military reconnaissance. So the bioinspired jumping robot has broad application prospect. The jumping process of the robot can be divided into three stages: takeoff, air posture adjustment, and landing buffer. The motivation of this review is to investigate the research results of the most published bioinspired jumping robots for these three stages. Then, the movement performance of the bioinspired jumping robots is analyzed and compared quantitatively. Then, the limitation of the research on bioinspired jumping robots is discussed, such as the research on the mechanism of biological motion is not thorough enough, the research method about structural design, material applications, and control are still traditional, and energy utilization is low, which make the robots far from practical applications. Finally, the development trend is summarized. This review provides a reference for further research of bioinspired jumping robots.
Collapse
Affiliation(s)
- ZiQiang Zhang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - Jing Zhao
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - HanLong Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - DianSheng Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| |
Collapse
|
19
|
Abstract
The purpose of the present study was to evaluate locomotor strategies during development in domestic chickens (Gallus gallus domesticus); we were motivated, in part, by current efforts to improve the design of housing systems for laying hens which aim to reduce injury and over-exertion. Using four strains of laying hens (Lohmann Brown, Lohmann LSL lite, Dekalb White and Hyline Brown) throughout this longitudinal study, we investigated their locomotor style and climbing capacity in relation to the degree (0 to 70°) of incline, age (2 to 36 weeks) and the surface substrate (sandpaper or wire grid). Chicks and adult fowl performed only walking behavior to climb inclines ⩽40° and performed a combination of wing-assisted incline running (WAIR) or aerial ascent on steeper inclines. Fewer birds used their wings to aid their hind limbs when climbing 50° inclines on wire grid surface compared with sandpaper. The steepness of angle achieved during WAIR and the tendency to fly instead of using WAIR increased with increasing age and experience. White-feathered strains performed more wing-associated locomotor behavior compared with brown-feathered strains. A subset of birds was never able to climb incline angles >40° even when using WAIR. Therefore, we suggest that inclines of up to 40° should be provided for hens in three-dimensional housing systems, which are easily negotiated (without wing use) by chicks and adult fowl.
Collapse
|
20
|
Crino OL, Klaassen van Oorschot B, Crandell KE, Breuner CW, Tobalske BW. Flight performance in the altricial zebra finch: Developmental effects and reproductive consequences. Ecol Evol 2017; 7:2316-2326. [PMID: 28405295 PMCID: PMC5383492 DOI: 10.1002/ece3.2775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 01/21/2023] Open
Abstract
The environmental conditions animals experience during development can have sustained effects on morphology, physiology, and behavior. Exposure to elevated levels of stress hormones (glucocorticoids, GCs) during development is one such condition that can have long‐term effects on animal phenotype. Many of the phenotypic effects of GC exposure during development (developmental stress) appear negative. However, there is increasing evidence that developmental stress can induce adaptive phenotypic changes. This hypothesis can be tested by examining the effect of developmental stress on fitness‐related traits. In birds, flight performance is an ideal metric to assess the fitness consequences of developmental stress. As fledglings, mastering takeoff is crucial to avoid bodily damage and escape predation. As adults, takeoff can contribute to mating and foraging success as well as escape and, thus, can affect both reproductive success and survival. We examined the effects of developmental stress on flight performance across life‐history stages in zebra finches (Taeniopygia guttata). Specifically, we examined the effects of oral administration of corticosterone (CORT, the dominant avian glucocorticoid) during development on ground‐reaction forces and velocity during takeoff. Additionally, we tested for associations between flight performance and reproductive success in adult male zebra finches. Developmental stress had no effect on flight performance at all ages. In contrast, brood size (an unmanipulated variable) had sustained, negative effects on takeoff performance across life‐history stages with birds from small broods performing better than birds from large broods. Flight performance at 100 days posthatching predicted future reproductive success in males; the best fliers had significantly higher reproductive success. Our results demonstrate that some environmental factors experienced during development (e.g. clutch size) have stronger, more sustained effects than others (e.g. GC exposure). Additionally, our data provide the first link between flight performance and a direct measure of reproductive success.
Collapse
Affiliation(s)
- Ondi L Crino
- Centre for Integrative Ecology Deakin University Geelong Vic. Australia; Division of Biological Sciences University of Montana Missoula MT USA
| | | | - Kristen E Crandell
- Division of Biological Sciences University of Montana Missoula MT USA; Department of Zoology University of Cambridge Cambridge UK
| | - Creagh W Breuner
- Division of Biological Sciences University of Montana Missoula MT USA
| | - Bret W Tobalske
- Division of Biological Sciences University of Montana Missoula MT USA
| |
Collapse
|
21
|
Roderick WRT, Cutkosky MR, Lentink D. Touchdown to take-off: at the interface of flight and surface locomotion. Interface Focus 2017; 7:20160094. [PMID: 28163884 DOI: 10.1098/rsfs.2016.0094] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Small aerial robots are limited to short mission times because aerodynamic and energy conversion efficiency diminish with scale. One way to extend mission times is to perch, as biological flyers do. Beyond perching, small robot flyers benefit from manoeuvring on surfaces for a diverse set of tasks, including exploration, inspection and collection of samples. These opportunities have prompted an interest in bimodal aerial and surface locomotion on both engineered and natural surfaces. To accomplish such novel robot behaviours, recent efforts have included advancing our understanding of the aerodynamics of surface approach and take-off, the contact dynamics of perching and attachment and making surface locomotion more efficient and robust. While current aerial robots show promise, flying animals, including insects, bats and birds, far surpass them in versatility, reliability and robustness. The maximal size of both perching animals and robots is limited by scaling laws for both adhesion and claw-based surface attachment. Biomechanists can use the current variety of specialized robots as inspiration for probing unknown aspects of bimodal animal locomotion. Similarly, the pitch-up landing manoeuvres and surface attachment techniques of animals can offer an evolutionary design guide for developing robots that perch on more diverse and complex surfaces.
Collapse
Affiliation(s)
| | - Mark R Cutkosky
- Department of Mechanical Engineering , Stanford University , Stanford, CA , USA
| | - David Lentink
- Department of Mechanical Engineering , Stanford University , Stanford, CA , USA
| |
Collapse
|
22
|
Klaassen van Oorschot B, Mistick EA, Tobalske BW. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds. ACTA ACUST UNITED AC 2016; 219:3146-3154. [PMID: 27473437 DOI: 10.1242/jeb.136721] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 07/25/2016] [Indexed: 11/20/2022]
Abstract
Birds morph their wings during a single wingbeat, across flight speeds and among flight modes. Such morphing may allow them to maximize aerodynamic performance, but this assumption remains largely untested. We tested the aerodynamic performance of swept and extended wing postures of 13 raptor species in three families (Accipitridae, Falconidae and Strigidae) using a propeller model to emulate mid-downstroke of flapping during take-off and a wind tunnel to emulate gliding. Based on previous research, we hypothesized that (1) during flapping, wing posture would not affect maximum ratios of vertical and horizontal force coefficients (CV:CH), and that (2) extended wings would have higher maximum CV:CH when gliding. Contrary to each hypothesis, during flapping, extended wings had, on average, 31% higher maximum CV:CH ratios and 23% higher CV than swept wings across all biologically relevant attack angles (α), and, during gliding, maximum CV:CH ratios were similar for the two postures. Swept wings had 11% higher CV than extended wings in gliding flight, suggesting flow conditions around these flexed raptor wings may be different from those in previous studies of swifts (Apodidae). Phylogenetic affiliation was a poor predictor of wing performance, due in part to high intrafamilial variation. Mass was only significantly correlated with extended wing performance during gliding. We conclude that wing shape has a greater effect on force per unit wing area during flapping at low advance ratio, such as take-off, than during gliding.
Collapse
Affiliation(s)
- Brett Klaassen van Oorschot
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Emily A Mistick
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bret W Tobalske
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
23
|
LeBlanc S, Tobalske B, Quinton M, Springthorpe D, Szkotnicki B, Wuerbel H, Harlander-Matauschek A. Physical Health Problems and Environmental Challenges Influence Balancing Behaviour in Laying Hens. PLoS One 2016; 11:e0153477. [PMID: 27078835 PMCID: PMC4831827 DOI: 10.1371/journal.pone.0153477] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 03/30/2016] [Indexed: 11/19/2022] Open
Abstract
With rising public concern for animal welfare, many major food chains and restaurants are changing their policies, strictly buying their eggs from non-cage producers. However, with the additional space in these cage-free systems to perform natural behaviours and movements comes the risk of injury. We evaluated the ability to maintain balance in adult laying hens with health problems (footpad dermatitis, keel damage, poor wing feather cover; n = 15) using a series of environmental challenges and compared such abilities with those of healthy birds (n = 5). Environmental challenges consisted of visual and spatial constraints, created using a head mask, perch obstacles, and static and swaying perch states. We hypothesized that perch movement, environmental challenges, and diminished physical health would negatively impact perching performance demonstrated as balance (as measured by time spent on perch and by number of falls of the perch) and would require more exaggerated correctional movements. We measured perching stability whereby each bird underwent eight 30-second trials on a static and swaying perch: with and without disrupted vision (head mask), with and without space limitations (obstacles) and combinations thereof. Video recordings (600 Hz) and a three-axis accelerometer/gyroscope (100 Hz) were used to measure the number of jumps/falls, latencies to leave the perch, as well as magnitude and direction of both linear and rotational balance-correcting movements. Laying hens with and without physical health problems, in both challenged and unchallenged environments, managed to perch and remain off the ground. We attribute this capacity to our training of the birds. Environmental challenges and physical state had an effect on the use of accelerations and rotations to stabilize themselves on a perch. Birds with physical health problems performed a higher frequency of rotational corrections to keep the body centered over the perch, whereas, for both health categories, environmental challenges required more intense and variable movement corrections. Collectively, these results provide novel empirical support for the effectiveness of training, and highlight that overcrowding, visual constraints, and poor physical health all reduce perching performance.
Collapse
Affiliation(s)
- Stephanie LeBlanc
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Bret Tobalske
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Margaret Quinton
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Dwight Springthorpe
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Bill Szkotnicki
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Hanno Wuerbel
- Division of Animal Welfare, VPH Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
24
|
Polet DT, Rival DE. Rapid area change in pitch-up manoeuvres of small perching birds. BIOINSPIRATION & BIOMIMETICS 2015; 10:066004. [PMID: 26502303 DOI: 10.1088/1748-3190/10/6/066004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Rapid pitch-up has been highlighted as a mechanism to generate large lift and drag during landing manoeuvres. However, pitching rates had not been measured previously in perching birds, and so the direct applicability of computations and experiments to observed behaviour was not known. We measure pitch rates in a small, wild bird (the black-capped chickadee; Poecile atricapillus), and show that these rates are within the parameter range used in experiments. Pitching rates were characterized by the shape change number, a metric comparing the rate of frontal area increase to acceleration. Black-capped chickadees increase the shape change number during perching in direct proportion to their total kinetic and potential energy at the start of the manoeuvre. The linear relationship between dissipated energy and shape change number is in accordance with a simple analytical model developed for two-dimensional pitching and decelerating airfoils. Black-capped chickadees use a wing pitch-up manoeuvre during perching to dissipate energy quickly while maintaining lift and drag through rapid area change. It is suggested that similar pitch-and-decelerate manoeuvres could be used to aid in the controlled, precise landings of small manoeuvrable air vehicles.
Collapse
Affiliation(s)
- D T Polet
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
25
|
Crandell KE, Tobalske BW. Kinematics and aerodynamics of avian upstrokes during slow flight. J Exp Biol 2015; 218:2518-27. [DOI: 10.1242/jeb.116228] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 05/25/2015] [Indexed: 11/20/2022]
Abstract
Slow flight is extremely energetically costly per unit time, yet highly important for takeoff and survival. However, at slow speeds it is presently thought that most birds do not produce beneficial aerodynamic forces during the entire wingbeat: instead they fold or flex their wings during upstroke, prompting the long-standing prediction that the upstroke produces trivial forces. There is increasing evidence that the upstroke contributes to force production, but the aerodynamic and kinematic mechanisms remain unknown. Here, we examine the wingbeat cycle of two species: the diamond dove (Geopelia cuneata) and zebra finch (Taeniopygia guttata), that exhibit different upstroke styles, a wingtip-reversal and flexed-wing upstroke, respectively. We used a combination of particle image velocimetry and near-wake streamline measures alongside detailed 3D-kinematics. We show during the middle of the wingtip-reversal upstroke, the hand-wing has a high angular velocity (15.3±0.8 deg/ms) and translational speed (8.4±0.6 m/s). The flexed-wing upstroke, in contrast, has low wingtip speed during mid-upstroke. Instead, later in the stroke cycle, during the transition from upstroke to downstroke, it exhibits higher angular velocities (45.5±13.8 deg/ms) and translational speeds (11.0±1.9 m/s). Aerodynamically, the wingtip-reversal upstroke imparts momentum to the wake, with entrained air shed backward (visible as circulation of 14.4±0.09 m2/s). In contrast, the flexed-wing upstroke imparts minimal momentum. Clap and peel in the dove enhances the time course for circulation production on the wings, and provides new evidence of convergent evolution on time-varying aerodynamic mechanisms during flapping in insects and birds.
Collapse
Affiliation(s)
- Kristen E. Crandell
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Bret W. Tobalske
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|