1
|
Irish S, Sutter A, Pinzoni L, Sydney M, Travers L, Murray D, de Coriolis J, Immler S. Heatwave-Induced Paternal Effects Have Limited Adaptive Benefits in Offspring. Ecol Evol 2024; 14:e70399. [PMID: 39435435 PMCID: PMC11491414 DOI: 10.1002/ece3.70399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
As the threat of climate change and associated heatwaves grows, we need to understand how natural populations will respond. Inter-generational non-genetic inheritance may play a key role in rapid adaptation, but whether such mechanisms are truly adaptive and sufficient to protect wild populations is unclear. The contribution of paternal effects in particular is not fully understood, even though the male reproductive system may be highly sensitive to heatwaves. We used the zebrafish Danio rerio to investigate the effects of heatwaves on male fertility and assess potential adaptive benefits to their offspring in a number of large-scale heatwave experiments. Heatwave conditions had negative effects on male fertility by reducing gamete quality and fertilisation success, and we found indications of an adaptive effect on hatching in offspring produced by heatwave-exposed males. Our findings highlight the importance of including male and female fertility when determining species ability to cope with extreme conditions and suggest that parental effects provide limited adaptive benefits.
Collapse
Affiliation(s)
- Sara D. Irish
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Andreas Sutter
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Livia Pinzoni
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Mabel C. Sydney
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Laura Travers
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - David Murray
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | - Simone Immler
- School of Biological SciencesUniversity of East AngliaNorwichUK
| |
Collapse
|
2
|
Foo SA, Byrne M. Reprint: Acclimatization and Adaptive Capacity of Marine Species in a Changing Ocean. ADVANCES IN MARINE BIOLOGY 2024; 97:11-58. [PMID: 39307554 DOI: 10.1016/bs.amb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
To persist in an ocean changing in temperature, pH and other stressors related to climate change, many marine species will likely need to acclimatize or adapt to avoid extinction. If marine populations possess adequate genetic variation in tolerance to climate change stressors, species might be able to adapt to environmental change. Marine climate change research is moving away from single life stage studies where individuals are directly placed into projected scenarios ('future shock' approach), to focus on the adaptive potential of populations in an ocean that will gradually change over coming decades. This review summarizes studies that consider the adaptive potential of marine invertebrates to climate change stressors and the methods that have been applied to this research, including quantitative genetics, laboratory selection studies and trans- and multigenerational experiments. Phenotypic plasticity is likely to contribute to population persistence providing time for genetic adaptation to occur. Transgenerational and epigenetic effects indicate that the environmental and physiological history of the parents can affect offspring performance. There is a need for long-term, multigenerational experiments to determine the influence of phenotypic plasticity, genetic variation and transgenerational effects on species' capacity to persist in a changing ocean. However, multigenerational studies are only practicable for short generation species. Consideration of multiple morphological and physiological traits, including changes in molecular processes (eg, DNA methylation) and long-term studies that facilitate acclimatization will be essential in making informed predictions of how the seascape and marine communities will be altered by climate change.
Collapse
Affiliation(s)
- Shawna A Foo
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| | - Maria Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Leach TS, Hofmann GE. Marine heatwave temperatures enhance larval performance but are meditated by paternal thermal history and inter-individual differences in the purple sea urchin, Strongylocentrotus purpuratus. Front Physiol 2023; 14:1230590. [PMID: 37601631 PMCID: PMC10436589 DOI: 10.3389/fphys.2023.1230590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Marine heatwave (MHW) events, characterized by periods of anomalous temperatures, are an increasingly prevalent threat to coastal marine ecosystems. Given the seasonal phenology of MHWs, the full extent of their biological consequences may depend on how these thermal stress events align with an organism's reproductive cycle. In organisms with more complex life cycles (e.g., many marine invertebrate species) the alignment of adult and larval environments may be an important factor determining offspring success, setting the stage for MHW events to influence reproduction and development in situ. Here, the influence of MHW-like temperatures on the early development of the California purple sea urchin, Strongylocentrotus purpuratus, were explored within the context of paternal thermal history. Based on temperature data collected during MHW events seen in Southern California from 2014-2020, adult urchins were acclimated to either MHW or non-MHW temperatures for 28 days before their sperm was used to produce embryos that were subsequently raised under varying thermal conditions. Once offspring reached an early larval stage, the impact of paternal and offspring environments were assessed on two aspects of offspring performance: larval size and thermal tolerance. Exposure to elevated temperatures during early development resulted in larger, more thermally tolerant larvae, with further influences of paternal identity and thermal history, respectively. The alignment of paternal and offspring exposure to MHW temperatures had additional positive benefits on larval thermal tolerance, but this tolerance significantly decreased when their thermal experience mismatched. As the highest recorded temperatures within past MHW events have occurred during the gametogenesis of many kelp forest benthic marine invertebrate species, such as the purple sea urchin, such parental mediated impacts may represent important drivers of future recruitment and population composition for these species.
Collapse
|
4
|
Yaripour S, Huuskonen H, Rahman T, Kekäläinen J, Akkanen J, Magris M, Kipriianov PV, Kortet R. Pre-fertilization exposure of sperm to nano-sized plastic particles decreases offspring size and swimming performance in the European whitefish (Coregonus lavaretus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118196. [PMID: 34555795 DOI: 10.1016/j.envpol.2021.118196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Exposure of aquatic organisms to micro- and nano-sized plastic debris in their environment has become an alarming concern. Besides having a number of potentially harmful impacts for individual organisms, plastic particles can also influence the phenotype and performance of their offspring. We tested whether the sperm pre-fertilization exposure to nanoplastic particles could affect offspring survival, size, and swimming performance in the European whitefish Coregonus lavaretus. We exposed sperm of ten whitefish males to three concentrations (0, 100 and 10 000 pcs spermatozoa-1) of 50 nm carboxyl-coated polystyrene spheres, recorded sperm motility parameters using computer assisted sperm analysis (CASA) and then fertilized the eggs of five females in all possible male-female combinations. Finally, we studied embryonic mortality, hatching time, size, and post-hatching swimming performance of the offspring. We found that highest concentration of plastic particles decreased sperm motility and offspring hatching time. Furthermore, sperm exposure to highest concentration of plastics reduced offspring body mass and impaired their swimming ability. This suggests that sperm pre-fertilization exposure to plastic pollution may decrease male fertilization potential and have important transgenerational impacts for offspring phenotype and performance. Our findings indicate that nanoplastics pollution may have significant ecological and evolutionary consequences in aquatic ecosystems.
Collapse
Affiliation(s)
- Sareh Yaripour
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland.
| | - Hannu Huuskonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Tawfiqur Rahman
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Jarkko Akkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Martina Magris
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Pavel Vladimirovich Kipriianov
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Raine Kortet
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| |
Collapse
|
5
|
Bøe K, Bjøru B, Tangvold Bårdsen M, Nordtug Wist A, Wolla S, Sivertsen A. Opportunities and challenges related to sperm cryopreservation in Atlantic salmon gene banks. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Kristin Bøe
- Department of Fish Health and Fish Welfare Norwegian Veterinary Institute Trondheim Norway
| | - Bjørn Bjøru
- Department of Fish Health and Fish Welfare Norwegian Veterinary Institute Trondheim Norway
| | | | - Anveig Nordtug Wist
- Department of Fish Health and Fish Welfare Norwegian Veterinary Institute Trondheim Norway
| | | | | |
Collapse
|
6
|
Male sperm storage impairs sperm quality in the zebrafish. Sci Rep 2021; 11:16689. [PMID: 34404815 PMCID: PMC8371167 DOI: 10.1038/s41598-021-94976-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023] Open
Abstract
Variation in sperm traits is widely documented both at inter- and intraspecific level. However, sperm traits vary also between ejaculates of the same male, due for example, to fluctuations in female availability. Variability in the opportunities to mate can indeed have important consequences for sperm traits, as it determines how often sperm are used, and thus the rate at which they are produced and how long they are stored before the mating. While being stored within males’ bodies, sperm are subjected to ageing due to oxidative stress. Sperm storage may significantly impair sperm quality, but evidence linking male sperm storage and variation in sperm traits is still scarce. Here, we tested the effect of the duration of sperm storage on within-male variation in sperm traits in the zebrafish, Danio rerio. We found that without mating opportunities, sperm number increased as storage duration increased, indicating that sperm continue to be produced and accumulate over time within males without being discharged in another way. Long sperm storage (12 days) was associated with an overall impairment in sperm quality, namely sperm motility, sperm longevity, and sperm DNA fragmentation, indicating that sperm aged, and their quality declined during storage. Our results confirm that male sperm storage may generate substantial variation in sperm phenotype, a source of variation which is usually neglected but that should be accounted for in experimental protocols aiming to assay sperm traits or maximise fertilization success.
Collapse
|
7
|
Penney CM, Burness G, Tabh JKR, Wilson CC. Limited transgenerational effects of environmental temperatures on thermal performance of a cold-adapted salmonid. CONSERVATION PHYSIOLOGY 2021; 9:coab021. [PMID: 33959288 PMCID: PMC8071478 DOI: 10.1093/conphys/coab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/03/2020] [Accepted: 04/20/2021] [Indexed: 05/30/2023]
Abstract
The capacity of ectotherms to cope with rising temperatures associated with climate change is a significant conservation concern as the rate of warming is likely too rapid to allow for adaptative responses in many populations. Transgenerational plasticity (TGP), if present, could potentially buffer some of the negative impacts of warming on future generations. We examined TGP in lake trout to assess their inter-generational potential to cope with anticipated warming. We acclimated adult lake trout to cold (10°C) or warm (17°C) temperatures for several months, then bred them to produce offspring from parents within a temperature treatment (cold-acclimated and warm-acclimated parents) and between temperature treatments (i.e. reciprocal crosses). At the fry stage, offspring were also acclimated to cold (11°C) or warm (15°C) temperatures. Thermal performance was assessed by measuring their critical thermal maximum (CTM) and the change in metabolic rate during an acute temperature challenge. From this dataset, we also determined their resting and peak (highest achieved, thermally induced) metabolic rates. There was little variation in offspring CTM or peak metabolic rate, although cold-acclimated offspring from warm-acclimated parents exhibited elevated resting metabolic rates without a corresponding increase in mass or condition factor, suggesting that transgenerational effects can be detrimental when parent and offspring environments mismatch. These results suggest that the limited TGP in thermal performance of lake trout is unlikely to significantly influence population responses to projected increases in environmental temperatures.
Collapse
Affiliation(s)
- Chantelle M Penney
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | - Gary Burness
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Joshua K R Tabh
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | - Chris C Wilson
- Ontario Ministry of Natural Resources and Forestry, Trent University, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
8
|
Crean AJ, Immler S. Evolutionary consequences of environmental effects on gamete performance. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200122. [PMID: 33866815 DOI: 10.1098/rstb.2020.0122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Variation in pre- and post-release gamete environments can influence evolutionary processes by altering fertilization outcomes and offspring traits. It is now widely accepted that offspring inherit epigenetic information from both their mothers and fathers. Genetic and epigenetic alterations to eggs and sperm-acquired post-release may also persist post-fertilization with consequences for offspring developmental success and later-life fitness. In externally fertilizing species, gametes are directly exposed to anthropogenically induced environmental impacts including pollution, ocean acidification and climate change. When fertilization occurs within the female reproductive tract, although gametes are at least partially protected from external environmental variation, the selective environment is likely to vary among females. In both scenarios, gamete traits and selection on gametes can be influenced by environmental conditions such as temperature and pollution as well as intrinsic factors such as male and female reproductive fluids, which may be altered by changes in male and female health and physiology. Here, we highlight some of the pathways through which changes in gamete environments can affect fertilization dynamics, gamete interactions and ultimately offspring fitness. We hope that by drawing attention to this important yet often overlooked source of variation, we will inspire future research into the evolutionary implications of anthropogenic interference of gamete environments including the use of assisted reproductive technologies. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Angela J Crean
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
9
|
Rossi N, Lopez Juri G, Chiaraviglio M, Cardozo G. Oviductal fluid counterbalances the negative effect of high temperature on sperm in an ectotherm model. Biol Open 2021; 10:bio058593. [PMID: 33737294 PMCID: PMC8061905 DOI: 10.1242/bio.058593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
Global warming is affecting biodiversity; however, the extent to which animal reproductive processes respond to predicted temperature increments remains largely unexplored. The thermal environment has a pronounced impact on metabolic rates of ectotherms; therefore, an interesting question to assess is whether temperature increase might affect specific reproductive mechanisms like sperm performance in ectotherms. Moreover, in many species, oviductal fluid (OF) is known to regulate and maintain sperm quality; however, the role of OF in relation to the effects of high temperature on sperm remains unclear. Our aim was to experimentally test the effect of increased temperature on sperm velocity, swimming path and percentage of motility in neutral conditions at ejaculation (without OF) and in female's reproductive tract fluid (with OF), in a social ectotherm lizard model, Tropidurus spinulosus, which has specific thermal requirements for reproduction. Our results suggest that a rising temperature associated with global warming (+4°C) affects negatively sperm dynamics and survival. However, OF ameliorated the harmful effects of high temperature. This is an important point, as this study is the first to have tested the role of OF in preserving sperm from a warmer pre-fertilization environment. These results contribute to our understanding of how thermal environment changes might affect post-copulatory reproductive mechanisms. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- N. Rossi
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales. Laboratorio de Biología del Comportamiento, X5000 Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), X5000 Córdoba, Argentina
| | - G. Lopez Juri
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales. Laboratorio de Biología del Comportamiento, X5000 Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), X5000 Córdoba, Argentina
| | - M. Chiaraviglio
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales. Laboratorio de Biología del Comportamiento, X5000 Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), X5000 Córdoba, Argentina
| | - G. Cardozo
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales. Laboratorio de Biología del Comportamiento, X5000 Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), X5000 Córdoba, Argentina
| |
Collapse
|
10
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Schmoll T, Rudolfsen G, Schielzeth H, Kleven O. Sperm velocity in a promiscuous bird across experimental media of different viscosities. Proc Biol Sci 2020; 287:20201031. [PMID: 32673555 DOI: 10.1098/rspb.2020.1031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In species with internal fertilization, the female genital tract appears challenging to sperm, possibly resulting from selection on for example ovarian fluid to control sperm behaviour and, ultimately, fertilization. Few studies, however, have examined the effects of swimming media viscosities on sperm performance. We quantified effects of media viscosities on sperm velocity in promiscuous willow warblers Phylloscopus trochilus. We used both a reaction norm and a character-state approach to model phenotypic plasticity of sperm behaviour across three experimental media of different viscosities. Compared with a standard medium (Dulbecco's Modified Eagle Medium, DMEM), media enriched with 1% or 2% w/v methyl cellulose decreased sperm velocity by up to about 50%. Spermatozoa from experimental ejaculates of different males responded similarly to different viscosities, and a lack of covariance between elevations and slopes of individual velocity-by-viscosity reaction norms indicated that spermatozoa from high- and low-velocity ejaculates were slowed down by a similar degree when confronted with high-viscosity environments. Positive cross-environment (1% versus 2% cellulose) covariances of sperm velocity under the character-state approach suggested that sperm performance represents a transitive trait, with rank order of individual ejaculates maintained when expressed against different environmental backgrounds. Importantly, however, a lack of significant covariances in sperm velocity involving a cellulose concentration of 0% indicated that pure DMEM represented a qualitatively different environment, questioning the validity of this widely used standard medium for assaying sperm performance. Enriching sperm environments along ecologically relevant gradients prior to assessing sperm performance will strengthen explanatory power of in vitro studies of sperm behaviour.
Collapse
Affiliation(s)
- Tim Schmoll
- Evolutionary Biology, Bielefeld University, Konsequenz 45, D-33615 Bielefeld, Germany
| | - Geir Rudolfsen
- The Arctic University Museum of Norway, The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Holger Schielzeth
- Evolutionary Biology, Bielefeld University, Konsequenz 45, D-33615 Bielefeld, Germany.,Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, D-07743 Jena, Germany
| | - Oddmund Kleven
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, NO-7485 Trondheim, Norway
| |
Collapse
|
12
|
Rahman MM, Biswas R, Gazi L, Arafat ST, Rahman MM, Asaduzzaman M, Rahman SM, Ahsan MN. Annually twice induced spawnings provide multiple benefits: Experimental evidence from an Indian major carp (
Catla catla
, Hamilton 1822). AQUACULTURE RESEARCH 2020; 51:2275-2290. [DOI: 10.1111/are.14572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 09/27/2023]
Affiliation(s)
- Md. Moshiur Rahman
- Tokyo University of Marine Science and Technology Tokyo Japan
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Ripon Biswas
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Litan Gazi
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Shaikh Tareq Arafat
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Md. Mostafizur Rahman
- Department of Disaster and Human Security Management Bangladesh University of Professionals Dhaka Bangladesh
| | - Md. Asaduzzaman
- Department of Marine Bioresource Science Chattogram Veterinary and Animal Sciences University Chittagong Bangladesh
| | - Sheikh Mustafizur Rahman
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
- Fish Resources Research Center King Faisal University Hofuf Saudi Arabia
| | - Md. Nazmul Ahsan
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| |
Collapse
|
13
|
Ponzi D, Flinn MV, Muehlenbein MP, Nepomnaschy PA. Hormones and human developmental plasticity. Mol Cell Endocrinol 2020; 505:110721. [PMID: 32004677 DOI: 10.1016/j.mce.2020.110721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
Abstract
Natural selection favors the evolution of mechanisms that optimize the allocation of resources and time among competing traits. Hormones mediate developmental plasticity, the changes in the phenotype that occur during ontogeny. Despite their highly conserved functions, the flexibilities of human hormonal systems suggest a strong history of adaptation to variable environments. Physiological research on developmental plasticity has focused on the early programming effects of stress, the hypothalamus-pituitary-adrenal axis (HPAA) and the hypothalamus-pituitary-gonadal axis (HPGA) during critical periods, when the hormones produced have the strongest influence on the developing brain. Often this research emphasizes the maladaptive effects of early stressful experiences. Here we posit that the HPAA and HPAG systems in human developmental plasticity have evolved to be responsive to complex and dynamic problems associated with human sociality. The lengthy period of human offspring dependency, and its associated brain development and risks, is linked to the uniquely human combination of stable breeding bonds, extensive paternal effort in a multi-male group, extended bilateral kin recognition, grandparenting, and controlled exchange of mates among kin groups. We evaluate an evolutionary framework that integrates proximate physiological explanations with ontogeny, phylogeny, adaptive function, and comparative life history data.
Collapse
Affiliation(s)
- Davide Ponzi
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Italy.
| | - Mark V Flinn
- Department of Anthropology, Baylor University, Waco, TX, USA
| | | | | |
Collapse
|
14
|
Smith KE, Byrne M, Deaker D, Hird CM, Nielson C, Wilson-McNeal A, Lewis C. Sea urchin reproductive performance in a changing ocean: poor males improve while good males worsen in response to ocean acidification. Proc Biol Sci 2019; 286:20190785. [PMID: 31337311 PMCID: PMC6661356 DOI: 10.1098/rspb.2019.0785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Ocean acidification (OA) is predicted to be a major driver of ocean biodiversity change. At projected rates of change, sensitive marine taxa may not have time to adapt. Their persistence may depend on pre-existing inter-individual variability. We investigated individual male reproductive performance under present-day and OA conditions using two representative broadcast spawners, the sea urchins Lytechinus pictus and Heliocidaris erythrogramma. Under the non-competitive individual ejaculate scenario, we examined sperm functional parameters (e.g. swimming speed, motility) and their relationship with fertilization success under current and near-future OA conditions. Significant inter-individual differences in almost every parameter measured were identified. Importantly, we observed strong inverse relationships between individual fertilization success rate under current conditions and change in fertilization success under OA. Individuals with a high fertilization success under current conditions had reduced fertilization under OA, while individuals with a low fertilization success under current conditions improved. Change in fertilization success ranged from -67% to +114% across individuals. Our results demonstrate that while average population fertilization rates remain similar under OA and present-day conditions, the contribution by different males to the population significantly shifts, with implications for how selection will operate in a future ocean.
Collapse
Affiliation(s)
- Kathryn E. Smith
- College of Live and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Maria Byrne
- Schools of Medical and Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dione Deaker
- Schools of Medical and Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Cameron M. Hird
- College of Live and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Clara Nielson
- College of Live and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alice Wilson-McNeal
- College of Live and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Ceri Lewis
- College of Live and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
15
|
Evans JP, Wilson AJ, Pilastro A, Garcia-Gonzalez F. Ejaculate-mediated paternal effects: evidence, mechanisms and evolutionary implications. Reproduction 2019; 157:R109-R126. [PMID: 30668523 DOI: 10.1530/rep-18-0524] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022]
Abstract
Despite serving the primary objective of ensuring that at least one sperm cell reaches and fertilises an ovum, the male ejaculate (i.e. spermatozoa and seminal fluid) is a compositionally complex 'trait' that can respond phenotypically to subtle changes in conditions. In particular, recent research has shown that environmentally and genetically induced changes to ejaculates can have implications for offspring traits that are independent of the DNA sequence encoded into the sperm's haploid genome. In this review, we compile evidence from several disciplines and numerous taxonomic systems to reveal the extent of such ejaculate-mediated paternal effects (EMPEs). We consider a number of environmental and genetic factors that have been shown to impact offspring phenotypes via ejaculates, and where possible, we highlight the putative mechanistic pathways by which ejaculates can act as conduits for paternal effects. We also highlight how females themselves can influence EMPEs, and in some cases, how maternally derived sources of variance may confound attempts to test for EMPEs. Finally, we consider a range of putative evolutionary implications of EMPEs and suggest a number of potentially useful approaches for exploring these further. Overall, our review confirms that EMPEs are both widespread and varied in their effects, although studies reporting their evolutionary effects are still in their infancy.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Alastair J Wilson
- Centre for Ecology and Evolution, University of Exeter, Cornwall Campus, Penryn, UK
| | | | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Estacion Biologica de Doñana-CSIC, Sevilla, Spain
| |
Collapse
|
16
|
Duxbury AE, Weathersby B, Sanchez Z, Moore PJ. A study of the transit amplification divisions during spermatogenesis in Oncopetus fasciatus to assess plasticity in sperm numbers or sperm viability under different diets. Ecol Evol 2018; 8:10460-10469. [PMID: 30464818 PMCID: PMC6238124 DOI: 10.1002/ece3.4511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/16/2018] [Accepted: 02/28/2018] [Indexed: 11/06/2022] Open
Abstract
Oncopeltus fasciatus males fed the ancestral diet of milkweed seeds prioritize reproduction over lifespan as evidenced by higher rates of fertility and shorter lifespans than males from the same population fed the adapted diet of sunflower seeds. We examined the proximate mechanisms by which milkweed-fed males maintained late-life fertility. We tested the hypothesis that older milkweed-fed males maintained fertility by producing more, higher quality sperm. Our results, that older males have more sperm, but their sperm do not have higher viability, are in general agreement with other recent studies on how nutrition affects male fertility in insects. We further examined the mechanisms by which sperm are produced by examining the progression of spermatogonial cells through the cell cycle during the transit amplification divisions. We demonstrated that diet affects the likelihood of a spermatocyst being in the S-phase or M-phase of the cell cycle. Given work in model systems, these results have implications for subtle effects on sperm quality either through replication stress or epigenetic markers. Thus, viability may not be the best marker for sperm quality and more work is called for on the mechanisms by which the germline and the production of sperm mediate the cost of reproduction.
Collapse
|
17
|
Kekäläinen J, Oskoei P, Janhunen M, Koskinen H, Kortet R, Huuskonen H. Sperm pre-fertilization thermal environment shapes offspring phenotype and performance. ACTA ACUST UNITED AC 2018; 221:jeb.181412. [PMID: 30171097 DOI: 10.1242/jeb.181412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/24/2018] [Indexed: 01/10/2023]
Abstract
The sperm pre-fertilization environment has recently been suggested to mediate remarkable transgenerational consequences for offspring phenotype (transgenerational plasticity, TGB), but the adaptive significance of the process has remained unclear. Here, we studied the transgenerational effects of sperm pre-fertilization thermal environment in a cold-adapted salmonid, the European whitefish (Coregonus lavaretus). We used a full-factorial breeding design where the eggs of five females were fertilized with the milt of 10 males that had been pre-incubated at two different temperatures (3.5°C and 6.5°C) for 15 h prior to fertilization. Thermal manipulation did not affect sperm motility, cell size, fertilization success or embryo mortality. However, offspring that were fertilized with 6.5°C-exposed milt were smaller and had poorer swimming performance than their full-siblings that had been fertilized with the 3.5°C-exposed milt. Furthermore, the effect of milt treatment on embryo mortality varied among different females (treatment×female interaction) and male-female combinations (treatment×female×male interaction). Together, these results indicate that sperm pre-fertilization thermal environment shapes offspring phenotype and post-hatching performance and modifies both the magnitude of female (dam) effects and the compatibility of the gametes. Generally, our results suggest that short-term changes in sperm thermal conditions may have negative impact for offspring fitness. Thus, sperm thermal environment may have an important role in determining the adaptation potential of organisms to climate change. Detailed mechanism(s) behind our findings require further attention.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Párástu Oskoei
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu, Finland.,Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Matti Janhunen
- Natural Resources Institute Finland (Luke), Survontie 9, FI-40500 Jyväskylä, Finland
| | - Heikki Koskinen
- Natural Resources Institute Finland (Luke), Huuhtajantie 160, FI-72210 Tervo, Finland
| | - Raine Kortet
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Hannu Huuskonen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
| |
Collapse
|
18
|
Gasparini C, Lu C, Dingemanse NJ, Tuni C. Paternal‐effects in a terrestrial ectotherm are temperature dependent but no evidence for adaptive effects. Funct Ecol 2017. [DOI: 10.1111/1365-2435.13022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Clelia Gasparini
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western Australia Crawley Australia
| | - ChuChu Lu
- Behavioural EcologyDepartment of BiologyLudwig Maximilian University Munich Germany
| | - Niels J. Dingemanse
- Behavioural EcologyDepartment of BiologyLudwig Maximilian University Munich Germany
| | - Cristina Tuni
- Behavioural EcologyDepartment of BiologyLudwig Maximilian University Munich Germany
| |
Collapse
|
19
|
Gasparini C, Dosselli R, Evans JP. Sperm storage by males causes changes in sperm phenotype and influences the reproductive fitness of males and their sons. Evol Lett 2017; 1:16-25. [PMID: 30283635 PMCID: PMC6121797 DOI: 10.1002/evl3.2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 01/26/2023] Open
Abstract
Recent studies suggest that environmentally induced effects on sperm phenotype can influence offspring phenotype beyond the classic Mendelian inheritance mechanism. However, establishing whether such effects are conveyed purely through ejaculates, independently of maternal environmental effects, remains a significant challenge. Here, we assess whether environmentally induced effects on sperm phenotype affects male reproductive success and offspring fitness. We experimentally manipulated the duration of sperm storage by males, and thus sperm age, in the internally fertilizing fish Poecilia reticulata. We first confirm that sperm ageing influences sperm quality and consequently males reproductive success. Specifically, we show that aged sperm exhibit impaired velocity and are competitively inferior to fresh sperm when ejaculates compete to fertilize eggs. We then used homospermic (noncompetitive) artificial insemination to inseminate females with old or fresh sperm and found that male offspring arising from fertilizations by experimentally aged sperm suffered consistently impaired sperm quality when just sexually mature (four months old) and subsequently as adults (13 months old). Although we have yet to determine whether these effects have a genetic or epigenetic basis, our analyses provide evidence that environmentally induced variation in sperm phenotype constitutes an important source of variation in male reproductive fitness that has far reaching implications for offspring fitness.
Collapse
Affiliation(s)
- Clelia Gasparini
- Centre for Evolutionary Biology, School of Biological Sciences (M092) University of Western Australia Crawley 6009 Australia
| | - Ryan Dosselli
- Centre for Evolutionary Biology, School of Biological Sciences (M092) University of Western Australia Crawley 6009 Australia.,CIBER, ARC Centre of Excellence in Plant Energy Biology University of Western Australia Crawley 6009 Australia
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences (M092) University of Western Australia Crawley 6009 Australia
| |
Collapse
|
20
|
Foo SA, Byrne M. Acclimatization and Adaptive Capacity of Marine Species in a Changing Ocean. ADVANCES IN MARINE BIOLOGY 2016; 74:69-116. [PMID: 27573050 DOI: 10.1016/bs.amb.2016.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To persist in an ocean changing in temperature, pH and other stressors related to climate change, many marine species will likely need to acclimatize or adapt to avoid extinction. If marine populations possess adequate genetic variation in tolerance to climate change stressors, species might be able to adapt to environmental change. Marine climate change research is moving away from single life stage studies where individuals are directly placed into projected scenarios ('future shock' approach), to focus on the adaptive potential of populations in an ocean that will gradually change over coming decades. This review summarizes studies that consider the adaptive potential of marine invertebrates to climate change stressors and the methods that have been applied to this research, including quantitative genetics, laboratory selection studies and trans- and multigenerational experiments. Phenotypic plasticity is likely to contribute to population persistence providing time for genetic adaptation to occur. Transgenerational and epigenetic effects indicate that the environmental and physiological history of the parents can affect offspring performance. There is a need for long-term, multigenerational experiments to determine the influence of phenotypic plasticity, genetic variation and transgenerational effects on species' capacity to persist in a changing ocean. However, multigenerational studies are only practicable for short generation species. Consideration of multiple morphological and physiological traits, including changes in molecular processes (eg, DNA methylation) and long-term studies that facilitate acclimatization will be essential in making informed predictions of how the seascape and marine communities will be altered by climate change.
Collapse
Affiliation(s)
- S A Foo
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| | - M Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Aguirre JD, Blows MW, Marshall DJ. Genetic Compatibility Underlies Benefits of Mate Choice in an External Fertilizer. Am Nat 2016; 187:647-57. [DOI: 10.1086/685892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Brun JM, Bernadet MD, Cornuez A, Leroux S, Bodin L, Basso B, Davail S, Jaglin M, Lessire M, Martin X, Sellier N, Morisson M, Pitel F. Influence of grand-mother diet on offspring performances through the male line in Muscovy duck. BMC Genet 2015; 16:145. [PMID: 26690963 PMCID: PMC4687110 DOI: 10.1186/s12863-015-0303-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/10/2015] [Indexed: 01/28/2023] Open
Abstract
Background In mammals, multigenerational environmental effects have been documented by either epidemiological studies in human or animal experiments in rodents. Whether such phenomena also occur in birds for more than one generation is still an open question. The objective of this study was to investigate if a methionine deficiency experienced by a mother (G0) could affect her grand-offspring phenotypes (G2 hybrid mule ducks and G2 purebred Muscovy ducks), through their Muscovy sons (G1). Muscovy drakes are used for the production of mule ducks, which are sterile offspring of female common duck (Anas platyrhynchos) and Muscovy drakes (Cairina moschata). In France, mule ducks are bred mainly for the production of “foie gras”, which stems from hepatic steatosis under two weeks of force-feeding (FF). Two groups of female Muscovy ducks received either a methionine deficient diet or a control diet. Their sons were mated to Muscovy or to common duck females to produce Muscovy or Mule ducks, respectively. Several traits were measured in the G2 progenies, concerning growth, feed efficiency during FF, body composition after FF, and quality of foie gras and magret. Results In the G2 mule duck progeny, grand-maternal methionine deficiency (GMMD) decreased 4, 8, and 12 week body weights but increased weight gain and feed efficiency during FF, and abdominal fat weight. The plasmatic glucose and triglyceride contents at the end of FF were higher in the methionine deficient group. In the G2 purebred Muscovy progeny, GMMD tended to decrease 4 week body weight in both sexes, and decreased weight gain between the ages of 4 and 12 weeks, 12 week body weight, and body weight at the end of FF in male offspring only. GMMD tended to increase liver weight and increased the carcass proportion of liver in both sexes. Conclusion Altogether, these results show that the mother’s diet is able to affect traits linked to growth and to lipid metabolism in the offspring of her sons, in Muscovy ducks. Whether this transmission through the father of information induced in the grand-mother by the environment is epigenetic remains to be demonstrated. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0303-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-Michel Brun
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| | - Marie-Dominique Bernadet
- Institut National de la Recherche Agronomique, Unité Expérimentale des Palmipèdes à Foie Gras, UE89, 40280, Benquet, France.
| | - Alexis Cornuez
- Institut National de la Recherche Agronomique, Unité Expérimentale des Palmipèdes à Foie Gras, UE89, 40280, Benquet, France.
| | - Sophie Leroux
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| | - Loys Bodin
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| | - Benjamin Basso
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,Present addresses: ITSAP-Institut de l'Abeille, Site Agroparc, 84914, Avignon, France. .,UMT Protection des Abeilles dans l'Environnement, CS 40506, 84914, Avignon, France.
| | - Stéphane Davail
- UMR5254 IUT des Pays de l'Adour-CNRS, 40004, Mont de Marsan Cedex, France.
| | - Mathilde Jaglin
- UMR5254 IUT des Pays de l'Adour-CNRS, 40004, Mont de Marsan Cedex, France.
| | - Michel Lessire
- Institut National de la Recherche Agronomique, UR83 Unité de Recherche Avicole, 37380, Nouzilly, France.
| | - Xavier Martin
- Institut National de la Recherche Agronomique, Unité Expérimentale des Palmipèdes à Foie Gras, UE89, 40280, Benquet, France.
| | - Nadine Sellier
- Institut National de la Recherche Agronomique, Pôle d'Expérimentation Avicole de Tours, UE1295, 37380, Nouzilly, France.
| | - Mireille Morisson
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| | - Frédérique Pitel
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| |
Collapse
|
23
|
Guillaume AS, Monro K, Marshall DJ. Transgenerational plasticity and environmental stress: do paternal effects act as a conduit or a buffer? Funct Ecol 2015. [DOI: 10.1111/1365-2435.12604] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annie S. Guillaume
- School of Biological Sciences Monash University Melbourne Victoria 3800 Australia
| | - Keyne Monro
- School of Biological Sciences Monash University Melbourne Victoria 3800 Australia
| | - Dustin J. Marshall
- School of Biological Sciences Monash University Melbourne Victoria 3800 Australia
| |
Collapse
|
24
|
Reinhardt K, Dobler R, Abbott J. An Ecology of Sperm: Sperm Diversification by Natural Selection. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-120213-091611] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using basic ecological concepts, we introduce sperm ecology as a framework to study sperm cells. First, we describe environmental effects on sperm and conclude that evolutionary and ecological research should not neglect the overwhelming evidence presented here (both in external and internal fertilizers and in terrestrial and aquatic habitats) that sperm function is altered by many environments, including the male environment. Second, we determine that the evidence for sperm phenotypic plasticity is overwhelming. Third, we find that genotype-by-environment interaction effects on sperm function exist, but their general adaptive significance (e.g., local adaptation) awaits further research. It remains unresolved whether sperm diversification occurs by natural selection acting on sperm function or by selection on male and female microenvironments that enable optimal plastic performance of sperm (sperm niches). Environmental effects reduce fitness predictability under sperm competition, predict species distributions under global change, explain adaptive behavior, and highlight the role of natural selection in behavioral ecology and reproductive medicine.
Collapse
Affiliation(s)
- Klaus Reinhardt
- Applied Zoology, Department of Biology, Technische Universität Dresden, 01062 Dresden, Germany;,
| | - Ralph Dobler
- Applied Zoology, Department of Biology, Technische Universität Dresden, 01062 Dresden, Germany;,
| | - Jessica Abbott
- Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
25
|
Kekäläinen J, Soler C, Veentaus S, Huuskonen H. Male Investments in High Quality Sperm Improve Fertilization Success, but May Have Negative Impact on Offspring Fitness in Whitefish. PLoS One 2015; 10:e0137005. [PMID: 26389594 PMCID: PMC4577118 DOI: 10.1371/journal.pone.0137005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022] Open
Abstract
Many ejaculate traits show remarkable variation in relation to male social status. Males in disfavoured (subordinate) mating positions often invest heavily on sperm motility but may have less available resources on traits (e.g., secondary sexual ornaments) that improve the probability of gaining matings. Although higher investments in sperm motility can increase the relative fertilization success of subordinate males, it is unclear whether status-dependent differences in sperm traits could have any consequences for offspring fitness. We tested this possibility in whitefish (Coregonus lavaretus L.) by experimentally fertilizing the eggs of 24 females with the sperm of either highly-ornamented (large breeding tubercles, dominant) or less-ornamented (small tubercles, subordinate) males (split-clutch breeding design). In comparison to highly-ornamented individuals, less-ornamented males had higher sperm motility, which fertilized the eggs more efficiently, but produced embryos with impaired hatching success. Also offspring size and body condition were lower among less-ornamented males. Furthermore, sperm motility was positively associated with the fertilization success and offspring size, but only in highly-ornamented males. Together our results indicate that male investments on highly motile (fertile) sperm is not necessarily advantageous during later offspring ontogeny and that male status-dependent differences in sperm phenotype may have important effects on offspring fitness in different life-history stages.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- Department of Biology, University of Eastern Finland, Joensuu, Finland
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, Australia
- * E-mail:
| | - Carles Soler
- Departament de Biologia Funcional i Antropologia Física, Universitat de València, Burjassot, Spain
| | - Sami Veentaus
- Department of Biology, University of Eastern Finland, Joensuu, Finland
| | - Hannu Huuskonen
- Department of Biology, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
26
|
Chirgwin E, Monro K, Sgro CM, Marshall DJ. Revealing hidden evolutionary capacity to cope with global change. GLOBAL CHANGE BIOLOGY 2015; 21:3356-3366. [PMID: 25781417 DOI: 10.1111/gcb.12929] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The extent to which global change will impact the long-term persistence of species depends on their evolutionary potential to adapt to future conditions. While the number of studies that estimate the standing levels of adaptive genetic variation in populations under predicted global change scenarios is growing all the time, few studies have considered multiple environments simultaneously and even fewer have considered evolutionary potential in multivariate context. Because conditions will not be constant, adaptation to climate change is fundamentally a multivariate process so viewing genetic variances and covariances over multivariate space will always be more informative than relying on bivariate genetic correlations between traits. A multivariate approach to understanding the evolutionary capacity to cope with global change is necessary to avoid misestimating adaptive genetic variation in the dimensions in which selection will act. We assessed the evolutionary capacity of the larval stage of the marine polychaete Galeolaria caespitosa to adapt to warmer water temperatures. Galeolaria is an important habitat-forming species in Australia, and its earlier life-history stages tend to be more susceptible to stress. We used a powerful quantitative genetics design that assessed the impacts of three temperatures on subsequent survival across over 30 000 embryos across 204 unique families. We found adaptive genetic variation in the two cooler temperatures in our study, but none in the warmest temperature. Based on these results, we would have concluded that this species has very little capacity to evolve to the warmest temperature. However, when we explored genetic variation in multivariate space, we found evidence that larval survival has the potential to evolve even in the warmest temperatures via correlated responses to selection across thermal environments. Future studies should take a multivariate approach to estimating evolutionary capacity to cope with global change lest they misestimate a species' true adaptive potential.
Collapse
Affiliation(s)
- Evatt Chirgwin
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Keyne Monro
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Carla M Sgro
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Dustin J Marshall
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|