1
|
Holst S, Tiseo GR, Djeghri N, Sötje I. Approaches and findings in histological and micromorphological research on Rhizostomeae. ADVANCES IN MARINE BIOLOGY 2024; 98:99-192. [PMID: 39547756 DOI: 10.1016/bs.amb.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The substantial development of microscopic techniques and histological examination methods during the past five decades allowed for many new insights into the histology and microanatomy of Rhizostomeae. The present review focuses on new findings about histologically important structures: nerves, senses, muscles, gonads, zooxanthellae and nematocysts. Different ontogenetic stages of rhizostome species were included in the literature research, supplemented with the authors' unpublished data and figures. The overview of the research results reveals that the application of chemo- and immunohistochemical techniques have provided deeper insights into neuronal and sensory structures and their interconnections. Modern microscopic methods led to new findings on the histological gonadal organization and details of the processes of gametogenesis, fertilization, cleavage, gastrulation, and brooding. Advanced optical methods also allowed for a better understanding of Rhizostomeae-zooxanthellae associations and the morphology and function of nematocysts. Improvements in molecular biology allowed for more precise identification of zooxanthellae associated with rhizostome species. Although there has been significant progress in all of the research subjects covered here, we identify several knowledge gaps and conclude with some recommendations for future research.
Collapse
Affiliation(s)
- Sabine Holst
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany.
| | - Gisele R Tiseo
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Nicolas Djeghri
- The Marine Biological Association, Continuous Plankton Recorder Survey, Plymouth, United Kingdom; University of Brest (UBO), Institut Universitaire Européen de la Mer (IUEM), Laboratoire des sciences de l'environnement marin (LEMAR, UMR 6539), Plouzané, France
| | - Ilka Sötje
- University of Hamburg, Institute for Cell and Systems Biology of Animals (IZS), Hamburg, Germany
| |
Collapse
|
2
|
Moroz LL. Multiple Origins of Neurons From Secretory Cells. Front Cell Dev Biol 2021; 9:669087. [PMID: 34307354 PMCID: PMC8293673 DOI: 10.3389/fcell.2021.669087] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| |
Collapse
|
3
|
Costello JH, Colin SP, Dabiri JO, Gemmell BJ, Lucas KN, Sutherland KR. The Hydrodynamics of Jellyfish Swimming. ANNUAL REVIEW OF MARINE SCIENCE 2021; 13:375-396. [PMID: 32600216 DOI: 10.1146/annurev-marine-031120-091442] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Jellyfish have provided insight into important components of animal propulsion, such as suction thrust, passive energy recapture, vortex wall effects, and the rotational mechanics of turning. These traits are critically important to jellyfish because they must propel themselves despite severe limitations on force production imposed by rudimentary cnidarian muscular structures. Consequently, jellyfish swimming can occur only by careful orchestration of fluid interactions. Yet these mechanics may be more broadly instructive because they also characterize processes shared with other animal swimmers, whose structural and neurological complexity can obscure these interactions. In comparison with other animal models, the structural simplicity, comparative energetic efficiency, and ease of use in laboratory experimentation allow jellyfish to serve as favorable test subjects for exploration of the hydrodynamic bases of animal propulsion. These same attributes also make jellyfish valuable models for insight into biomimetic or bioinspired engineeringof swimming vehicles. Here, we review advances in understanding of propulsive mechanics derived from jellyfish models as a pathway toward the application of animal mechanics to vehicle designs.
Collapse
Affiliation(s)
- John H Costello
- Department of Biology, Providence College, Providence, Rhode Island 02918, USA;
| | - Sean P Colin
- Department of Marine Biology and Environmental Science, Roger Williams University, Bristol, Rhode Island 02809, USA;
| | - John O Dabiri
- Graduate Aerospace Laboratories and Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Brad J Gemmell
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA;
| | - Kelsey N Lucas
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Kelly R Sutherland
- Oregon Institute of Marine Biology, University of Oregon, Eugene, Oregon 97403, USA;
| |
Collapse
|
4
|
Norekian TP, Moroz LL. Atlas of the neuromuscular system in the Trachymedusa Aglantha digitale: Insights from the advanced hydrozoan. J Comp Neurol 2019; 528:1231-1254. [PMID: 31749185 DOI: 10.1002/cne.24821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/26/2023]
Abstract
Cnidaria is the sister taxon to bilaterian animals, and therefore, represents a key reference lineage to understand early origins and evolution of the neural systems. The hydromedusa Aglantha digitale is arguably the best electrophysiologically studied jellyfish because of its system of giant axons and unique fast swimming/escape behaviors. Here, using a combination of scanning electron microscopy and immunohistochemistry together with phalloidin labeling, we systematically characterize both neural and muscular systems in Aglantha, summarizing and expanding further the previous knowledge on the microscopic neuroanatomy of this crucial reference species. We found that the majority, if not all (~2,500) neurons, that are labeled by FMRFamide antibody are different from those revealed by anti-α-tubulin immunostaining, making these two neuronal markers complementary to each other and, therefore, expanding the diversity of neural elements in Aglantha with two distinct neural subsystems. Our data uncovered the complex organization of neural networks forming a functional "annulus-type" central nervous system with three subsets of giant axons, dozen subtypes of neurons, muscles, and a variety of receptors fully integrated with epithelial conductive pathways supporting swimming, escape and feeding behaviors. The observed unique adaptations within the Aglantha lineage (including giant axons innervating striated muscles) strongly support an extensive and wide-spread parallel evolution of integrative and effector systems across Metazoa.
Collapse
Affiliation(s)
- Tigran P Norekian
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, Florida.,Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, Florida.,Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
5
|
Simmons SL, Satterlie RA. Tentacle Musculature in the Cubozoan Jellyfish Carybdea marsupialis. THE BIOLOGICAL BULLETIN 2018; 235:91-101. [PMID: 30358449 DOI: 10.1086/699325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The diploblastic cnidarian body plan comprising the epidermis and gastrodermis has remained largely unchanged since it evolved roughly 600 Ma. The origin of muscle from the mesoderm in triploblastic lineages is a central evolutionary question in higher animals. Triploblasts have three embryonic germ layers: the endoderm, mesoderm, and ectoderm, which develop into organs, muscle, and skin, respectively. Diploblasts lack the mesoderm, the layer thought to give rise to the skeletomuscular system. However, phyla such as Cnidaria and Ctenophora, which are typically classified as diploblasts, possess striated musculature. Within phylum Cnidaria, class Cubozoa includes carnivorous box jellyfish, which are capable of extending and contracting their tentacles for predation and defense mechanisms, thus suggesting a well-organized system of muscles. Here, the tentacle musculature of the cubomedusae Carybdea marsupialis is investigated using transmission electron microscopy in conjunction with light microscopy to further understand the arrangement of musculature in these primitive animals. Cross sections of tentacles confirmed that the gastrodermis is separated from the epidermis by a collagenous mesogleal layer containing numerous longitudinal muscle cells arranged in fascicles. Longitudinal muscles permit the tentacle to retract toward the bell during fast tentacle shortening and crumpling behavioral responses. Circular muscle cells were found in the gastrodermis and epidermis, encircling the layer of longitudinal muscle. These circular muscles likely enable the elongation process that allows the tentacles to return to a resting state after contraction. The presence of a definitive muscle cell layer within the mesoglea suggests that C. marsupialis has an advanced muscle morphology that is similar to triploblastic animals.
Collapse
|
6
|
Koutsakis C, Kazanis I. How Necessary is the Vasculature in the Life of Neural Stem and Progenitor Cells? Evidence from Evolution, Development and the Adult Nervous System. Front Cell Neurosci 2016; 10:35. [PMID: 26909025 PMCID: PMC4754404 DOI: 10.3389/fncel.2016.00035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/01/2016] [Indexed: 12/24/2022] Open
Abstract
Augmenting evidence suggests that such is the functional dependance of neural stem cells (NSCs) on the vasculature that they normally reside in “perivascular niches”. Two examples are the “neurovascular” and the “oligovascular” niches of the adult brain, which comprise specialized microenvironments where NSCs or oligodendrocyte progenitor cells survive and remain mitotically active in close proximity to blood vessels (BVs). The often observed co-ordination of angiogenesis and neurogenesis led to these processes being described as “coupled”. Here, we adopt an evo-devo approach to argue that some stages in the life of a NSC, such as specification and commitment, are independent of the vasculature, while stages such as proliferation and migration are largely dependent on BVs. We also explore available evidence on the possible involvement of the vasculature in other phenomena such as the diversification of NSCs during evolution and we provide original data on the senescence of NSCs in the subependymal zone stem cell niche. Finally, we will comment on the other side of the story; that is, on how much the vasculature is dependent on NSCs and their progeny.
Collapse
Affiliation(s)
- Christos Koutsakis
- Laboratory of Developmental Biology, Department of Biology, University of Patras Patras, Greece
| | - Ilias Kazanis
- Laboratory of Developmental Biology, Department of Biology, University of PatrasPatras, Greece; Wellcome Trust-MRC Cambridge Stem Cell Institute, University of CambridgeCambridge, UK
| |
Collapse
|
7
|
Evolution of rapid nerve conduction. Brain Res 2016; 1641:11-33. [PMID: 26879248 DOI: 10.1016/j.brainres.2016.02.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 01/29/2023]
Abstract
Rapid conduction of nerve impulses is a priority for organisms needing to react quickly to events in their environment. While myelin may be viewed as the crowning innovation bringing about rapid conduction, the evolution of rapid communication mechanisms, including those refined and enhanced in the evolution of myelin, has much deeper roots. In this review, a sequence is traced starting with diffusional communication, followed by transport-facilitated communication, the rise of electrical signaling modalities, the invention of voltage-gated channels and "all-or-none" impulses, the emergence of elongate nerve axons specialized for communication and their fine-tuning to enhance impulse conduction speeds. Finally within the evolution of myelin itself, several innovations have arisen and have been interactively refined for speed enhancement, including the addition and sealing of layers, their limitation by space availability, and the optimization of key parameters: channel density, lengths of exposed nodes and lengths of internodes. We finish by suggesting several design principles that appear to govern the evolution of rapid conduction. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
|
8
|
|