1
|
Verbe A, Martinez D, Viollet S. Sensory fusion in the hoverfly righting reflex. Sci Rep 2023; 13:6138. [PMID: 37061548 PMCID: PMC10105705 DOI: 10.1038/s41598-023-33302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
We study how falling hoverflies use sensory cues to trigger appropriate roll righting behavior. Before being released in a free fall, flies were placed upside-down with their legs contacting the substrate. The prior leg proprioceptive information about their initial orientation sufficed for the flies to right themselves properly. However, flies also use visual and antennal cues to recover faster and disambiguate sensory conflicts. Surprisingly, in one of the experimental conditions tested, hoverflies flew upside-down while still actively flapping their wings. In all the other conditions, flies were able to right themselves using two roll dynamics: fast ([Formula: see text]50ms) and slow ([Formula: see text]110ms) in the presence of consistent and conflicting cues, respectively. These findings suggest that a nonlinear sensory integration of the three types of sensory cues occurred. A ring attractor model was developed and discussed to account for this cue integration process.
Collapse
Affiliation(s)
- Anna Verbe
- Aix-Marseille Université, CNRS, ISM, 13009, Marseille, France
- PNI, Princeton University, Washington Road, Princeton, NJ, 08540, USA
| | - Dominique Martinez
- Aix-Marseille Université, CNRS, ISM, 13009, Marseille, France
- Université de Lorraine, CNRS, LORIA, 54000, Nancy, France
| | | |
Collapse
|
2
|
Othayoth R, Strebel B, Han Y, Francois E, Li C. A terrain treadmill to study animal locomotion through large obstacles. J Exp Biol 2022; 225:275753. [PMID: 35724269 DOI: 10.1242/jeb.243558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
A challenge to understanding locomotion in complex 3-D terrain with large obstacles is to create tools for controlled, systematic experiments. Recent terrain arenas allow observations at small spatiotemporal scales (∼10 body length or cycles). Here, we create a terrain treadmill to enable high-resolution observation of animal locomotion through large obstacles over large spatiotemporal scales. An animal moves through modular obstacles on an inner sphere, while a rigidly-attached, concentric, transparent outer sphere rotates with the opposite velocity via closed-loop feedback to keep the animal atop. During sustained locomotion, a discoid cockroach moved through pillar obstacles for up to 25 minutes (2500 cycles) over 67 m (1500 body lengths). Over 12 trials totaling∼1 hour, the animal was maintained within a radius of 1 body length (4.5 cm) on top of the sphere 90% of the time. The high-resolution observation enables study of diverse locomotor behaviors and quantification of animal-obstacle interaction.
Collapse
Affiliation(s)
- Ratan Othayoth
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Blake Strebel
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Yuanfeng Han
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Evains Francois
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Chen Li
- Department of Mechanical Engineering, Johns Hopkins University, USA
| |
Collapse
|
3
|
Wang Y, Othayoth R, Li C. Cockroaches adjust body and appendages to traverse cluttered large obstacles. J Exp Biol 2022; 225:275496. [PMID: 35502788 DOI: 10.1242/jeb.243605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/25/2022] [Indexed: 11/20/2022]
Abstract
To traverse complex terrain, animals often transition between locomotor modes. It is well-known that locomotor transitions can be induced by switching in neural control circuits or driven by a need to minimize metabolic energetic cost. Recent work discovered that locomotor transitions in complex 3-D terrain cluttered with large obstacles can emerge from physical interaction with the environment controlled by the nervous system. For example, to traverse cluttered, stiff grass-like beams, the discoid cockroach often transitions from using a strenuous pitch mode pushing across to using a less strenuous roll mode rolling into and through the gaps, and this transition requires overcoming a potential energy barrier. Previous robotic physical modeling demonstrated that kinetic energy fluctuation of body oscillation from self-propulsion can help overcome the barrier and facilitate this transition. However, the animal was observed to transition even when the barrier still exceeded kinetic energy fluctuation. Here, we further studied whether and how the cockroach makes active adjustments to facilitate this transition to traverse cluttered beams. The animal repeatedly flexed its head and abdomen, reduced hind leg sprawl, and depressed one hind leg and elevated the other during the pitch-to-roll transition, which were absent when running on a flat ground. Using a refined potential energy landscape with additional degrees of freedom to model these adjustments, we found that head flexion did not substantially reduce the transition barrier, whereas leg sprawl reduction did so dramatically. We speculate that head flexion is for sensing the terrain to guide the transition via sensory feedback control.
Collapse
Affiliation(s)
- Yaqing Wang
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Ratan Othayoth
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Chen Li
- Department of Mechanical Engineering, Johns Hopkins University, USA
| |
Collapse
|
4
|
Yuan J, Wang Z, Song Y, Dai Z. Peking geckos (Gekko swinhonis) traversing upward steps: the effect of step height on the transition from horizontal to vertical locomotion. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:421-433. [PMID: 35362821 DOI: 10.1007/s00359-022-01548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022]
Abstract
The ability to transition between surfaces (e.g., from the ground to vertical barriers, such as walls, tree trunks, or rock surfaces) is important for the Peking gecko's (Gekko swinhonis Günther 1864) survival. However, quantitative research on gecko's kinematic performance and the effect of obstacle height during transitional locomotion remains scarce. In this study, the transitional locomotion of geckos facing different obstacle heights was assessed. Remarkably, geckos demonstrated a bimodal locomotion ability, as they could climb and jump. Climbing was more common on smaller obstacles and took longer than jumping. The jumping type depended on the obstacle height: when geckos could jump onto the obstacle, the vertical velocity increased with obstacle height; however, geckos jumped from a closer position when the obstacle height exceeded this range and would get attached to the vertical surface. A stability analysis of vertical surface landing using a collision model revealed that geckos can reduce their restraint impulse by increasing the landing angle through limb extension close to the body, consequently dissipating collision energy and reducing their horizontal and vertical velocities. The findings of this study reveal the adaptations evolved by geckos to move in their environments and may have applicability in the robotics field.
Collapse
Affiliation(s)
- Jiwei Yuan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Zhouyi Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China.
| | - Yi Song
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Zhendong Dai
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| |
Collapse
|
5
|
Schmitthenner D, Martin AE. Comparing system identification techniques for identifying human-like walking controllers. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211031. [PMID: 34950486 PMCID: PMC8692963 DOI: 10.1098/rsos.211031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
While human walking has been well studied, the exact controller is unknown. This paper used human experimental walking data and system identification techniques to infer a human-like controller for a spring-loaded inverted pendulum (SLIP) model. Because the best system identification technique is unknown, three methods were used and compared. First, a linear system was found using ordinary least squares. A second linear system was found that both encoded the linearized SLIP model and matched the first linear system as closely as possible. A third nonlinear system used sparse identification of nonlinear dynamics (SINDY). When directly mapping states from the start to the end of a step, all three methods were accurate, with errors below 10% of the mean experimental values in most cases. When using the controllers in simulation, the errors were significantly higher but remained below 10% for all but one state. Thus, all three system identification methods generated accurate system models. Somewhat surprisingly, the linearized system was the most accurate, followed closely by SINDY. This suggests that nonlinear system identification techniques are not needed when finding a discrete human gait controller, at least for unperturbed walking. It may also suggest that human control of normal, unperturbed walking is approximately linear.
Collapse
Affiliation(s)
| | - Anne E. Martin
- Penn State, Mechanical Engineering, University Park, PA, USA
| |
Collapse
|
6
|
Szczecinski NS, Dallmann CJ, Quinn RD, Zill SN. A computational model of insect campaniform sensilla predicts encoding of forces during walking. BIOINSPIRATION & BIOMIMETICS 2021; 16:065001. [PMID: 34384067 DOI: 10.1088/1748-3190/ac1ced] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Control of forces is essential in both animals and walking machines. Insects measure forces as strains in their exoskeletons via campaniform sensilla (CS). Deformations of cuticular caps embedded in the exoskeleton excite afferents that project to the central nervous system. CS afferent firing frequency (i.e. 'discharge') is highly dynamic, correlating with the rate of change of the force. Discharges adapt over time to tonic forces and exhibit hysteresis during cyclic loading.In this study we characterized a phenomenological model that predicts CS discharge, in which discharge is proportional to the instantaneous stimulus force relative to an adaptive variable. In contrast to previous studies of sensory adaptation, our model (1) is nonlinear and (2) reproduces the characteristic power-law adaptation with first order dynamics only (i.e. no 'fractional derivatives' are required to explain dynamics). We solve the response of the system analytically in multiple cases and use these solutions to derive the dynamics of the adaptive variable. We show that the model can reproduce responses of insect CS to many different force stimuli after being tuned to reproduce only one response, suggesting that the model captures the underlying dynamics of the system. We show that adaptation to tonic forces, rate-sensitivity, and hysteresis are different manifestations of the same underlying mechanism: the adaptive variable. We tune the model to replicate the dynamics of three different CS groups from two insects (cockroach and stick insect), demonstrating that it is generalizable. We also invert the model to estimate the stimulus force given the discharge recording from the animal. We discuss the adaptive neural and mechanical processes that the model may mimic and the model's use for understanding the role of load feedback in insect motor control. A preliminary model and results were previously published in the proceedings of the Conference on Biohybrid and Biomimetic Systems.
Collapse
Affiliation(s)
- Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26505, United States of America
| | - Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, United States of America
| | - Roger D Quinn
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Sasha N Zill
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States of America
| |
Collapse
|
7
|
Dickerson BH, Fox JL, Sponberg S. Functional diversity from generic encoding in insect campaniform sensilla. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Mongeau JM, Cheng KY, Aptekar J, Frye MA. Visuomotor strategies for object approach and aversion in Drosophila melanogaster. ACTA ACUST UNITED AC 2019; 222:jeb.193730. [PMID: 30559298 DOI: 10.1242/jeb.193730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/10/2018] [Indexed: 02/01/2023]
Abstract
Animals classify stimuli to generate appropriate motor actions. In flight, Drosophila melanogaster classify equidistant large and small objects with categorically different behaviors: a tall object evokes approach whereas a small object elicits avoidance. We studied visuomotor behavior in rigidly and magnetically tethered D. melanogaster to reveal strategies that generate aversion to a small object. We discovered that small-object aversion in tethered flight is enabled by aversive saccades and smooth movement, which vary with the stimulus type. Aversive saccades in response to a short bar had different dynamics from approach saccades in response to a tall bar and the distribution of pre-saccade error angles was more stochastic for a short bar. Taken together, we show that aversive responses in D. melanogaster are driven in part by processes that elicit signed saccades with distinct dynamics and trigger mechanisms. Our work generates new hypotheses to study brain circuits that underlie classification of objects in D. melanogaster.
Collapse
Affiliation(s)
- Jean-Michel Mongeau
- Department of Integrative Biology and Physiology, University of California - Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Karen Y Cheng
- Department of Integrative Biology and Physiology, University of California - Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Jacob Aptekar
- Department of Integrative Biology and Physiology, University of California - Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Mark A Frye
- Department of Integrative Biology and Physiology, University of California - Los Angeles, Los Angeles, CA 90095-7239, USA
| |
Collapse
|
9
|
Aiello BR, Gillis GB, Fox JL. Sensory Feedback and Animal Locomotion: Perspectives from Biology and Biorobotics: An Introduction to the Symposium. Integr Comp Biol 2018; 58:827-831. [PMID: 30376105 DOI: 10.1093/icb/icy100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The successful completion of many behaviors relies on sensory feedback. This symposium brought together researchers using novel techniques to study how different stimuli are encoded, how and where multimodal feedback is integrated, and how feedback modulates motor output in diverse modes of locomotion (aerial, aquatic, and terrestrial) in a diverse range of taxa (insects, fish, tetrapods), and in robots. Similar to biological organisms, robots can be equipped with integrated sensors and can rely on sensory feedback to adjust the output signal of a controller. Engineers often look to biology for inspiration on how animals have evolved solutions to problems similar to those experienced in robotic movement. Similarly, biologists too must proactively engage with engineers to apply computer and robotic models to test hypotheses and answer questions on the capacity and roles of sensory feedback in generating effective movement. Through a diverse group of researchers, including both biologists and engineers, the symposium attempted to catalyze new interdisciplinary collaborations and identify future research directions for the development of bioinspired sensory control systems, as well as the use of robots to test hypotheses in neuromechanics.
Collapse
Affiliation(s)
- Brett R Aiello
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street, Chicago, IL 60637, USA
| | - Gary B Gillis
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Jessica L Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Rajabi H, Shafiei A, Darvizeh A, Gorb SN, Dürr V, Dirks JH. Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration. J R Soc Interface 2018; 15:rsif.2018.0246. [PMID: 30045891 DOI: 10.1098/rsif.2018.0246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/04/2018] [Indexed: 11/12/2022] Open
Abstract
Active tactile exploration behaviour is constrained to a large extent by the morphological and biomechanical properties of the animal's somatosensory system. In the model organism Carausius morosus, the main tactile sensory organs are long, thin, seemingly delicate, but very robust antennae. Previous studies have shown that these antennae are compliant under contact, yet stiff enough to maintain a straight shape during active exploration. Overcritical damping of the flagellum, on the other hand, allows for a rapid return to the straight shape after release of contact. Which roles do the morphological and biomechanical adaptations of the flagellum play in determining these special mechanical properties? To investigate this question, we used a combination of biomechanical experiments and numerical modelling. A set of four finite-element (FE) model variants was derived to investigate the effect of the distinct geometrical and material properties of the flagellum on its static (bending) and dynamic (damping) characteristics. The results of our numerical simulations show that the tapered shape of the flagellum had the strongest influence on its static biomechanical behaviour. The annulated structure and thickness gradient affected the deformability of the flagellum to a lesser degree. The inner endocuticle layer of the flagellum was confirmed to be essential for explaining the strongly damped return behaviour of the antenna. By highlighting the significance of two out of the four main structural features of the insect flagellum, our study provides a basis for mechanical design of biomimetic touch sensors tuned to become maximally flexible while quickly resuming a straight shape after contact.
Collapse
Affiliation(s)
- H Rajabi
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - A Shafiei
- Department of Mechanical Engineering, University of Guilan, Rasht, Iran.,Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6
| | - A Darvizeh
- Department of Mechanical Engineering, Anzali Branch, Islamic Azad University, Bandar Anzali, Iran
| | - S N Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - V Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - J-H Dirks
- Max-Planck-Institute for Intelligent Systems, Stuttgart, Germany.,Biomimetics-Innovation-Centre, Hochschule Bremen-City University of Applied Sciences, Bremen, Germany
| |
Collapse
|
11
|
Slaby P, Bartos P, Karas J, Netusil R, Tomanova K, Vacha M. How Swift Is Cry-Mediated Magnetoreception? Conditioning in an American Cockroach Shows Sub-second Response. Front Behav Neurosci 2018; 12:107. [PMID: 29892217 PMCID: PMC5985609 DOI: 10.3389/fnbeh.2018.00107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/07/2018] [Indexed: 11/30/2022] Open
Abstract
Diverse animal species perceive Earth’s magnetism and use their magnetic sense to orientate and navigate. Even non-migrating insects such as fruit flies and cockroaches have been shown to exploit the flavoprotein Cryptochrome (Cry) as a likely magnetic direction sensor; however, the transduction mechanism remains unknown. In order to work as a system to steer insect flight or control locomotion, the magnetic sense must transmit the signal from the receptor cells to the brain at a similar speed to other sensory systems, presumably within hundreds of milliseconds or less. So far, no electrophysiological or behavioral study has tackled the problem of the transduction delay in case of Cry-mediated magnetoreception specifically. Here, using a novel aversive conditioning assay on an American cockroach, we show that magnetic transduction is executed within a sub-second time span. A series of inter-stimulus intervals between conditioned stimuli (magnetic North rotation) and unconditioned aversive stimuli (hot air flow) provides original evidence that Cry-mediated magnetic transduction is sufficiently rapid to mediate insect orientation.
Collapse
Affiliation(s)
- Pavel Slaby
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Premysl Bartos
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Jakub Karas
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Radek Netusil
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Kateřina Tomanova
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Martin Vacha
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| |
Collapse
|
12
|
Gart SW, Li C. Body-terrain interaction affects large bump traversal of insects and legged robots. BIOINSPIRATION & BIOMIMETICS 2018; 13:026005. [PMID: 29394159 DOI: 10.1088/1748-3190/aaa2d0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Small animals and robots must often rapidly traverse large bump-like obstacles when moving through complex 3D terrains, during which, in addition to leg-ground contact, their body inevitably comes into physical contact with the obstacles. However, we know little about the performance limits of large bump traversal and how body-terrain interaction affects traversal. To address these, we challenged the discoid cockroach and an open-loop six-legged robot to dynamically run into a large bump of varying height to discover the maximal traversal performance, and studied how locomotor modes and traversal performance are affected by body-terrain interaction. Remarkably, during rapid running, both the animal and the robot were capable of dynamically traversing a bump much higher than its hip height (up to 4 times the hip height for the animal and 3 times for the robot, respectively) at traversal speeds typical of running, with decreasing traversal probability with increasing bump height. A stability analysis using a novel locomotion energy landscape model explained why traversal was more likely when the animal or robot approached the bump with a low initial body yaw and a high initial body pitch, and why deflection was more likely otherwise. Inspired by these principles, we demonstrated a novel control strategy of active body pitching that increased the robot's maximal traversable bump height by 75%. Our study is a major step in establishing the framework of locomotion energy landscapes to understand locomotion in complex 3D terrains.
Collapse
Affiliation(s)
- Sean W Gart
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles St, 126 Hackerman Hall, Baltimore, MD 21218-2683, United States of America
| | | |
Collapse
|
13
|
Jayaram K, Mongeau JM, Mohapatra A, Birkmeyer P, Fearing RS, Full RJ. Transition by head-on collision: mechanically mediated manoeuvres in cockroaches and small robots. J R Soc Interface 2018; 15:20170664. [PMID: 29445036 PMCID: PMC5832722 DOI: 10.1098/rsif.2017.0664] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/24/2018] [Indexed: 11/12/2022] Open
Abstract
Exceptional performance is often considered to be elegant and free of 'errors' or missteps. During the most extreme escape behaviours, neural control can approach or exceed its operating limits in response time and bandwidth. Here we show that small, rapid running cockroaches with robust exoskeletons select head-on collisions with obstacles to maintain the fastest escape speeds possible to transition up a vertical wall. Instead of avoidance, animals use their passive body shape and compliance to negotiate challenging environments. Cockroaches running at over 1 m or 50 body lengths per second transition from the floor to a vertical wall within 75 ms by using their head like an automobile bumper, mechanically mediating the manoeuvre. Inspired by the animal's behaviour, we demonstrate a passive, high-speed, mechanically mediated vertical transitions with a small, palm-sized legged robot. By creating a collision model for animal and human materials, we suggest a size dependence favouring mechanical mediation below 1 kg that we term the 'Haldane limit'. Relying on the mechanical control offered by soft exoskeletons represents a paradigm shift for understanding the control of small animals and the next generation of running, climbing and flying robots where the use of the body can off-load the demand for rapid sensing and actuation.
Collapse
Affiliation(s)
- Kaushik Jayaram
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Jean-Michel Mongeau
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Anand Mohapatra
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Paul Birkmeyer
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA
| | - Ronald S Fearing
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA
| | - Robert J Full
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Immediate responses of the cockroach Blaptica dubia after the exposure to sulfur mustard. Arch Toxicol 2017; 92:337-346. [DOI: 10.1007/s00204-017-2064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
|
15
|
Abstract
Tiger beetles pursue prey by adjusting their heading according to a time-delayed proportional control law that minimizes the error angle (Haselsteiner et al 2014 J. R. Soc. Interface 11 20140216). This control law can be further interpreted in terms of mechanical actuation: to catch prey, tiger beetles exert a sideways force by biasing their tripod gait in proportion to the error angle measured half a stride earlier. The proportional gain was found to be nearly optimal in the sense that it minimizes the time to point directly toward the prey. For a time-delayed linear proportional controller, the optimal gain, k, is inversely proportional to the time delay, τ, and satisfies [Formula: see text]. Here we present evidence that tiger beetles adjust their control gain during their pursuit of prey. Our analysis shows two critical distances: one corresponding to the beetle's final approach to the prey, and the second, less expected, occurring at a distance around 10 cm for a prey size of 4.5 mm. The beetle initiates its chase using a sub-critical gain and increases the gain to the optimal value once the prey is within this critical distance. Insects use a variety of methods to detect distance, often involving different visual cues. Here we examine two such methods: one based on motion parallax and the other based on the prey's elevation angle. We show that, in order for the motion parallax method to explain the observed data, the beetle needs to correct for the ratio of the prey's sideways velocity relative to its own. On the other hand, the simpler method based on the elevation angle can detect both the distance and the prey's size. Moreover we find that the transition distance corresponds to the accuracy required to distinguish small prey from large predators.
Collapse
Affiliation(s)
- R M Noest
- Department of Physics, Cornell University, Ithaca, NY 14853, United States of America
| | | |
Collapse
|